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Abstract

In this thesis work ”Analysis and Evaluation of Global Optimization Algo-
rithms for Gravity-Assist sequencing of Low-Thrust missions” research is con-
ducted to verify if the optimization algorithms can find near optimal trajec-
tories for low-thrust gravity-assist trajectory optimization problem. In most
of the low-thrust gravity-assist trajectory optimization, the gravity-assist se-
quence is fed to the optimizer by a mission analyst. The aim of this thesis
is to analyse optimization algorithms after including the gravity assist part-
ner as part of the optimization, i.e optimizer itself chooses the gravity-assist
sequence. A couple of global optimization algorithms, Random Search and
Simulated Annealing are realized in object oriented language(C++) and sev-
eral experimental results are evaluated to understand the behaviour of these
algorithms on a system which is trying to optimize the low-thrust gravity-assist
trajectories. Suitability of the optimization algorithm which is to be used in
an optimization tool, is verified.
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1. Introduction

Space exploration has always fascinated humans. Ever since the first satellite
Sputnik was launched, there are numerous attempts to explore outer space
and understand the celestial bodies. Improving the efficiency of the missions
and trajectory optimizations have taken huge importance in the field of space
science. In recent times numerous researches have been conducted on trajectory
optimization problem with the help of various optimization methodologies.
This thesis work is one such effort to understand the behaviour of optimization
algorithms for the problem of low-thrust gravity-assist trajectory optimization.

1.1. Motivation

The targets that can be reached by chemical rockets are limited because of
massive propellant requirements. With the help of low-thrust gravity-assist
trajectories it is possible for a spacecraft to reach longer distances and ex-
plore outer limits of the solar system. Exploration missions are becoming more
and more ambitious and rely on gravity assist as free energy providers. For
many years NASA, ESA and other space agencies have been using this method
to extract freely available energy in space. Missions like Voyager, Cassini,
Messenger and New Horizons all relied on gravity assists for accomplish-
ing their missions. Dawn and Hayabusa missions showcase the benefits of
low-thrust gravity-assist combination, even though the gravity assist was not
mission critical for Dawn [26] [25]. The main goal of low-thrust gravity-assist
missions is not only to reach distant targets but also decrease the mass of the
required propellant, therefore increasing the payload of the mission. The po-
tential fuel mass savings and energy benefits makes optimization of low-thrust
and gravity-assist combination as one of the exciting research topics.

1.2. Objectives and Proceedings

Usually for low-thrust gravity-assist optimization, the sequence of gravity-assist
partners (planets or satellites where the gravity assists occur) is simply fed to
the optimization algorithm by an experienced mission analyst and is not part of
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optimization of low-thrust mission scenario [25]. The method of allowing opti-
mization algorithm itself to chose the required planet for the gravity assist has
been put forward by Mr V.Maiwald [25]. This is a new approach towards the
problem of optimizing low-thrust gravity-assist trajectories. By implementing
such a condition the number of variables in the optimization problem increases
along with increase in the complexity of the optimization problem.

Major task of this thesis work is to check the suitability of global optimization
algorithms, if these algorithms would succeed in finding the optimal or near
optimal low-thrust gravity-assist trajectories.

The objectives of the thesis:

* Analysis of suitability of at least 2 global optimization algorithms (Ran-
dom Search to be used as bench mark) based on the ability to improve
one leg missions with multi-leg missions.

* Analysis and evaluation of convergence to one solution for one, two and
three leg missions.

* Discussion of the conclusions regarding the search space topography,
based on the algorithm performance.

Initially overall system of low-thrust gravity-assist trajectory optimization
is understood to implement the optimization logic. The provided codes are
adapted to implement Random Search algorithm, followed by experiments and
analysis of the results. Next follows implementation of Simulated Anneal-
ing algorithm for the given optimization problem. To verify the suitability of
Simulated Annealing algorithm several experiments are conducted and corre-
sponding results are analysed.

1.3. Report Structuring

This report consists of six further chapters explaining the thesis work in de-
tail. Chapter 2 provides insight into the theoretical background, description
of the low-thrust trajectories and optimization algorithms. Chapter 3 explains
the state of art, mission parameters and general mission settings. Chapter
4 introduces to Random Search method and analysis of the same for the de-
scribed system with the obtained results. Chapter 5 explains implementation
of Simulated Annealing algorithm. Chapter 6 discusses the experiments and
results of Simulated Annealing algorithm. Chapter 7 concludes the thesis with
suggestions for future research.

9
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2. Theoretical Background

2.1. Gravity Assist

Gravity assists are methods in which an interplanetary spacecraft travels longer
distances with lesser consumption of fuel, with the help of gravitational energy
of the celestial bodies it encounters on its path. Gravity assist results in change
of both magnitude and direction of the velocity vector of a spacecraft. Gravity
assists are also known as fly-by trajectories and are useful in interplanetary
missions for reducing the ∆V (change in velocity of the spacecraft) cost of the
mission and increasing the payload mass of the mission [9].

2.1.1. Physics behind Gravity Assist

Gravity assist can be seen as a carefully planned hopping of the spacecraft
between the planets or planetary satellites. In this technique the spacecraft
extracts energy from an orbiting planet. When a spacecraft passes through the
gravitational field of an orbiting planet, according to Newton’s second and third
laws of motion there would be a change in momentum of the spacecraft due to
planets gravity and change in planets momentum due to spacecraft, however
the momentum of the entire system would be conserved [8]. In heliocentric
coordinate system, spacecraft either gains or loses energy from this encounter
depending on the position of the spacecraft with respect to the planet.

Fig 2.1 shows the hyperbolic fly by trajectory of the spacecraft relative to
planet coordinate system.

Velocity of the spacecraft with respect to the planet when it is infinitely far
away (outside the gravitational sphere of influence of the planet) is known as
hyperbolic excess velocity and is represented as V∞ [9].

V P
∞I is the inbound hyperbolic excess velocity of the spacecraft in planetocen-

tric system. V P
∞O is the outbound hyperbolic excess velocity of the spacecraft

in planetocentric system. V H
P is the velocity of the planet in heliocentric sys-

tem. δ is the angle at which the planet rotates the inbound hyperbolic excess
velocity vector. α is the angle between the planet velocity vector and out-
bound hyperbolic excess velocity vector. Rp is the perienteric distance of fly

10
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Figure 2.1.: Hyperbolic fly-by trajectory
[9]

by trajectory with respect to planet. [9]
The heliocentric velocities (both inbound and outbound) of the spacecraft

can be found by vectorial addition of planets velocity vector with the hyperbolic
excess velocity vector V P

∞ (considered in planetocentric system). The vector
diagram for the same is shown in Fig 2.2.

V H
VI = V P

∞ I + V H
P (2.1)

V H
VO = V P

∞ O + V H
P (2.2)

V H
VI is the inbound hyperbolic excess velocity of the spacecraft in heliocentric

system. V H
VO is the outbound hyperbolic excess velocity of the spacecraft in

heliocentric system. ∆VFB is the change in heliocentric velocity of the space-
craft.

The difference between the two values of the planetocentric hyperbolic excess
velocities V P

∞ (both inbound and outbound) is equal to the difference between
the heliocentric velocities of the spacecraft, shown in equation 2.3.

∆VFB = V P
∞ O − V P

∞ I = V H
VO − V H

VI [9] (2.3)
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Figure 2.2.: Flyby Velocity Geometry
[9]

It can also be seen from Fig 2.2 that maximum ∆VFB is obtained when the
inbound hyperbolic excess velocity vector is rotated by an angle of 180◦. [9]

∆VFB = 2V∞sin

(
δ

2

)
(2.4)

It is clear from equations 2.1 and 2.2 that the gain in heliocentric velocity of
the spacecraft after its encounter with the planet is entirely dependent on the
fact that the planet itself was in motion [8]. A typical example with numerical
details of Pioneer 10 spacecraft’s gravity assist around Jupiter is explained in
[8].

2.2. Rocket Propulsion

Thrust is the force which makes the rocket move through space. Thrust is pro-
duced by the propulsion system of the rocket during expulsion of the propellant
mass. Basically there are two means of rocket propulsion. It can be classified
as chemical and non chemical rocket propulsion systems. Chemical rockets are
propelled due to expansion of high pressure gases which are expelled through
the nozzle of the rocket to provide thrust. The high pressure gas expansion
is obtained by burning the propellant made of fuel and oxidizers. In contrast
to chemical rockets non chemical rockets are propelled by accelerating charge
particles out of the nozzle using a magnet or electrostatic forces. Non chem-
ical rockets use electric propulsion engines, ion thrusters and are powered by
generators, solar panels or nuclear power sources. [11]

Thrust produced by a rocket engine is given by equation 2.5 [7].

F = c
dm

dt
(2.5)

where c is the exhaust velocity (velocity of the exhaust gases in case of chemical
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Figure 2.3.: NASA space shuttle main engines
[13]

propulsions and charge particles in case of electric propulsions). dm
dt is the rate

at which the materials are expelled out of the rocket system.
The velocity attained by the rocket due to propulsion after neglecting the

gravity and drag effects is given by equation 2.6 [7].

∆V = vf − vo = −c ln
mf

mo
(2.6)

where ∆V is the velocity change, vf is the final velocity of the rocket, vo is
the initial velocity of the rocket, mf is final mass of the rocket, mo is the initial
mass of the rocket and c is the exhaust velocity.

Chemical rockets have higher rates of propellent mass ejection but are re-
stricted by the exhaust velocities. ”Today’s most efficient operational rocket
propulsion system is the main engine of U.S space shuttle, which performs near
its theoretical limits with an exhaust velocity of 4.5km/s in vacuum” [15]. Fig
2.3 shows chemical engines used in NASA space shuttle.

For missions requiring to deliver significant amount of rocket’s mass to its
destination, or missions with large requirements of ∆V , clearly the exhaust ve-
locities have to reach higher values. Low-thrust rocket engine exhaust velocities
can go up to 20 times greater than exhaust velocities achieved in chemical rock-
ets, hence requires far less propellent masses. Because of small mass ejection,
low-thrust rocket engines push the spacecraft in a gentle manner compared

13
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Figure 2.4.: The RIT-10 Gridded Ion Thruster
[11]

to chemical rockets. The thrust acceleration of a low-thrust rocket engine is
significantly less compared to that of a chemical rocket engine. This makes
low-thrust rocket engines unsuitable for launching a pay load off the earths
surface into orbit . Fig 2.4 shows electric grid ion thruster. [11]

In order to lift huge amounts of mass to higher orbits there is a need for
very good thrusters or rocket engines, however these rocket engines themselves
should not become an hindrance to achieve this goal. By combining chemi-
cal rockets with low-thrust it is possible to greatly enhance the future space
programs.

2.2.1. Impulsive Mission

The name impulsive mission is because the rocket engines thrust the spacecraft
for very small amounts of time (which range from 200 to 500 seconds) com-
pared to mission flight time [9]. Once the spacecraft is thrusted, it is placed on
a trajectory to its destination, the spacecraft coasts from one point to another.
In case of path corrections, additional impulses are applied. An example tra-
jectory of an impulsive mission for spacecraft moving from low earth orbit to
geosynchronous orbit is shown in Fig 2.5.

The minimum energy transfer path between two circular orbits is an elliptical
path with perigee (point on elliptical path closest to Earth) on the inner orbit
and apogee (point on elliptical path farthest to Earth) on the outer orbit and
is known as Hohmann trajectory. The elliptical path between the two circular

14
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Figure 2.5.: Impulsive Mission Trajectory (Hohmann Transfer)
[9]

orbits is known as transfer orbit. The transfer itself involves thrusting of the
spacecraft at two different points, once at perigee (∆V1 to move the spacecraft
from inner circular orbit to transfer orbit) and once at apogee (∆V2 to move the
spacecraft from transfer orbit to outer circular orbit) as shown in Fig 2.5. The
transfer is named after the German scientist Walter Hohmann and is known as
Hohmann Transfer. [9]

2.2.2. Low-Thrust Mission

Contrasting to impulsive missions, low-thrust missions are thrusted for longer
periods of time during the mission. The thrust is applied continuously, some-
times up to few months, making the thrusting time non negligible when com-
pared to mission flight time [11]. Unlike Hohmann transfer as shown in Fig 2.5,
in low-thrust mission the spacecraft spirals out from the initial point to final
destination, making revolutions around the central body. A low-thrust trajec-
tory for a similar mission from low earth orbit to geosynchronous orbit appears
as shown in Fig 2.6 and the ∆V1,∆V2,∆V3,∆V........∆Vn denotes thrusting of
the spacecraft and is shown at regular intervals for easy understanding, however
in a real mission scenario the intervals are infinitesimally small. [9]
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Figure 2.6.: Low thrust mission trajectory
[9]

2.3. Tisserand Criterion

In the previous section, low-thrust missions and impulsive missions are ex-
plained. Due to the efficiency of low-thrust trajectories and free energy pro-
vided by gravity assists, a combination of both would lead to improvement
of overall mission performance. DLR(German Aerospace Center) is currently
working on the methods to combine low-thrust trajectories with gravity assist
and to include the gravity-assist sequence with in the optimization algorithm.
The first attempt to achieve this task is to consider Tisserand Criterion which
is used in Impulsive missions for sequencing the gravity-assist partners. Tis-
serand Criterion is an energy based function for orbital parameters. [25]

Rpl

a
+ 2

√
a(1− e2)
Rpl

cos i = constant (2.7)

Rpl is the solar distance of gravity-assist partner planet. a is semi-major axis
of the comet’s heliocentric orbit. e is eccentricity of the comet’s heliocentric
orbit. i is the inclination of the heliocentric orbit.

Equation 2.3 remains constant before and after encounter of a planetary
body. Tisserand criterion was developed by Tisserand to study the comets
subjected to orbital change due to encounter with Jupiter. Fig 2.7 is an ex-
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ample of Tisserand Graph and shows possible heliocentric orbits at possible
planetcentric relative energy between spacecraft and planet (given by hyper-
bolic excess velocity V∞). Tisserand Graphs are graphical representation of
Tisserand Criterion. With the help of Tisserand Graphs it is possible to map,
from energy point of view all the orbits a spacecraft can obtain after the en-
counter with a planet. Gravity-assist sequences for an impulsive mission can
be planned a priori with the help of Tisserand Graphs. [25]

2.3.1. Tisserand Graphs and Low-Thrust Missions

In case of low-thrust missions, the thrusting of the spacecraft is continuous and
for longer periods of time. Thrusting period is non negligible compared to the
over all flight time. Tisserand criterion is a energy based property and when
the effect of thrust acceleration is considered in terms of energy basis, then
it turns out that the effects are not negligible. This makes an argument that
the Tisserand criterion cannot be used for low-thrust gravity-assist sequencing
without a correction term. Derivation of the correction term is explained in
[25].

Although the correction term exists, Tisserand graphs can not be used for
low-thrust gravity assist sequencing as opposed to impulsive missions, due to
lack of a priori information on the trajectory. Therefore optimization strategies
should be used to find the gravity-assist sequence for low-thrust missions.

2.4. Optimization Algorithms

In previous sections the energy gained from gravity assist is explained, also
the efficiency of low-thrust missions. Combining both to obtain energy effi-
cient trajectories leads to a trajectory optimization problem. To solve this
optimization problem, some sort of optimization logic is required. Before going
through optimization algorithms, general description of optimization problem
is explained below.

Optimization is a method of maximizing or minimizing a function or a set
of functions to find the best possible solution for a given problem. The goal
of optimization is to find the best possible element x, which is a vector of m

17
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Figure 2.7.: ”Example of Tisserand Graphs for Earth (right, note the max-
imum possible heliocentric pericentre being approx. 1AU for the
spacecraft) and Venus (left) for various hyperbolic excess velocities
(planetcentric). Orbital period (proportional to the semi-major
axis, just like the specific orbit energy) as function of heliocentric
peicentre of spacecraft is given.”

[25]
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decision variables,

x =


x1
x2
...
xm

 (2.8)

from a set X according to set of criteria F = {f1, f2, f3, .....fn}. X is called
the problem space and can represent any type of elements like numbers, lists,
etc. The functions f1, f2, ...fn are known as the objective functions. [23]

Objective Function : The objective functions could be mathematical func-
tions or complex algorithms which are subjected to optimization (objective
function is either minimized or maximized depending on the problem). There
could be a single or multiple objective functions for a given optimization prob-
lem. [23]

Decision Variables : A set of unknown elements of x (which belongs to prob-
lem space X) which influences the value of objective functions are called de-
cision variables. These variables cannot assume any arbitrary values, they are
constrained by set of functions, for example g(x) ≥ 0. The condition g(x) ≥ 0
is known as constraint and the vector x is known as solution candidate.
[23]

Problem Space : Problem space X of an optimization problem is a set con-
taining all elements x which could be its solution [23].

Search Space : Search space G of an optimization problem is a set of elements
g which can be processed by the search operation [23].

Local Maximum A local maximum xlmax ∈ X having objective function value
f(xlmax) ≥ f(x) for all x neighboring xlmax [23].

Local Minimum : A local minimum xlmin ∈ X having objective function value
f(xlmin) ≤ f(x) for all x neighboring xlmin [23].

Local Optimum : A local optimum x∗l ∈ X is either a local minimum or a
local maximum [23].
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Figure 2.8.: Search space of optimization problem
[23]

Global Maximum A global maximum xgmax ∈ X having objective function
value f(xgmax) ≥ f(x) for all x present in problem space X [23].

Global Minimum : A global minimum xgmin ∈ X having objective function
value f(xgmin) ≤ f(x) for all x present in the problem space X [23].

Global Optimum : A global optimum x∗g ∈ X is either a global minimum or
a global maximum. x∗g ∈ X need not be unique, there could be several global
optimums or even infinite optimums [23].

Optimal Set : Optimal set X∗ ⊂ X is a set containing all the optimal solution
candidates [23].

The global and local optimums for a two dimensional function is shown in
Fig 2.8.

The global optimization techniques are the algorithms which are used to
find the global optimum for a given optimization problem. Broadly they can
be classified as deterministic and probabilistic algorithms.

Deterministic Algorithms : These algorithms are used when a clear relation
between the characteristics of possible solutions and their utility for a given
problem exists. Search space is efficiently explored by methods such as divide
and conquer [23]. Deterministic algorithms guarantee asymptotic convergence
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towards the global optimum. The large-scale complex engineering problems
would involve discrete and continuous decision variables and turns out to be a
NP-hard problem (class of problems which are unlikely to be solved within the
amount of time and computational effort bounded by polynomial function [16])
for deterministic methodology. There are several optimization problems where
exact methods do not exist or where deterministic methods are too complex to
implement. For such complex scenarios probabilistic algorithms are made use
of [28].

Probabilistic Algorithms : These algorithms use some kind of randomness or
probability with in the definition of the method. Probabilistic algorithms are
used when the relation between solution candidate and its fitness function is too
complex or the dimensionality of the search space is too high [23]. There is ev-
idence that a NP-hard problem for deterministic methodology can be solved in
polynomial time using probabilistic search strategies. Probabilistic algorithms
provide probabilistic convergence towards the global optimum. More impor-
tantly the quality of global optimum is traded off with the computational time.
Probabilistic algorithms provide quick and useful information of an optimiza-
tion problem. Further, the probabilistic algorithms are classified as instance
based methods and model based methods. Instance based methods use the
current solution candidate to generate the new solution candidate where as
model based methods use sampling distribution to generate new candidates
randomly. [28]

The following section explains few of the probabilistic search algorithms in
brief.

2.4.1. Hill Climbing

The hill climbing logic is one of the simplest optimization techniques available
for problems with single objective function. Fitness of a randomly selected
solution candidate is evaluated and the new solution candidate is created using
current solution candidate. The new solution candidate replaces the current
one if it has better fitness value, else current solution is retained. This proce-
dure is looped and is repeated till the best solution is found. Hill climbing uses
current best solution x∗ to produce new solution candidate [23].

One of the major issues with Hill climbing logic is, the algorithm cannot
escape the local optimum and leads to premature convergence. To overcome
the premature convergence issues, it is suggested to randomly restart the search
process several times, this method is also known as stochastic hill climbing [23].
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Algorithm 1 Hill Climbing Algorithm

Choose an initial configuration
while Stopping condition is not reached do
Step 1 :

Generate new configuration, a perturbation of old configuration
Step 2

if quality(new configuration) better than quality(old configuration)
then

old configuration:= new configuration

2.4.2. Simulated Annealing

Simulated Annealing search algorithm follows the annealing process seen in
metallurgy. Similar to hill climbing logic, a random solution candidate is eval-
uated for its objective function value and new solution candidate is created
from ´the current solution candidate. If new solution candidate has better
fitness (objective function) value, the solution is accepted as current solution
candidate for the next iteration. Unlike Hill Climbing logic the new solution
candidates having worse fitness are not discarded straightaway, instead these
solution candidates replace the current solution candidate based on a probabil-
ity function. The probability function depends on current temperature of the
system and objective function value of the solution candidate. [23]

The detailed explanation of Simulated Annealing is provided in section 3.9.

2.4.3. Threshold Accepting

Threshold Accepting is a search algorithm provided by Deuck and Scheuer
in 1990 [6]. The algorithm appears to be modified version of the Simulated
Annealing algorithm, but much simpler without involving the parameters such
as temperature, cooling schedule etc. The search begins with a random solution
candidate and a new solution candidate is generated from the current solution
candidate. If the objective function of the new solution candidate is better
than the current solution candidate, then new candidate replaces the current
one in the next iteration. If the new solution candidate has objective function
value worse than the current solution candidate, then new candidate replaces
the current one only if the difference in objective functions is less than a defined
threshold value [6].
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Algorithm 2 Threshold Accepting for Maximization

choose an initial configuration
choose an initial THRESHOLD T >0
Opt :
create new configuration, a stochastic small perturbation of old configuration
compute ∆E := quality(newconfiguration)− quality(oldconfiguration)
if ∆E > −T then

old configuration:= new configuration

if a long time no increase in quality or too many iterations then
lower THRESHOLD T

if some time no change in quality anymore then
Stop

goto Opt.

2.4.4. Multi-Start

Several local optimization techniques can efficiently find the local optimum, to
diversify the search such a local optimization is randomly restarted at any other
point on the search space. Multi-Start method is one in which local search is
initiated at a set of multiple random starting points uniformly distributed over
the search space. The search looks for several local optimums x∗l with the view
that one of the local optimum turns out to be the global optimum. [18]

Algorithm 3 Multi-Start Algorithm

initialize i = l
while Stopping condition is not reached do
Step 1 :

Generate solution xi
Step 2

Apply local search method to improve the solution xi
if xi improves the best then

update the best

i = i + 1.

2.4.5. Random Optimization

Random Optimization is the simplest of all algorithms. Originally proposed
by Rastrigin, has undergone improvisation by Schumer and Steiglitz, and by
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Matyas [14]. In this technique successive solution candidates are chosen at ran-
dom and is evaluated for its objective function. The search process is repeated
till the stoping criterion is satisfied, it may be the required fitness or required
number of iterations. Each solution candidate is independent of the solution
candidate from previous iteration, i.e search method does make use of the in-
formation of already evaluated solution candidates. It converges to the global
optimum, however the time required by the algorithm could be astronomical
[14].

Here only a handful number of algorithms are discussed, apart from these,
there are several other algorithms such as Tabu Search, Ant-colony optimiza-
tion, Particle Swarm Optimization and whole section of evolutionary algo-
rithms etc.

24



3. State of the Art
 

3. State of the Art

3.1. Introduction

The C++ code for the calculation of the trajectories is provided by V.Maiwald.
Specific enhancement of the code is performed to additionally accommodate
Simulated Annealing algorithm. Software tool used to compile and execute
C++ codes is Microsoft Visual Studio.

Depending on the nature of trajectory modelling, the number of variables in
the system of trajectory optimization is decided. With Shape-Based Approxi-
mation method (explained in section 3.3) Launch Date, Number of Revolutions,
Time of Flight are the values to be set to obtain the values of thrust and posi-
tion history [4]. A mission being optimized considering gravity-assist sequence
would include gravity-assist partner as an additional variable. The variables
cannot be set arbitrarily but with the dependency on physical restrictions and
scientific observations. There exists interdependency between the variables,
for example large number of revolutions requires larger ∆V as longer distances
needs to be covered within the specified time. Each variable change greatly
influences the performance of the overall mission. For example, flight time
suitable for gravity assist at one planet need not be suitable for gravity assist
at another planet. There are additional variables such as Turning Angle δ, hy-
perbolic excess velocity vector V∞ etc for trajectories involving gravity assists.
There exists an optimal combination of these variables along with the variables
involved in trajectory approximation that defines optimal mission trajectory.
[25]

3.2. Mission Trajectories

The described system of mission trajectories can be seen as a sum of trajecto-
ries. A mission is defined as a trajectory between the start body and the end
body. This could consist of one or more trajectories depending on the gravity
assists. In this thesis work three types of trajectories are considered.

• One leg trajectory (No gravity assist)
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• Two leg trajectory (One gravity assist)

• Three leg trajectory (Two gravity assist)

The trajectory from start body to a gravity-assist partner, or from one
gravity-assist partner to another, or from gravity-assist partner to end body
is known as a trajectory leg. The approximate trajectory is calculated based
on the Shape Based Approximation method. The parameters that define each
trajectory leg and the entire mission is explained in the following sections.

3.3. Shape Based Approximation

In Chapter 2 the advantages of low-thrust propulsion and energy gained using
gravity assists is discussed. Combing these two would be the next step to uti-
lize the advantages of both techniques. Low-thrust propulsion mission is also
demonstrated in practice, NASA’s Deep Space 1 spacecraft is the first inter-
planetary solar electric propulsion mission [3]. An optimization tool to easily
identify the low-thrust gravity-assist trajectories would be useful for mission
designers. The low-thrust mission design requires a method for approximat-
ing spacecraft’s trajectories. This method could be used to prune large search
space or for providing good initial guess to the trajectory optimizers. This is
the starting point for trajectory optimization. A shape based method to de-
termine low-thrust trajectories when combined with optimization algorithm to
optimize the free parameters (such as Launch Date, Time of Flight etc) will
possibly lead to optimal or near optimal trajectories. [4]

This method approximates the low-thrust trajectory with a function param-
eterized in terms of polar coordinate θ, i.e r(θ). Fig 3.1 shows a low-thrust
trajectory defined in terms of r(θ).

To obtain a function, parametric data from a known optimal low-thrust
rendezvous trajectory is fed into a curve fitting algorithm that tests hundreds
of function and returns the function that best fits the data. The polynomial
function obtained is shown in equation 3.1. [4]

r =
1

a+ bθ + cθ2 + dθ3 + eθ4 + fθ5 + gθ6
(3.1)

The detailed version of the solution for the coefficients is provided by Wall
and Conway in [4].

Using this method the only unknowns are Launch Date, Flight Time, and
Number of Revolutions. To locate the optimal parameter values of a trajectory,
global optimization algorithms may be used. The equations are integrated
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[4]

Figure 3.1.: Low-thrust orbit transfer

using hundred equal segments and the trapezoidal rule [4]. Fig 2.6 shows thrust
vectors along the trajectory, in total there are hundred such vectors which are
associated with each of the hundred segments that form individual trajectory
leg.

3.4. Mission Parameters

Mission parameters are the decision variables for the trajectory optimization
problem. The parameters within the mission not only influences the mission
but also the individual trajectories. The parameters can be seen as two set of
parameters. One set associated with the whole mission and the other associated
with the individual trajectories.

Tab 3.1 is also the structure of one leg mission trajectory, the two leg and
three leg missions will have additional trajectory data.

Global variables are those which influence the entire mission. The global
variables are also the decision variables for this optimization problem.

• Global variables : The variables associated with the entire mission.

* Start Body : Starting body of the mission.

* End Body : Destination of the mission.
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One Leg Mission

Start Body

End Body

Launch Date

Time of Flight

Number of Revolutions

Gravity-Assist Partner

Mission Fitness

Mission ∆V


Mission Variables

Start Body

End Body

Launch Date

Number of Revolutions

Coefficient a,b,c,d,e,f,g

V inf arrival

V inf departure

R peri flyby

Turning Angle(δ)

Thrust History

Position History

Trajectory Fitness

Trajectory ∆V



Trajectory Leg Variables

Table 3.1.: Parameters of the Mission and the Trajectory with in the Mission

Two Leg Mission
Mission Variables

Trajectory leg one

Trajectory leg two

Table 3.2.: Structure of two leg mission

Three Leg Mission
Mission Variables

Trajectory leg one

Trajectory leg two

Trajectory leg three

Table 3.3.: Structure of three leg mission
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* Launch Date : The Julian modified date 1 on which the mission
is set to launch.

* Time of Flight : Number of days set for the total mission.

* Number of Revolutions : Number of revolutions of the spacecraft
around the sun.

* Gravity-assist partner id : Identification number indicating the
planet at which the gravity assist occurs.

• Trajectory leg variables : The variables associated with each leg or indi-
vidual trajectory between planet A to planet B. These planets need not
be start body and end body of the mission.

* Start Body : Starting body of the trajectory leg.

* End Body : End body of the trajectory leg.

* Launch Date : Launch date of the trajectory leg.

* Time of Flight : Time of flight of individual trajectory.

* Number of Revolutions : Number of revolutions of the spacecraft
around the sun.

* Coefficient a,b,c,d,e,f,g : Trajectory coefficients derived from
Shape Based method.

* V inf arrival : Inbound hyperbolic excess velocity.

* V inf departure : Outbound hyperbolic excess velocity.

* R peri flyby : Distance from the planet where the spacecraft exe-
cutes a gravity assist.

* Turning Angle (δ) : Angle at which the inbound hyperbolic excess
velocity vector ( V∞ PI) rotated after a gravity assist.

Apart from the above mentioned parameters, there are parameters which
determine the quality of the solution obtained. These are:

• ∆V : The total velocity change required for the spacecraft to complete
the mission.

• Mission Fitness : Cost function which evaluates the quality of the
solution.

1Modified Julian Day is a dating method used by astronomers, geophysicists and others to
have unambiguous dating system. [1]
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• ∆V : The total velocity change required for the spacecraft to complete
the trajectory.

• Trajectory Fitness : Cost function which evaluates the quality of the
trajectory.

3.5. Objective Function or Cost Function

As already explained in Chapter 2, goal of optimization algorithm is to mini-
mize or maximize the objective function. The objective function here considers
minimizing the ∆V requirement of the trajectories. The objective function def-
inition is given by equation 3.2. [26]

J = k
1∑
n ∆v′

(3.2)

where k is the weighting factor that allows scaling of the fitness depending
on the ∆V performance. Index n counts through number of segments for a
given solution candidate. Objective function considers the fitness in global
perspective, i.e the ∆V summation informs about the entire mission and not
just the individual trajectories. Combination of optimal individual trajectories
need not guarantee an optimal mission trajectory.

3.5.1. Violation of Constraints

The objective function is modified to penalize the solution candidate fitness for
violating the constraints rather than discarding the solutions. For the violation
of minimum allowable radius the objective function is

J∗ = J
Rmin,is

2.Rmin,allowed
(3.3)

where Rmin,is is the actual minimum radius and Rmin,allowed is the minimum
allowed radius, J is the fitness value determined according to equation 3.2 and
J∗ is the penalized fitness. [26]

Similarly for violation of maximum allowable thrust, the fitness function is
changed as shown below.

J∗ = J
Tmax,allowed

2.Tmax,is
(3.4)

where Tmax,is is the actual thrust value and Tmax,allowed is the maximum allowed
thrust value. [26]
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3.6. Mission Settings

The mission settings are the values which are set by the mission analyst to
evaluate a particular mission. Few parameters, such as start body and end
body are fixed, i.e the optimizer does not change these values throughout the
optimization process. Few parameters such as flight time, gravity-assist partner
id have the boundary value defined and the optimizer can chose any value that
is bounded within these boundary conditions.

Tab 3.4 shows the general mission settings used in this thesis work for all
the calculations.

3.7. Problem in Hand

Correlating to the general optimization problem described in section 2.4 it
is clear that the mission parameters explained in section 3.4 are the decision
variables and also form the solution candidates for the low-thrust gravity-assist
trajectory optimization. Cost function explained in section 3.5 is the objective
function of the optimization problem and the mission settings along with the
thrust value and Rmin restrictions correspond to the constraints. The problem
in hand is a constrained optimization problem.

3.8. Choice of Optimization Algorithm

Optimization algorithms are chosen based on complexity of implementation and
with the plausibility of obtaining quick results and useful information on the
search space topography. This is important because there is no prior knowl-
edge of the topography of the search space for the defined problem. There
are no previous trajectory optimization methodologies including the gravity-
assist sequencing along with the optimization to be considered for the choice of
optimization algorithm. Optimization algorithm should work with both con-
tinuous and discrete variables. Optimization technique should not depend on
the search space topography. Algorithm should move in direction of global
optimum or should provide near optimal results. Taking all the above factors
into consideration two different optimization strategies are selected.

3.8.1. Random Optimization

Random optimization is one of the simplest optimization algorithms in terms of
implementation. It also provides quick and rough overview of the search space
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Mission Settings

Parameter Value Units Explanation

start body Earth - Start body of the mission

end body Jupiter - End body of the mission

r min 0.25 AU Minimum allowable distance from
system barycenter for trajectory

launch date 56,000 Days Modified Julian Date

launch window 100 Days Number of days within which the
launch can happen.

flight time max 3,000 Days Maximum allowed flight time for the
mission.

flight time min 1,000 Days Minimum allowed flight time for the
mission.

accuracy 0.0001 Days Relative difference between the set
flight time and calculated flight
time.

max thrust 0.00015 (m/s2) Maximum allowed thrust accelera-
tion.

nrev max 6 - Maximum number of revolutions

step no 100 - Number of steps for the integral of
the flight time

fitness weight 60,000 - Weighting of ∆V over Flight Time,
the larger, the more important is
∆V.

v inf start 1,000 m/s Value of hyperbolic excess velocity
to start with.

v inf end 50 m/s Value of hyperbolic excess velocity
to end with.

N GA max 2 - Maximum number of gravity-
assists.

Table 3.4.: General mission settings used in this thesis work
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topography. Random optimization technique searches randomly over different
areas of the search space ensuring diversity.

3.8.2. Simulated Annealing

The choice of Simulated Annealing is influenced by the analysis of the problem
using Random Search (explained in detail in Chapter 4). Random Search
algorithm hints towards a complex multi-modal search space. Such a complex
search space can be successfully explored by Simulated Annealing algorithm.
Simulated Annealing does not require the knowledge of mathematical model of
the problem and is suitable for the problem as long as the perturb and evaluate
functions can be implemented. Model of the system can be treated as black
box model, i.e for a certain input, certain output is obtained without actually
investigating into the details of the system. But one of the major issues with
Simulated Annealing would be the large time consumption. [16] [20]

After making a choice on optimization algorithm next step is to go through
the basics of the algorithm.

3.9. Basics of Simulated Annealing

Simulated Annealing is a general probabilistic search algorithm introduced in
1983 by Cerny and Kirkpatrik in order to solve combinatorial optimization
problems [16]. Simulated Annealing means artificially implementing the pro-
cess of annealing. In metallurgy, annealing is a process of heat treating a
material to change its properties. A solid material is heated to a very high
temperature at which the material liquifies and molecules randomly arrange
themselves, followed by slow cooling gradually lowering the temperature of the
heat bath. In this way the particles of the material arrange themselves in
low energy state of corresponding lattice leading to a stable and strong solid
material. The initial temperature and the process of cooling would determine
the quality of the solid material. The Simulated Annealing algorithm is very
similar to this physical process. [10]

While solving an optimization problem using Simulated Annealing algorithm,
the quality of the solid material would represent the solution of the problem,
random movement of particles would represent the perturbation of the input
parameters, temperature would be the parameter influencing if the perturbed
parameters and the new solutions corresponding to them have to be accepted.
The acceptance of the new solution is based on a probability, solution with
better fitness (cost function) is accepted but the solution with lesser fitness is
probabilistically accepted (3.9.2). [10]
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3.9.1. Neighborhood

Implementation of Simulated Annealing algorithm requires definition of config-
urations. This can be formalized as (R,C) where R is finite set of configurations
(configuration space or input parameter space) and C is a cost function asso-
ciated with corresponding configuration. The perturbation mechanism defines
the neighborhood configuration for Ri consisting all configurations that can be
reached from Ri. [16]

3.9.2. Acceptance Probability

Simulated Annealing algorithm does not show tendency to end up in a local
minima or local maxima because the new solution acceptance or rejection is
characterized by a probability function [10].

P (∆E) =

{
e

−∆E
kBT , if ∆E<0

1, otherwise
(3.5)

where:

P (∆E) = Probability of acceptance of new solution.
∆E = Difference of the cost function between the current and the new state.
kB = Boltzman constant.
T = Current Temperature.

Acceptance Logic Once the new state solution is created, i.e the solution
by perturbing the previous solution or by moving to the neighboring state
configuration, the quality of the solution (cost function or solution fitness) will
be compared with the quality of the current state solution. If the quality is
better than the current state solution, i.e ∆E ≥ 0, then the neighboring state
solution is definitely accepted, probability is 1 for such a scenario as shown in
equation 3.5.

If the neighbor state solution is of lesser quality, i.e ∆E < 0 then the ac-
ceptance probability depends on ∆E and T. If the value of ∆E < 0 then the
probability is inversely proportional to the magnitude of ∆E. There also exists
a control parameter (temperature), acceptance probability is directly propor-
tional to temperature and reduces gradually with the temperature. At high
temperatures the acceptance probability would be high, giving enough chance
for the algorithm to accept lower quality solutions and escape from the local
minima or maxima and reach the global optimum. [20]
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Figure 3.2.: Method of Simulated Annealing
[10]

• Simulated Annealing search has two search phases, global search phase
and local search phase. Initially at higher temperatures, algorithm can
explore the search space erratically, this mimics the global search phase.
As the temperature is gradually reduced, the acceptance probability is
gradually lowered and only good solutions are accepted making the algo-
rithm tend towards Hill Climbing logic (local search phase).

• If the new solution is extremely bad, then the probability to move to such
a state is equally less.

The logic of this algorithm can be visualised as shown in Fig 3.2.

3.9.3. Cooling Schedule

Cooling schedule describes how the control parameter (temperature) is reduced
during the optimization. Reduction of temperature has major influence on the
performance of the algorithm. The temperature will be set to initial tempera-
ture which will be greater than zero and reaches zero at the end of optimization,
i.e for fixed number of iterations or when required fitness is obtained. [27]

There exists wide range of temperature scheduling methods, some of them
are reducing the temperature linearly, exponentially, or in logarithmical man-
ner etc. Few of the temperature reduction methods are shown in the below
equations [27].

Equation 6.1 shows the exponential reduction of temperature [27].

T (t) = T0α
t (3.6)

where :
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T (t) = Actual temperature value.
T0 = Initial temperature.
α = Constant factor to repeatedly lower the temperature (0 <α <1).
t = Time, which is also the step count.

Equation 6.2 shows the linear reduction of the temperature [27].

T (t) = T0 − ηt (3.7)

where :

T(t) = Actual temperature value
T0 = Initial temperature.
η = Constant factor to repeatedly lower the temperature (0 <η <1).
t = Time, which is also the step count.

Equation 3.8 shows the logarithmic reduction of the temperature introduced
by Geman and Geman [22].

T (t) ≥ c

log(1 + t)
(3.8)

where :

T(t) = Actual temperature value
c = Generally considered largest energy barrier in the problem.
t = Time, which is also the step count.

However this method of temperature reduction is considered extremely slow
for practical purposes [27].

There are several other temperature reduction techniques which are used in
Simulated Annealing algorithm.

3.9.4. Epoch Length

Epoch length is the parameter which determines the number of iterations or
the amount of time a system spends in a given temperature level during opti-
mization. The value of epoch length can be set proportional to size of problem
instance or can be set proportional to neighborhood solutions of a given solu-
tion. It can also be set proportional to the total number of iterations. [12]
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Algorithm 4 Simulated Annealing Algorithm (for maximization)

Initialize the system configuration
Randomize the initial input vector X(0), current state
Initialize temperature T with a large value T0
while stopping condition is not reached do

while Epoch length 6= 0 do
Create new state, randomly perturbing current state, x = x + ∆ x
Evaluate change in cost function, ∆E= E(x+∆ x) - E(x)
if ∆E ≥ 0 then

current state = new state
else

current state = new state, with the probability P = e
−∆E
kBT

Reduce Epoch length, L = L− 1

Reset Epoch length
Set T = T0 - ∆T

3.9.5. Simulated Annealing Algorithm

3.10. Overview

The over all system is represented by a simple block diagram shown in Fig 3.3.

The mission input parameters are set in accordance with the restrictions
defined in the mission settings, for example the maximum Number of Revo-
lutions, maximum Time of Flight etc. Mission input parameters are fed to
Shape-Based Trajectory Approximation method which calculates a trajectory
for the set input parameters. Each trajectory and the mission is associated with
∆V value and fitness value (which are fed back to the Optimization block).
The optimization algorithm uses the fitness information to adapt the mission
input parameters. The number of executions of this loop is decided by the free
parameters of the Optimization block.
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Figure 3.3.: Block Diagram of the Overall System
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4. Random Search Analysis

4.1. Introduction

Low-thrust gravity-assist trajectory optimization is a complex optimization
problem, the simplest approach to find the optimal trajectories is to use Ran-
dom Search algorithm. The aim here is to try and find a good solution or a
set of good solutions randomly, i.e randomly generated inputs are given to the
system, obtained solutions are then sorted to find the best solution. The in-
puts are generated independently, i.e the new solution candidate do not depend
on the previous solution candidate. The basic idea behind this process is to
explore the search space randomly and to obtain a fair amount of knowledge
on the search space, this information can be used by other search algorithms.
Expectation in this search method is to hit one of the local maximum or the
global maximum, however the chances of hitting the global optimum could be
very small.

4.2. Bench marking

Random Search is one of the simplest optimization algorithm. Evaluating the
quality of the results obtained in Random Search method actually sets the
minimum quality level or minimum fitness level of the solutions for further
searches. In order to implement any other search technique and perform the
analysis, the search technique has to deliver better set of results compared
to that of Random Search approach. Therefore results from Random Search
approach is treated as a bench mark for other search methods.

4.3. Solution Approach

The free parameter of the search algorithm is the number of solutions consid-
ered at each execution, or in simple terms population size. The chances of
finding a global optimum is higher with larger population exploring the search
space at each execution. The technique appears to be similar to that of brute
force technique, requiring more force for better set of results.
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Random search

Execution Population (num-
ber of samples)

1 15,000

2 30,000

3 50,000

4 75,000

5 100,000

Table 4.1.: Parameter variation of random search technique

For the calculations both mission settings and the algorithm settings are to
be considered. The mission settings are set as shown in the Tab 3.4 and search
algorithm parameter (population or number of solutions) is set as shown in
Tab 4.1.

Steps for the calculation :

• Set the mission settings with the values given in the Tab 3.4.

• Set the population size of Random Search to 15,000.

• Obtain the solutions and sort for the best, for all three scenarios, one leg,
two leg, three leg.

• Average the results and plot the graphs.

• Vary the population size as shown in Tab 4.1 and repeat the experiments.

Note : 20 executions are considered for each population size (pa-
rameter setting) to obtain consistency in the results.
Note : The C++ program is coded such that it provides trajectory
solutions for all the three cases: no gravity-assist (one leg solution),
one gravity-assist (two leg solution), and two gravity-assist (three
leg solution) for the same mission settings.
Note : All calculations are performed for the mission from Earth to
Jupiter.

The goal of the optimization tool is to optimize the low-thrust gravity-assist
trajectories with in a time frame of 24 hours. A Random Search calculation for
population size of 100,000 on a average needed approximately 63453 seconds.
Note : This value is only a fair approximation and not accurate mea-
surement, because the code was simultaneously executed on several
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machines. Several factors influence the run time, speed of the pro-
cessor, efficiency of the code etc. Due to this limitation, Random Search
analysis is confined to a maximum population size of 100,000.

4.4. Results

Various parameters such as ∆V , Solution Fitness, Time of Flight, Launch Date,
Gravity-assist partner are analysed and few best results by Random Search
method are tabulated. The plots reveal how the values of various parameters
alter with increase in the population size (free parameter of Random Search).

4.4.1. ∆V results

One leg missions

Fig 4.1 shows the plot of ∆V for one leg solutions against the population size.
Even though the graph appears to be sloping downwards with increase in the
population size, there is no much difference between the average ∆V values
of the solutions examined at the population sizes 15,000 and 100,000. The
maximum difference in the average ∆V values is found to be (1.6090 ∗ 104 −
1.6056 ∗ 104 = 34m/s) which is negligible when compared to average value
of 16km/s. The standard deviations at population size 100,000 is the least
(4m/s) clarifying that most of the solutions have similar ∆V .

Two leg missions

Fig 4.2 shows the plot of average ∆V for two leg solutions against the popula-
tion. The average ∆V appears to decrease with increase in the population. The
interesting observation is that the reduction in average ∆V between the smaller
population sizes (15,000, 30,000) is more compared to that at the larger popu-
lation sizes (75,000,100,000). However it is also seen that there is a significant
amount of average ∆V reduction with the population of 100,000 compared
to population size of 15,000 (1.8800 ∗ 104 − 1.7000 ∗ 104 = 1.88km/s), 10%
improvement on the average ∆V . The graph also tends towards saturation
as the improvement of average ∆V between the population sizes of 75,000 and
100,000 is considerably less (1.7020∗104−1.7000∗104 = 20m/s). The standard
deviation also reduces in a similar fashion to that of average ∆V .
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Figure 4.1.: Plot of average ∆V for one leg missions against variation of pop-
ulation size
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Figure 4.2.: Plot of average ∆V for two leg missions against the variation of
population size

Three leg missions

Fig 4.3 shows the graph of average ∆V for three leg solutions against the
population size. Considerable improvement in the average ∆V for population
of 100,000 compared to that of 15,000 (3.7000 ∗ 104− 2.9000 ∗ 104 = 8km/s) is
observed and the improvement is greatest among all the three scenarios of one
leg, two leg and three leg missions. Even with appreciable improvement, the
average ∆V of three leg solution is larger than two leg solutions, approximately
by 16km/s. Population size of 100,000 is not enough to find a solution whose
average ∆V is lesser than 29km/s. The standard deviation of ∆V ´values
are irregular with the maximum of 19km/s at population size of 30,000 and
minimum of 9.5km/s at population size of 75,000.

Fig 4.4 shows the comparison between the one, two, three leg solutions.
This gives an average ∆V expectation from any other search algorithm, i.e

the solutions obtained by any other search algorithm should have an average
∆V better than the one presented in Fig 4.4 for one leg, two leg, and three
leg missions respectively. It is extremely difficult to find the three leg missions
with ∆V values close to one leg and two leg missions.
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Figure 4.3.: Plot of average ∆V for two leg missions against the variation of
population size

Figure 4.4.: Comparison of average ∆V of one,two and three leg missions
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4.4.2. Solution Fitness

The fitness of the solution defines how good or suitable the solution is. It
is not necessary that the solution with lesser ∆V should always have higher
fitness value, because the solutions which violate the boundary conditions are
penalized on fitness (explained in section 3.2). There could be solutions with
very good ∆V but they might have violated the constraints (for example,
maximum allowable thrust value). The solutions which violate the constraints
are not discarded, instead these solutions are penalized and retained in the
optimization process. The search is to find solution with optimum fitness and
also very less ∆V values. Fig 4.5 shows the comparison between the average
solution fitness values of the one, two and three leg missions.

A similar behaviour in the fitness graphs to that of ∆V graphs in the previous
section, is observed. There is no significant difference in the solution fitness for
one leg missions at population size 15,000 and at 100,000. This shows that it
is very easy for Random Search to find the good solutions for one leg missions.

Solution fitness for two leg missions show a gradual growth with the increased
population size.

Three leg mission solutions do show greater improvement, but it is also
accompanied by the fact that the average solution fitness values of three leg
missions are considerably less compared to the one leg and two leg missions.
This is shown in Fig 4.5. Maximum fitness values for all one, two and three leg
missions are found at population size of 100,000.

4.4.3. Gravity-Assist Sequencing

In this section the gravity-assist partners are considered with variation of the
population size for both two leg and three leg solutions. The plots are consid-
ered to visualize the preferred gravity-assist partner/sequence for the solutions.

From Fig 4.6 it is seen that with the increase in the population size the
selected gravity-assist partner tends to be Mars. This shows that the best
solutions always had Mars as the gravity-assist partner. It can also be noticed
that with population size of 15,000 and 30,000 there are 6 solutions and 1
solution with gravity-assist partner as Earth respectively.

A similar analysis with three leg solutions reveals the gravity-assist sequence.
Fig 4.7, Fig 4.8, Fig 4.9, 4.10 and Fig 4.11 show the plot of gravity-assist
sequence for the solutions with population size 15,000, 30,000, 50,000, 75,000
and 100,000 respectively.

Mars-Mars and Earth-Earth are the stand out sequences for the solutions
with population size of 15,000. With increase in population size, Earth-Earth
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Figure 4.5.: Comparison of average solution fitness of one,two and three leg
missions

Figure 4.6.: Plot of gravity assist partners for two leg solutions against popu-
lation size of random search technique
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Figure 4.7.: Gravity-assist partner selection for three leg missions at population
size 15,000

sequence is favoured.

4.4.4. Distribution of Launch Dates

Fig 4.12 shows the parameter Launch Date selected for the one leg mission
solutions. The lower and upper boundary for the launch dates is set to be
56,000 and 56,100 respectively (also shown in Tab 3.6). 75% of solutions (16 of
20 solutions) did show that the launch dates are clustered between 56,060 and
56,080 and the behaviour remained similar with the increased population size.
But no such behaviour is observed in the two leg and three leg mission solution
launch dates as shown in Fig 4.13 and in Fig 4.14 respectively. The launch
dates are evenly distributed throughout the parameter space, indicating the
increase in complexity of the solution space. Random Search could not find
the solutions having the Launch Date parameter clustered at one region of
parameter space, i.e similar solutions are not present over the search space
unlike one leg solutions.
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Figure 4.8.: Gravity-assist partner selection for three leg missions at population
size 30,000

Figure 4.9.: Gravity-assist partner selection for three leg missions at population
size 50,000
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Figure 4.10.: Gravity-assist partner selection for three leg missions at popula-
tion size 75,000

Figure 4.11.: Gravity-assist partner selection for three leg missions at popula-
tion size 100,000
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Figure 4.12.: Launch Date distribution for one leg missions

Figure 4.13.: Launch Date distribution for two leg missions
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Figure 4.14.: Launch Date distribution for three leg missions

4.4.5. Distribution of Time of Flight

Time of Flight is another global variable which influences the quality of the
trajectory and solution fitness values, hence the distribution of Time of Flight
over the parameter space is considered. The upper and lower boundaries of the
flight times is set to 1,000 and 3,000 days respectively as shown in Tab 3.4. Fig
4.15 shows the flight times for one leg mission solutions. The flight times are
clustered at the higher values of the flight time and at one particular region
of the parameter space. 89% of solutions flight times lie between 2980 days to
3000 days.

The distribution of flight times for two leg missions is clustered between
2500 to 3000 days as shown in Fig 4.16, which included 98% of solutions. This
indicates that with gravity assist the spacecraft would require lesser time to
complete the mission. A more even distribution of flight times is observed for
three leg mission solution as shown in Fig 4.17. The flight times are evenly
spread out between 2000 and 3000 days except for one solution.

One common observation is made from all the parameter plots, the param-
eters for one leg mission converge quickly compared to that of two and three
leg solutions.
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Figure 4.15.: Distribution of Time of Flight for one leg missions

Figure 4.16.: Distribution of Time of Flight for two leg missions
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Figure 4.17.: Distribution of Time of Flight for three leg missions

4.4.6. Best Results

Tab 4.2 contains the best results of ∆V and solution fitness obtained in the
Random Search analysis.

4.5. Discussion

4.5.1. ∆V Values

One leg missions : Given the result that improvement in one leg solutions
with increase in population size is minimal, shows that the similar solutions
for one leg missions are present abundantly over the search space. However
this also indicates that better solutions, for example ∆V less than 14.827km/s
(best solution present in Tab 4.2) are difficult to be found, giving an overview
that near optimal solutions are sporadically spread on the search space. ∆V
results hint that the search space for one leg solutions contain plateaus (flat
regions of solution space).

Average ∆V for one leg solutions remained nearly constant for all population
sizes. Therefore usage of lesser population size to obtain quicker results would
be more beneficial in case of one leg mission scenario.
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Best results for Random Search

One Leg Solution Results

Population Size Best ∆V (km/s) Best Fitness

15,000 16030.004243625563 1.4708311393602898

30,000 16024.966418826680 1.4603690764626747

50,000 16014.517032525131 1.4688988247562682

75,000 16029.624328665328 1.4602607387382092

100,000 16032.828217764461 1.4627058216992459

Two Leg Solution Results

Population Size Best ∆V (km/s) Best Fitness

15,000 14827.565538464045 1.1635356611337260

30,000 16610.716963893559 1.3821693212695241

50,000 16297.648562527758 1.6331424093723463

75,000 16070.615199403195 1.6701705561448272

100,000 16342.140910787613 1.6787110653758155

Three Leg Solution Results

Population Size Best ∆V (km/s) Best Fitness

15,000 23901.258303415889 0.48718287051979214

30,000 21021.884796253857 0.46648377230661703

50,000 20943.715091983093 0.49364516478097936

75,000 22524.009544591485 0.43960431789251980

100,000 19800.985262807335 0.79739096792548014

Table 4.2.: Results with best ∆V and solution fitness for one, two and three
leg missions
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Two leg missions : The two leg mission trajectories include gravity assists.
Due to energy gain from the assisting planet the solutions for two leg missions
should have lesser average ∆V compared to one leg mission trajectories. But
this is not the case, as shown in Fig 4.2. The indication of higher average ∆V in
the graph is due to the fact that gravity assist includes additional variables such
as hyperbolic excess velocity vectors (both inbound and outbound), turning
angle(δ), gravity-assist partner itself, which makes the search more difficult.
Consequently two leg mission search space is more complex compared to one
leg mission trajectories. Complex search space means, chances of finding a
good solution is considerably lowered.

Three leg mission : The three leg mission trajectories are associated with
couple of gravity assists. Similar to two leg missions, expectation is to obtain
very good ∆V measurements but the results show otherwise. Combination of
the gravity assist partners increases the number of variables, i.e the solutions
with lesser average ∆V is more difficult to be found.

From ´Fig 4.4 it is seen that average ∆V of two leg and three leg solution im-
proves with population size. This indicates that the search space topographies
of two leg and three leg solutions are more featured and complex compared to
one leg solutions.

4.5.2. Gravity-Assist Sequencing

Mars is the favourite gravity-assist partner for two leg solutions. This is in-
tuitive as well, because the chosen mission for the calculation is from Earth
to Jupiter, making Mars the most likely gravity-assist partner. The increased
population size definitely finds solution of better quality associated with gravity
assist at Mars. Few solutions with Earth as gravity-assist partner are obtained
at lower population sizes. This is due to the small population size.

Gravity-assist sequence for three leg solutions tend to cluster towards Earth-
Earth sequence with the increased population size. This means good quality
solutions are associated with gravity-assist sequence of Earth-Earth. At lower
population sizes Mars-Mars sequence is also favoured.

4.5.3. Launch Dates and Time of Flight

Fig 4.12 and Fig 4.15 shows that one leg solutions favour particular set of launch
dates and flight times respectively. But no such behaviour is observed in case
of gravity-assist trajectories. The launch dates are evenly spread through out
the parameter space making it difficult to extract any conclusive information.
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The flight times for two leg and three leg missions span through larger ranges
and the range increases with increase in gravity assists.

4.6. Conclusion

In this chapter, experimental results with Random Search is reported along
with the discussion. It is conclusive from the results that population size of
100,000 is not sufficient to obtain better gravity-assist trajectories compared
to non gravity-assist trajectories. Random Search analysis gives an insight to
the average fitness values, ∆V and nature of the search space topography. It
is also used to set up the bench mark value for other search algorithms.

• Diversity of the search criterion is guaranteed, as the search randomly
gets the result from the solution or search space.

• Global optimum is definitely found if the population size is increased to
infinite, in which case the solution or search space is completely explored
but with astronomical time limits.
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5. Implementation of Simulated
Annealing

5.1. Introduction

Many combinatorial optimization problems can only be solved approximately
even on present day computers. In practice any large scale combinatorial op-
timization problem cannot be solved for optimality and requires prohibitive
amount of time. One can actually use an optimization algorithm, yielding
globally optimal solution in a possibly prohibitive amount of time or an ap-
proximation algorithm to obtain acceptable solution in acceptable amount of
computation time. In trajectory optimization problems such as discussed in
this thesis, it is desirable to implement general approximation techniques to
find near optimal solution. Thus the quality of the final solution is traded off
with the computation time. Understanding of the optimization problem and
basics of Simulated Annealing is required for the implementation of Simulated
Annealing algorithm. [16]

5.2. Implementation of Simulated Annealing

Implementing the algorithm of Simulated Annealing requires the input param-
eters, definition of neighborhood, temperature schedule and objective function.
As explained in chapter 3 the input parameters which determines the overall
mission are.

• Launch Date

• Time of Flight

• Gravity-assist partner id

• Number of Revolutions
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5.2.1. Neighborhood State

In order to perturb the input parameters, there is a need for definition of
neighborhood. Upon perturbation, the parameters move to neighborhood state
within the defined neighborhood. The input parameters have different ranges
of values which makes the definition of a single neighborhood function for all
the parameters difficult. It is also possible to define different neighborhood
strategies for different input parameters. Such a definition would bring in an
additional challenge of investigating the combination of neighborhood strate-
gies, which would be worth investigating. In this thesis work, a single neigh-
borhood strategy is used to define the neighborhood for all the mission input
parameters.

Calculation of neighborhood state XN from current state XO

A random variable X is said to be normally distributed with mean µ and
variance σ2, if its probability density function is

f(x) =
1

σ
√

(2π)
exp

[
−(x− µ)2

2σ2

]
(5.1)

[19]
Gaussian distribution curve with maximum variation of 3σ is shown in the

figure 5.1.
Neighborhood of a parameter is defined by the user input variable neighbor-

hood percentage. Neighborhood percentage is the percentage of the range of
values through which the parameter is restricted by the mission settings. The
Tab 5.1 gives the mission settings and ranges for the input parameters.

Equating the product of neighborhood percentage and the range of the pa-
rameter with the interval (µ+ 3σ− (µ− 3σ)) the value of σ is determined. To
calculate neighborhood state XN from current state XO, Gaussian distribution
curve is used, considering the mean value to be the current state XO and the
variance σ (already calculated with the help neighborhood percentage). [17]

The equation 5.1 can be rewritten as

f(x) =
1

σ
√

(2π)
exp

[
−(XN −XO)2

2σ2

]
(5.2)

f(x) = Randomly generated number

Normalizing the randomly generated f(x) with 1

σ
√

(2π)
the below equation is

58



5.2. Implementation of Simulated Annealing
 

Figure 5.1.: Bell shaped curve of Normalized Gaussian Distribution

Parameter Restricted by Range

Launch Date Launch window 100 (Maximum
value of launch
window)

Gravity-assist
partner id

Maximum avail-
able partners

8 (considering 8
planets of solar
system)

Time of Flight Maximum and
Minimum value
of flight time

2,000 (Maximum
value - Minimum
value)

Number of Revo-
lutions

Maximum value
set by user

6

Table 5.1.: Mission input parameters and its ranges
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Figure 5.2.: Gaussian distribution curves for various neighborhood percentages
for launch date parameter with current state XO = µ =56065

obtained.
XN = XO +

√
− ln(f(x)) ∗ 2σ2 (5.3)

Note : The second part of right hand side of equation 5.3 is al-
ways added to the current state XO, this restricts the movement of
neighborhood state to one direction . This is due to the fact that
difference between XN and XO in equation 5.2 is squared. However
to avoid this issue, second part of right hand side of the equation
5.3 is added to or subtracted from the current state XO randomly
ensuring that neighborhood state XN can move in either direction
from XO.

Fig 5.2 shows the consideration of various neighborhood percentages for de-
termining the new state XN from the current state XO for the Launch Date
parameter. The new state value XN lies with in the borders of the bell curves.
If XN turns out to be a fractional value, then it is accordingly rounded off
to next whole number or to the previous whole number based on the value of
decimal part being above or below 0.5 respectively. The same method is used
to obtain neighborhood state of other variables as well.

Every variable has different range of values that it could take. For exam-
ple Time of Flight has a range of 2,000 days and Launch Date has 100 days
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range. But the Gravity-assist partner id can take only 8 values and Number
of Revolutions can take 7 values. If the neighborhood percentage value is set
lesser than 10% the algorithm may run into danger that the variables with less
range (Gravity-assist partner id and Number of Revolutions) will remain on
the same value, or at least the chances to remain on the same value would be
more, because next state depends on the range of values a variable could take.
If the neighborhood percentage is greater than 30% then the variables with
larger range (Time of Flight) will have the next state at far distances from the
current state. In such cases, the question that rises is ”is next state really a
neighbor of the current state”. Considering these factors boundary values for
the neighborhood percentage is set as 10% and 30%.

5.2.2. Initial Temperature and Cooling Schedule

According to Kirkpatrick et al.[21] the initial temperature could be set as the
largest energy difference or largest cost function value (here solution fitness)
difference of two neighboring solutions. It is also explained that initial temper-
ature can be computed such that expected cost of the best solution that can
be found at this temperature (initial temperature) is cost of the solution given
by heuristic algorithm [24].

Cooling schedule is followed as defined in section 3.9.3. Note : In this
thesis work only exponential and linear temperature reduction tech-
niques are considered.

5.2.3. Number of Iterations

The number of iterations in which the algorithm finds the solution is limited
by the prohibitive time limits. Simulated Annealing algorithm needs a long
period of time to find the global optimum. A similar problem is approached
with an evaluation number of 2,4,6 millions [5], but the aim of this thesis work
is to verify if the algorithm is capable of finding good solutions with in a time
span of 24 hours. For this reason the number of iterations are chosen to be
100,000, 200,000 and 500,000.

5.2.4. Epoch Length

Epoch length is the parameter that determines the amount of time search al-
gorithm spends in every given temperature value. Epoch length is set propor-
tional to the number of iterations (explained in section 3.9.4). Note : Epoch
length is set to be 100 for all the experiments in this thesis work.
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5.2.5. Acceptance Probability

The probabilistic acceptance of Simulated Annealing algorithm is explained in
section 3.9.2.

Problem with Acceptance Probability

Initially the probability criterion defined in section 3.9.2 was implemented,
however this resulted in a random search and not a search according to Sim-
ulated Annealing algorithm. The reason for this issue was the range of values
the fitness function (cost function) could take, this is very much specific to this
particular optimization problem (low-thrust gravity-assist trajectory optimiza-
tion). Fitness function (cost function) defined here can take values ranging
from orders of 100 to 10−20. The difference in the cost function i.e ∆E in
equation 3.5 can essentially take very small values which effectively discards
the influence of temperature parameter. This would then push the probabil-
ity to 1, accepting all the solutions, making the search a random one and not
according to Simulated Annealing algorithm.

Adaptation of Acceptance Probability

The probability criterion defined in section 3.9.2 essentially has two properties.

• The acceptance probability should decrease with decrease in temperature.

• The acceptance probability should decrease with increase in difference of
cost function (∆E), i.e if the cost function of the new state is far worse
compared to current one, then the probability to accept new state should
be equally less. Lesser the difference in cost function, higher would be
the probability to accept such a solution.

Any changes to the probability criterion should not affect the above two
properties to ensure that the Simulated Annealing algorithm logic is retained.
Considering the above factors, acceptance probability is adapted as shown be-
low.

P (∆E) =

(
1−

[
∆E

JO

])
e(

−1
kT

) (5.4)

where :
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P (∆E) = Probability of acceptance of new solution.
∆E = Difference of the cost function between the current and the new solution.
k = Constant.
T = Current Temperature.
JO = Cost function value of current solution.

In equation 5.4 the cost function difference (∆E) is divided by the cost
function of current solution to make sure that the influence of the temperature
(control parameter) on the acceptance probability is not affected due to low
values (typically of orders 10−20) of the cost function difference.

Note : Value of constant k in equation 5.4 is set to 1 in this thesis
work.

5.3. Open Issues in Implementation

Implementation of Simulated Annealing appears to be fairly simple, however it
is not the case with respect to this particular problem. The solution approach
could have been different, but with the approach taken in this thesis, few
noticeable issues exist and could be set up as task for future work.

5.3.1. Neighborhood definition

The definition of neighborhood is dependent on the range of values the pa-
rameter can take. To understand how this could be an issue, consider the
neighborhood for parameter Time of Flight.

Assuming the current state of Time of Flight randomly chosen to be 1000
days. According to the neighborhood function explained in section 5.2.1 there
will be an addition or subtraction of a certain quantity from this current value,
leading to a new state. As defined in section 5.2.1 for a neighborhood percent-
age of 30, maximum change that can occur with the mission settings set as in
Tab3.4 is an addition of 300 days.

Considering a similar correction of 300 days for a Time of Flight randomly
chosen as 2700 days. Considering 300

1000 = 30% and 300
2700 = 11.11%, the per-

centage change with respect to current value is larger for smaller values of the
parameter (Time of Flight) compared to larger values of the parameter.

The root cause of this issue is down to the mission settings itself. Having a
large range of parameter values for one particular mission makes the definition
of the problem unclear thus making the definition of neighborhood ambiguous.
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Simulated Annealing Parameters

Initial Temperature

Cooling Schedule

Neighborhood Percentage

Number of Iterations

Table 5.2.: Free parameters of Simulated Annealing

5.3.2. Change in Acceptance Probability

In equation 5.4 the difference in cost function ∆E is divided by the current
solution fitness JO to normalize the values which are extremely low, i.e of orders
of magnitude 10−10 to 10−20. This makes sure that the probability of a move to
a cost function value of orders 10−20 to be extremely small. This would reduce
the movement in search areas of bad solutions and accelerate the search. This
would also avoid the algorithm to search in certain areas which is entirely filled
with bad solutions but one very good solution. With the changes in probability
criterion, there is a good chance that very good solutions present in and around
group of bad solutions can be overlooked.

5.4. Free Parameters

The free parameters of Simulated Annealing algorithm is shown in Tab 5.2 .
Tuning the free parameters affects the quality of search optimization.
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5.5. Flow Diagram
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6. Experiments, Results and Discussion

6.1. Introduction

In chapter 5 implementation of the Simulated Annealing is explained, also the
available free parameters of this algorithm. A set of search experiments are
conducted by varying the free parameters of the algorithm in order to find the
global optimum or near optimal solutions. With the experimental results it is
possible to verify the suitability of the search algorithm.

In the previous search algorithm (Random Search), 20 calculations are ex-
ecuted for each parameter setting of the algorithm. This is done to obtain
consistency in the results, but the same approach is not followed for Simulated
Annealing algorithm. Simulated Annealing searches for the best solution using
already available information of the solution candidate and the fitness values.
Simulated Annealing algorithm is expected to perform better than Random
Search. However obtaining the optimal settings for Simulated Annealing algo-
rithm is a tedious and time consuming task as every different setting has to be
experimentally verified.

Note : For all the experiments, the mission settings remain same
and are set as shown in Tab 3.4. Each experiment with every differ-
ent parameter setting is executed ten times to obtain consistency in
the results.

6.2. Experiment 1 : Cooling Schedule : Linear,
Exponential

Aim : To identify the cooling schedule which performs better, and to be used
in further experiments.

Settings : To start with Simulated Annealing, results from Random Search
analysis is taken into consideration. It is clear from the Tab 4.2 that the
maximum fitness value found is approximately 1.68. Following the explanation
from section 5.2.2 the largest cost function difference (best fitness value) is used
to setup the initial temperature. Temperature value 5, which is approximately
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Simulated Annealing Parameters

Initial Temperature 5

Cooling Schedule Linear

Neighborhood Percentage 30%

Number of Iterations 100,000

Table 6.1.: Simulated Annealing parameters for experiment 1

three times the value of maximum fitness (1.68) is chosen with the initial guess
that the search space could consider the solutions with fitness value three times
that of maximum fitness found in Random Search analysis.

From Fig 4.5 it is clear that the best average fitness values are found at the
population size of 100,000, this is a good initial guess to set the Simulated
Annealing’s number of iterations.

Cooling schedule is chosen as linear drop.
Neighborhood percentage can be chosen any value (10%, 20%, 30%) for this

experiment as there are no previous results based on which the neighborhood
percentage could be decided. Neighborhood percentage is chosen as 30%.

Simulated Annealing parameters are setup as shown in Tab 6.1.
Experiment is repeated with cooling schedule set to exponential

drop.

6.2.1. Results

Tab 6.2 shows the results for both exponential and linear cooling schedules,
clearly in all the cases, i.e one, two and three leg missions, solution fitness val-
ues obtained using exponential cooling schedule are higher compared to fitness
values obtained using linear cooling schedule. Fig 6.1 and Fig 6.2 shows the
variation of solution fitness (blue) and temperature (red) against the iterations,
i.e behaviour of the search algorithm for exponential and linear cooling sched-
ules respectively. It is interesting to note that the algorithm behaves similar
to Hill Climbing logic as the temperature value reduces to 0.3 (approximately
as seen on plots).

6.2.2. Discussion

Exponential cooling schedule performed better compared to linear cooling, this
behaviour is because the algorithm spends most of the time at lower tempera-
ture ranges. At lower temperature ranges the probability of acceptance of poor
solution candidates is less (explained in section 3.9.2). Even though the results
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Linear Temperature drop

Solution Best ∆V (km/s) Best Fitness

One leg 16041.257215133706 1.4423041632861515

Two leg 16460.023559148838 1.1552092286396589

Three leg 24924.827843995896 0.5834871371799919

Exponential Temperature drop

Solution Best ∆V (km/s) Best Fitness

One leg 14708.591135715053 1.46027771462329300

Two leg 16165.386369181258 3.71163414407390180

Three leg 24021.871017490645 0.67893509516217443

Table 6.2.: Results with best ∆V and solution fitness for linear and exponential
temperature drop

Figure 6.1.: Simulated Annealing with exponential temperature drop
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6.3. Experiment 2 : Variation of Initial Temperatures
 

Figure 6.2.: Simulated Annealing with linear temperature drop

with exponential cooling are better, exponential cooling is always accompanied
by the risk of convergence towards the local optimum.

As explained in section 3.9.2 Simulated Annealing algorithm has both global
and local search phases. In exponential cooling schedule, the algorithm has
more time to improvise on the obtained result, i.e the algorithm spends more
time in local search phase. In linear cooling schedule, the algorithm spends
more time in global search phase. Therefore, the cooling schedule should be
appropriately adjusted to have a right mixture of both local search and global
search phases. This process requires verification of several other cooling sched-
ules with several experiments. However in this thesis work, a detailed research
on cooling schedule is not considered as it is not the main goal of this thesis.

Based on the best fitness results, exponential cooling schedule is considered
for further experiments.

The best fitness found from this experiment is 3.711. This encouraged to
investigate higher initial temperatures.

6.3. Experiment 2 : Variation of Initial Temperatures

Aim : To find the best initial temperature.

Settings : In experiment 1 the initial temperature of Simulated Annealing
is set up approximately three times the best fitness found in Random Search
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6.3. Experiment 2 : Variation of Initial Temperatures
 

Simulated Annealing Parameters

Initial Temperature 5, 10, 15

Cooling schedule Exponential

Neighborhood Percentage 30%

Number of Iterations 100,000

Table 6.3.: Simulated Annealing parameters for experiment 2

method. The same approach is used here to investigate the initial temperature
up to approximately three times that of best fitness found in experiment 1,
which is shown in Tab 6.2.

The best fitness value found in experiment 1 is approximately 3.7. 3.7 ∗ 3 =
11.1, this makes the expectation of best fitness to be around 11, to make
sure that the solutions with fitness greater than 11 are not missed by the
search algorithm, initial temperature value of 15 is investigated. To investigate
if a pattern exists with variation of initial temperature, the values of 5 and
10 are also investigated. Retaining the other parameters as in the previous
experiment, Simulated Annealing parameters are setup as shown in Tab 6.3.

6.3.1. Results

The results of ∆V and solution fitness are considered with variation of initial
temperature.

Average ∆V : Fig 6.3 shows the average ∆V values for one, two and three
leg missions plotted against the different initial temperatures.

Average ∆V for three leg solutions is extremely large (in orders of 106) com-
pared to average ∆V for one and two leg solutions at the initial temperature
value of 5, hence it is not seen in Fig 6.3. Fig 6.4 shows the extremely large
values of average ∆V for three leg solutions. Maximum average ∆V values
for one leg and two leg solutions at initial temperature 15 are 16.08km/s and
17.2km/s respectively. Minimum average ∆V values for one leg, two leg solu-
tions are 15.92km/s and 16.78km/s respectively found at initial temperature
of 5. The average ∆V values for one leg and two leg solutions did not show
much of variation with respect to the initial temperature of the search algo-
rithm. Average ∆V values for three leg missions improved from 30km/s to
25.8km/s for temperature varying from 10 to 15.

71



6.3. Experiment 2 : Variation of Initial Temperatures
 

Figure 6.3.: Average ∆V comparison of one, two and three leg solutions with
different initial temperatures

Figure 6.4.: Average ∆V values for three leg solutions with various initial tem-
peratures
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6.3. Experiment 2 : Variation of Initial Temperatures
 

Figure 6.5.: Average solution fitness comparison of one, two and three leg so-
lutions with different initial temperatures

Solution Fitness : Fig 6.5 shows the average fitness values for the one, two
and three leg solutions. The fitness values for one leg trajectories show hardly
any improvement and remain approximately same (1.4) for all three initial
temperature values, but two leg solutions favour temperature value of 5 and
three leg solutions favour temperature value of 10.

6.3.2. Discussion

The variation of initial temperature causes changes in the amount of time the
system spends in local search and global search phases (explained in 3.9.2),
also affects how quickly the temperature is reduced. With the increase in
initial temperature, the expectation is to find solutions with better fitness and
lesser ∆V . With higher initial temperature the algorithm rapidly moves into
different parts of search space and chances of finding the solution with better
fitness are more. However the results show that one leg, two leg and three leg
solutions all behaved differently. One leg solutions did not favor any of the
initial temperature (even though there is minor improvement of 0.04 at the
temperature of 10), two and three leg solutions had better fitness values at
initial temperature value of 5 and 10 respectively.
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6.4. Comparison with Random Search
 

It is also noticeable that two leg solutions have an average fitness of 1.5 or
more at all three initial temperatures. This shows that Simulated Annealing
algorithm can find two leg solutions with good fitness at ease, i.e the search
space consists of many local optimums.

From Fig 6.5 it is clear that the maximum solution fitness is found at initial
temperature of 5, hence the initial temperature value is set as 5 for further
experiments.

6.4. Comparison with Random Search

From Experiment 2 the results of Simulated Annealing algorithm are avail-
able, at this point, a comparison with results from Random Search analysis is
possible.

From Fig 6.3 the average ∆V of 16.2km/s, 17.2km/s and 25.8km/s for
one leg, two leg and three leg solutions respectively are observed at an initial
temperature of 15. All three results are comparable with the results obtained
in Random Search, as shown in Fig 4.4 and three leg solutions did show an
improvement of (29.4km/s− 25.8km/s = 3.6km/s).

Comparing the best average fitness values from the Fig 4.5 of Random Search
analysis and Fig 6.5 of Simulated Annealing, average fitness improvement of two
leg solutions (1.79− 1.35 = 0.44) and three leg solutions (0.495− 0.39 = 0.105)
is witnessed.

Results from further experiments are not compared with Random Search re-
sults because the fitness graph and the ∆V graph from experiment 2 shows that
Simulated Annealing do perform better than the bench mark set by Random
Search algorithm. Simulated Annealing can be used in low-thrust gravity-assist
optimization.

6.5. Experiment 3 : Variation of Neighborhood
Percentages

Aim : To find the best neighborhood percentage.

Settings : The three available neighborhood percentages are 10%, 20% and
30%. From the previous experiments, it is clear that Simulated Annealing per-
forms well with initial temperature of 5 and exponential cooling schedule, also
retaining the number of iterations as in previous experiments the calculations
are performed for all the three neighborhood percentages.

Simulated Annealing parameters are setup as shown in Tab 6.4
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6.5. Experiment 3 : Variation of Neighborhood Percentages
 

Simulated Annealing Parameters

Initial Temperature 5

Cooling schedule Exponential

Neighborhood Percentage 10,20,30%

Number of Iterations 100,000

Table 6.4.: Simulated Annealing parameters for experiment 3

6.5.1. Results

The results of average ∆V with neighborhood percentage of 10% are extremely
large and in orders of 108. Hence, only fitness function values are considered
to evaluate the best possible neighborhood percentage.

Solution Fitness Fig 6.6 shows the average fitness of the solutions with various
neighborhood percentages.

It is clear from the Fig 6.6 that the algorithm yielded extremely poor results
for neighborhood percentage of 10%. The results improved with increase in
neighborhood percentage. The fitness of one leg solutions which did not show
major deviation to any of the previous parameters of Simulated Annealing is
also affected by the neighborhood percentage. Even in Random Search results,
shown in Fig 4.5, average solution fitness for one leg solutions is higher com-
pared to that obtained with neighborhood percentage of 10%. Average solution
fitness for two leg and three leg solutions are 1.2 and 0.05 respectively. Aver-
age three leg solution fitness of 0.05 is the lowest value compared to average
three leg solution fitness obtained from every other experiment. Interesting
observation is that, the three leg solutions and one leg solutions have slightly
better fitness with values of (0.38-0.36=0.02) and (1.44-1.38=0.06) respectively
at neighborhood percentage of 20% compared to fitness at neighborhood per-
centage of 30%.

The neighborhood percentage 30% provided the best results in terms of av-
erage fitness.

6.5.2. Discussion

The decrease in neighborhood percentage deteriorates the quality of results.
The small neighborhood restricts the movement in parameter space hence the
movement in search space, i.e the algorithm cannot escape the region of bad
solutions quickly.
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6.6. Experiment 4 : Variation of Number of Iterations
 

Figure 6.6.: Average solution fitness comparison of one, two, three leg solutions
with various neighborhood percentage

The average fitness value of two leg solutions, increases along with the neigh-
borhood percentage. The average fitness values of one leg and three leg solu-
tions improve at neighborhood percentage of 20% but tend to decrease with
further increase of neighborhood percentage, i.e at neighborhood percentage of
30%. Each solution space one leg, two leg and three leg solution space needs
to be explored at different neighborhood percentages to understand the effect
of restriction of parameter space.

However the best fitness values are found at neighborhood percentage of 30%
hence this value is retained in further experiments.

6.6. Experiment 4 : Variation of Number of Iterations

Aim : To find the best suitable number of iterations.

Settings : In this experiment the number of iterations are set to be 100,000,
200,000, and 500,000. The rest of the Simulated Annealing parameters are set
as shown in Tab 6.5. The number of iterations are set to maximum of 500,000
because the goal of the optimization tool is to identify optimal trajectories with
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6.6. Experiment 4 : Variation of Number of Iterations
 

Simulated Annealing Parameters

Initial Temperature 5

Cooling schedule Exponential

Neighborhood Percentage 30%

Number of Iterations 100,000,
200,000,
500,000

Table 6.5.: Simulated Annealing parameters for experiment 4

in the limited time frame. Generally Simulated Annealing is run for millions
of iterations.

6.6.1. Results

Solution Fitness

Fig 6.7 shows the average solution fitness of one, two and three leg solutions
for various number of iterations. Increase in number of iterations resulted in
increased fitness of all the solutions i.e one leg, two leg and three leg solutions.
Average fitness of two leg solutions show massive improvement from 1.78 to 2.47
for number of iterations of 100,000 and 500,000 respectively. Average fitness
for three leg solutions doubled (from 0.34 to 0.68) for number of iterations of
100,000 and 500,000. Smallest improvement of (1.47-1.39 = 0.08)is associated
with average one leg solution fitness.

6.6.2. Discussion

The improvement in the solution fitness with increase in number of iterations
is no surprise. The increment in number of iterations increased the chances
to fetch solutions with better fitness, because the algorithm can now search in
larger pool of solutions and larger area of search space. Even though the one leg
solution fitness improved from 1.39 to 1.47 for number of iterations 100,000 to
500,000 respectively, it is definitely not feasible to spend huge amount of time
on finding very good one leg solution. In search of no gravity-assist trajectory
a Random Search method is more suitable. This also indicates that the search
space topography for one leg solutions has more plateaus and local optimum
are sporadic. A similar argument is made in Random Search analysis as well.

Although 500,000 iteration produced very good fitness values, the average
execution time was nearly 2.5 days (212534 seconds), due to time constraints,
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6.7. Experiment 5 : Investigation of solutions with gradual reduction of
Neighborhood Percentage  

Figure 6.7.: Average solution fitness comparison of one, two, three leg solutions
with variation of number of iterations

iteration of 200,000 (approximate average execution time of 0.96 days(83634
seconds)) is selected for next experiment.

6.7. Experiment 5 : Investigation of solutions with
gradual reduction of Neighborhood Percentage

The above 4 experiments did give an insight into the settings of Simulated
Annealing for finding the optimal solution in limited time frame.

In the above experiments it is seen that two leg solutions are most sensitive
to variation of parameters in Simulated Annealing. For this reason, in this
experiment only two leg solutions are considered.

In experiment 3, the neighborhood percentage of 10% produced very poor
solutions. For every experiment, the gravity-assist partner of the solutions are
plotted against the variation of Simulated Annealing parameter ( explained in
appendix A.1). When gravity-assist partner selection plot for experiment 3 is
considered, few interesting results are obtained.

Fig 6.8 shows gravity-assist partner selection for two leg solutions and Fig
6.9 shows the gravity-assist partner selection for three leg solutions.
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6.7. Experiment 5 : Investigation of solutions with gradual reduction of
Neighborhood Percentage  

Figure 6.8.: Gravity-assist partner selection for two leg solutions with variation
of neighborhood percentage

Figure 6.9.: Gravity-assist partner selection for three leg solutions with neigh-
borhood percentage of 10%
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6.7. Experiment 5 : Investigation of solutions with gradual reduction of
Neighborhood Percentage  

Simulated Annealing Parameters

Initial Temperature 5

Cooling Schedule Linear

Neighborhood Percentage 30% to 10%(lin-
ear reduction dur-
ing the search)

Number of Iterations 200,000

Table 6.6.: Simulated Annealing parameters for experiment 5

The gravity-assist partner for two leg solutions in most of the cases remained
Mars or Earth (also seen in Random Search analysis Fig 4.6). With the neigh-
borhood percentage set to 10% the solutions had Venus and Jupiter as gravity-
assist partners. In case of three leg solutions the neighborhood percentage
of 10% resulted in few interesting solutions having gravity-assist partner as
Uranus which was not the case for any of the parameter settings in any other
experiments. A mission to Jupiter having a gravity assist at Uranus would
definitely be a solution with less fitness, this can also be seen in Fig 6.6. The
reason for having such a solution is setting the neighborhood percentage to a
small value of 10%. It is important to notice that the algorithm is actually
exploring the regions of search space which it would ideally have less chance to
explore when the neighborhood percentage set to 30%.

This behaviour led to the experiment 5 in which the neighborhood percent-
age is gradually decreased with decrease in temperature. At the start of the
experiment, neighborhood percentage is set to 30% and decreased gradually
to 10% along with temperature value reaching zero. The gradual reduction
of neighborhood percentage should fetch a group of solutions with less fitness,
however chances of finding one good solution or solution with very good ∆V
compared to previous experiments are good. The linear drop of temperature
has more chances of finding this one very good solution compared to that of
exponential temperature drop, hence the cooling schedule is changed to linear
drop.

Simulated Annealing parameters are setup as shown in Tab 6.6.

6.7.1. Results

Tab 6.7 shows the ∆V values and fitness values obtained for this experiment.
The results with considerably low ∆V values are obtained, however the average
fitness of the solutions is 0.8358. The results are presented in a tabular form,
not shown in graphical form in order to emphasise that gradually decreasing
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6.7. Experiment 5 : Investigation of solutions with gradual reduction of
Neighborhood Percentage  

Results for decreasing Neighborhood

Two Leg Solution Results

∆V (km/s) Fitness

13772.767831084866 1.0599586244024346

16687.453408551224 1.2882398534941744

17316.772608693682 0.7464247110813087

17503.755181522993 0.73163656048123349

14014.141335586428 0.99185104064892149

27759.565236015893 0.2044411372450281

17626.691789192326 0.69502864617295446

14561.50885485572 0.94541023230817667

17663.147731921737 0.95755582925458316

19179.869680025367 0.73842469535665056

Table 6.7.: ∆V and solution fitness for two leg missions

neighborhood could produce 8 good results in 10 executions and 3 results equal
to or less than 14.57km/s.

6.7.2. Discussion

This method did improve the search, the solution with ∆V of 13.772km/s is
not found in any of the previous experiments. By reducing the neighborhood
percentage gradually, algorithm could explore the regions which it did not
explore with a fixed neighborhood percentage. This encourages to investigate
various other methods of decreasing the neighborhood. In this thesis work, the
neighborhood percentage is reduced only in a linear fashion.

The search for optimal trajectories with two gravity assist might need more
number of iterations, but for one gravity assist it is definitely possible to locate a
good solution with adjustment in the parameters of Simulated Annealing. This
indicates that Simulated Annealing is a suitable algorithm for optimization tool
with strict time lines.
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7. Conclusion
 

7. Conclusion

7.1. Conclusion

In this thesis a preliminary work is done towards the search of near optimal
low-thrust gravity-assist trajectories. A Random Search analysis is performed
to verify if it is possible to obtain acceptable solutions. A well known global
optimization algorithm, Simulated Annealing is implemented and series of ex-
periments are conducted to analyse if near optimal solutions are found.

It is concluded from the results that Random Search is not an efficient search
method for this particular combinatorial optimization problem. Even though a
few good results were obtained, the search method could not deliver consistent
results, due to the complex nature of the search space. With every gravity-
assist there are infinite possible values with which the hyperbolic excess velocity
vector V∞ could be rotated at and it is no surprise that Random Search could
not perform well in case of gravity-assist trajectory search. However the method
could still be used in search of non gravity-assist trajectories, as this was the
only case in which Random Search produced consistent and acceptable results
or solutions with good fitness values.

Simulated Annealing search provided better results compared to Random
Search method with respect to two leg mission trajectories. There were no sig-
nificant improvements when one leg mission and three leg mission trajectories
were considered. It cannot be concluded that Simulated Annealing search is
not suitable for this optimization problem, considering the point that, number
of iterations tested in this thesis is far less (nearly one tenth) compared to
other trajectory optimization problems involving Simulated Annealing. The
behaviour of Simulated Annealing algorithm indicated that it would definitely
lead to solutions with better fitness values with increased number of iterations.

The best ∆V value out of all the calculations performed in this thesis work is
13.772km/s and was obtained when the neighborhood percentage was gradu-
ally decreased along with the temperature during the search. This result gives
a hope that with further adjustments to the free parameters of the Simulated
Annealing (i.e the way temperature is reduced, the way neighborhood percent-
age is reduced) consistent and good results can be obtained even with reduced
number of iterations.
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7.2. Scope for Future Work
 

7.2. Scope for Future Work

It would be extremely beneficial to have an optimization tool which can op-
timize a low-thrust gravity-assist trajectory with in a restricted time frame.
Initial efforts for such an attempt is done in this thesis work. There are several
points on which the future work of this thesis could be based on.

Neighborhood : A new complex definition of neighborhood could be imple-
mented to overcome the issues with single neighborhood function. Neighbor-
hood function for individual decision variables or separate neighborhood func-
tions for variables having similar ranges can be defined.

Acceptance Probability : Adaptation of the acceptance probability defined
for implementation of Simulated Annealing does not include Boltzman con-
stant. The probability equation could be further improved to implement Boltz-
man constant in the equation.

Cooling Schedule : In this thesis work, only couple of cooling schedules are
investigated. Investigation of various other cooling schedules can give more
information on obtaining results much quicker.

Epoch length : Epoch length discussed here is kept constant, effects of vari-
ation of Epoch length is one further area to look into.
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A. Appendix
 

A. Appendix

A.1. Gravity-Assist Sequencing for Simulated Annealing

In this section, the plots of various gravity-assist partners for every solution is
plotted against the variation of Simulated Annealing parameter. Objective of
such a plot is to identify if any of the sequence is favored by the solutions.

A.2. Experiment 2 : Variation of Initial Temperatures

Fig A.1 shows the gravity-assist partner selection for two leg solutions against
variation of initial temperature.

Fig A.2, Fig A.2, Fig A.2 shows the gravity-assist partner selection for three
leg solutions for initial temperature values of 5, 10 and 15 respectively.

A.3. Experiment 3 : Variation of Neighborhood
Percentages

Fig A.5 shows the gravity-assist partner selection for two leg solutions against
variation of neighborhood percentage.

Fig A.6, Fig ??, Fig A.8 shows the gravity-assist partner selection for three
leg solutions for neighborhood percentage values of 10%, 20% and 30% respec-
tively.

A.4. Experiment 4 : Variation of Number of Iterations

Fig A.9 shows the gravity-assist partner selection for two leg solutions against
variation of number of iterations.

Fig A.10, Fig A.10, Fig A.10 shows the gravity-assist partner selection for
three leg solutions for number of iteration values of 100,000, 200,000 and
500,000 respectively.
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A.4. Experiment 4 : Variation of Number of Iterations
 

Figure A.1.: Gravity-assist partner selection for two leg solutions with variation
of initial temperature.

Figure A.2.: Gravity-assist partner selection for three leg solutions with initial
temperature 5.
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A.4. Experiment 4 : Variation of Number of Iterations
 

Figure A.3.: Gravity-assist partner selection for three leg solutions with initial
temperature 10.

Figure A.4.: Gravity-assist partner selection for three leg solutions with initial
temperature 15.
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A.4. Experiment 4 : Variation of Number of Iterations
 

Figure A.5.: Gravity-assist partner selection for two leg solutions with variation
of neighborhood percentage.

Figure A.6.: Gravity-assist partner selection for three leg solutions neighbor-
hood percentage of 10%.
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A.4. Experiment 4 : Variation of Number of Iterations
 

Figure A.7.: Gravity-assist partner selection for three leg solutions neighbor-
hood percentage of 20%.

Figure A.8.: Gravity-assist partner selection for three leg solutions neighbor-
hood percentage of 30%.
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A.4. Experiment 4 : Variation of Number of Iterations
 

Figure A.9.: Gravity-assist partner selection for two leg solutions with variation
of number of iterations.

Figure A.10.: Gravity-assist partner selection for three leg solutions with num-
ber of iteration value 100,000.
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A.4. Experiment 4 : Variation of Number of Iterations
 

Figure A.11.: Gravity-assist partner selection for three leg solutions with num-
ber of iteration value 200,000.

Figure A.12.: Gravity-assist partner selection for three leg solutions with num-
ber of iteration value 500,000.
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A.5. Part of the source code for implementation of Simulated Annealing
 

A.5. Part of the source code for implementation of
Simulated Annealing

/*##################################################################

# run_sequence_optimization is a overloaded method to execute

# the Optimization algorithm. The same structure which was

# used for Differential Evolution is retained for implementing

# Simulated Annealing as well. This method basically implements

# the logic of the Simulated Annealing algorithm. A sequence

# candidate which contains the slots for the parameter values

# is randomly filled and then the search process begins with

# this initial candidate. run_sequence_optimization calls

# createNeighborhood method which will move the initial candidate

# to its neighbouring location in the parameter space and the

# fitness would be evaluated. This way the search shall follow

# Simulated Annealing algorithm to find the optimal set of parameters.

#####################################################################*/

int run_sequence_optimization( cCalc &CalcObject,

vector<cSequenceCand> &SequencePop, int leg_counter,

ofstream &log_obj, ofstream &log_obj1)

{

double iteration_number = 1;

//Counter for the number of evaluations in the search.

int population_counter = 0;

int replacement_counter = 0;

//Counts how often down hill movement happens in the search.

SimulatedAnnealing SA_Optimizer;

//Object of Simulated Annealing class for calling Simulated

Annealing methods.

double maxTemperature = CalcObject.getMaxTemperature();

//Maximum temperature to start with as set by the user in input

text file.

int iMaxNumberOfIterations = CalcObject.getNumberOfIterations();

//Maximum nuber of Iterations or search evaluations to be

performed. Also set by user.

int iEpochlength = 100;

//Number of evaluations at each temperature level.

double currentTemperature = maxTemperature;

vector<cSequenceCand> TrialSequencePop(1);

//Sequence candidate which stores the values of parameters(Vector).
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A.5. Part of the source code for implementation of Simulated Annealing
 

for(iteration_number = 1; iteration_number

<=iMaxNumberOfIterations; iteration_number++)

// initially fixing the number of iterations

{

for (int iEpoch =1; iEpoch<=iEpochlength; iEpoch++)

{

log_obj <<"----------------------------------------" << endl;

log_obj <<"Trial Number: " << iteration_number

<<"Epoch length: " << iEpoch << endl;

log_obj <<"----------------------------------------" << endl;

cout <<"-------------------------------------------" << endl;

cout <<"Trial Number: " << iteration_number

<<"Epoch length: " << iEpoch << endl;

cout <<"-------------------------------------------" << endl;

TrialSequencePop.at(population_counter).vTrajectories.resize(leg_counter);

//number of leg becomes size of vector containing the

trajectories of a

//given sequence candidate

TrialSequencePop.at(population_counter).vGA_partner_id_sequence.resize(leg_counter-1);

TrialSequencePop.at(population_counter).d_theSequenceFitness =

-1;

//Fitness is assigned negative if the fitting parametrs are

not found and

//calculations are repeated.

do

{

// Function to create the Neighborstate, only the adress of

original and new vector needs to be

// fed in, rest all will be read in from the input file.

SA_Optimizer.createNeighborState(TrialSequencePop,

SequencePop, CalcObject, leg_counter, currentTemperature,

maxTemperature);

cMission TrialMission(CalcObject,

leg_counter,TrialSequencePop.at(population_counter).MissionVariables[0],

TrialSequencePop.at(population_counter).MissionVariables[1],

TrialSequencePop.at(population_counter).MissionVariables[2]);

//sequence is: Nrev_mission, FlightTime_mission,

LaunchDate_mission

TrialMission.createTrialSequence(leg_counter,

TrialSequencePop.at(population_counter), TrialMission,

CalcObject,

log_obj,TrialSequencePop.at(population_counter).vGA_partner_id_sequence);
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A.5. Part of the source code for implementation of Simulated Annealing
 

//if succcessful the sequence fitness is changed to > 0, if

not, fitness remains -1 (see above),

//i.e. a new vector is created, new trial vector, new

sequence, until successful;

//errors result in "return"

}

while(

TrialSequencePop.at(population_counter).d_theSequenceFitness

< 0);

if(CalcObject.theDocumentation)

{

cout << "---------------------------------" << endl;

}

log_obj << "------------------------------" << endl;

int trial_counter =0; //counts through trial population

log_obj << "PopulationFitness("<<trial_counter+1<<")" <<

SequencePop[trial_counter].d_theSequenceFitness <<

"TrialPopulationFitness("<<trial_counter+1<<")" <<

TrialSequencePop[trial_counter].d_theSequenceFitness <<

endl;

if(SequencePop[trial_counter].d_theSequenceFitness <=

TrialSequencePop[trial_counter].d_theSequenceFitness)

{

log_obj << "Population Member: " << trial_counter+1 << "

is replaced." << endl;

//do replacement, i.e. trialpopulation member becomes

new population member

SequencePop[trial_counter].MissionVariables[0] =

TrialSequencePop[trial_counter].MissionVariables[0];

SequencePop[trial_counter].MissionVariables[1] =

TrialSequencePop[trial_counter].MissionVariables[1];

SequencePop[trial_counter].MissionVariables[2] =

TrialSequencePop[trial_counter].MissionVariables[2];

SequencePop[trial_counter].vGA_partner_id_sequence =

TrialSequencePop[trial_counter].vGA_partner_id_sequence;

SequencePop[trial_counter].d_theSequenceDeltaV =

TrialSequencePop[trial_counter].d_theSequenceDeltaV;

SequencePop[trial_counter].d_theSequenceFitness =

TrialSequencePop[trial_counter].d_theSequenceFitness;

//global variables have been stored up to here

//next: storing the data of each segment’s (counted

through by "copy_counter" trajectory)

int copy_counter =0;
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A.5. Part of the source code for implementation of Simulated Annealing
 

for(copy_counter = 0; copy_counter < leg_counter;

copy_counter++)

{

SequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[0]

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[0];

SequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[1]

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[1];

SequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[2]

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[2];

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_a =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_a;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_b =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_b;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_c =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_c;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_d =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_d;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_e =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_e;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_f =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_f;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_g =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_g;

SequencePop[trial_counter].vTrajectories[copy_counter].radius_hist =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].radius_hist;

SequencePop[trial_counter].vTrajectories[copy_counter].theta_hist =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theta_hist;

SequencePop[trial_counter].vTrajectories[copy_counter].thrust_hist =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].thrust_hist;

SequencePop[trial_counter].vTrajectories[copy_counter].DeltaV =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].DeltaV;

SequencePop[trial_counter].vTrajectories[copy_counter].Fitness =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Fitness;

SequencePop[trial_counter].vTrajectories[copy_counter].theStartBody =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theStartBody;

SequencePop[trial_counter].vTrajectories[copy_counter].theGA_partner_id

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theGA_partner_id;
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SequencePop[trial_counter].vTrajectories[copy_counter].theEndBody =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theEndBody;

SequencePop[trial_counter].vTrajectories[copy_counter].theTurningAngleDelta

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theTurningAngleDelta;

SequencePop[trial_counter].vTrajectories[copy_counter].theR_peri_flyby

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theR_peri_flyby;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure_x

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure_x;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure_y

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure_y;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival_x

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival_x;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival_y

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival_y;

}

}

else

{

//If the fitness is worse, we accept the solution based on the

probability depending on temperature.

int trial_counter =0;

uniform_real_distribution<double> unif_real_dis(0,1);

random_device rd;

mt19937 gen(rd());

double a_random_double = unif_real_dis(gen);

double deltaE = 1-((SequencePop[trial_counter].d_theSequenceFitness -

TrialSequencePop[trial_counter].d_theSequenceFitness)

/SequencePop[trial_counter].d_theSequenceFitness);

double prob_function =deltaE*exp(-( 1)/(currentTemperature));

log_obj << "prob_function "<< prob_function << endl;

if(a_random_double < prob_function )

{
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log_obj << "Population Member: " << trial_counter+1 << " is replaced."

<< endl;

SequencePop[trial_counter].MissionVariables[0] =

TrialSequencePop[trial_counter].MissionVariables[0];

SequencePop[trial_counter].MissionVariables[1] =

TrialSequencePop[trial_counter].MissionVariables[1];

SequencePop[trial_counter].MissionVariables[2] =

TrialSequencePop[trial_counter].MissionVariables[2];

SequencePop[trial_counter].vGA_partner_id_sequence =

TrialSequencePop[trial_counter].vGA_partner_id_sequence;

SequencePop[trial_counter].d_theSequenceDeltaV =

TrialSequencePop[trial_counter].d_theSequenceDeltaV;

SequencePop[trial_counter].d_theSequenceFitness =

TrialSequencePop[trial_counter].d_theSequenceFitness;

//global variables have been stored up to here

//next: storing the data of each segment’s (counted through by

"copy_counter" trajectory

int copy_counter =0;

for(copy_counter = 0; copy_counter < leg_counter;

copy_counter++)

{

SequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[0]

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[0];

SequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[1]

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[1];

SequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[2]

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].ControlVariables[2];

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_a =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_a;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_b =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_b;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_c =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_c;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_d =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_d;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_e =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_e;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_f =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_f;

SequencePop[trial_counter].vTrajectories[copy_counter].Coeff_g =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Coeff_g;
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SequencePop[trial_counter].vTrajectories[copy_counter].radius_hist =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].radius_hist;

SequencePop[trial_counter].vTrajectories[copy_counter].theta_hist =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theta_hist;

SequencePop[trial_counter].vTrajectories[copy_counter].thrust_hist =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].thrust_hist;

SequencePop[trial_counter].vTrajectories[copy_counter].DeltaV =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].DeltaV;

SequencePop[trial_counter].vTrajectories[copy_counter].Fitness =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].Fitness;

SequencePop[trial_counter].vTrajectories[copy_counter].theStartBody =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theStartBody;

SequencePop[trial_counter].vTrajectories[copy_counter].theGA_partner_id

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theGA_partner_id;

SequencePop[trial_counter].vTrajectories[copy_counter].theEndBody =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theEndBody;

SequencePop[trial_counter].vTrajectories[copy_counter].theTurningAngleDelta

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theTurningAngleDelta;

SequencePop[trial_counter].vTrajectories[copy_counter].theR_peri_flyby

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].theR_peri_flyby;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure_x

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure_x;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure_y

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_departure_y;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival =

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival_x

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival_x;

SequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival_y

=

TrialSequencePop[trial_counter].vTrajectories[copy_counter].v_inf_arrival_y;

}

replacement_counter++;

97



A.5. Part of the source code for implementation of Simulated Annealing
 

//increase the value of replacement counter to get to know how many

replacements have happened.

}

}

log_obj1<< SequencePop[trial_counter].d_theSequenceFitness

<< " "

<< TrialSequencePop[trial_counter].d_theSequenceFitness

<< " " << currentTemperature << endl;

}

// To reduce the Tempeature.

currentTemperature

=(currentTemperature-(maxTemperature/iMaxNumberOfIterations));

// To reduce the temperature linearly

// currentTemperature = maxTemperature*exp(-(iteration_number /

(iMaxNumberOfIterations/5)));

// to be used for Exponential reduction of Temperature, exp(-5)

itself is a very small number,

// hence max number of iterations a divided by 5.

}

log_obj1 << "No of Downhill movements " << replacement_counter <<

endl;

return iteration_number;

}
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