Technological and economic factors on the maximum design speed of high speed trains

International Congress on High Speed Rail, Ciudad Real, 2017 Tilo Schumann, Dr. Michael Meyer zu Hörste, Dr. Andreas Heckmann, Prof. Karsten Lemmer

Knowledge for Tomorrow

Overview

- Development of Speed in the Railway Sector
- Project Next Generation Train
- Increasing speed up to 600 km/h:
 - Operational aspects
 - Vehicle- and Aerodynamics
 - Signalling and Train Control
- Conclusion

Development of railway speed records

Source: Wikimedia/Mrdeluna

Source: Wikimedia/Yosemite

Source: Wikimedia/Clicsouris

Source: Wikimedia/Marc Voß

Source: Wikimedia/Alain Stoll

Development of commercial speed

Shinkansen 0 - Source: Wikimedia/Nadate

TGV PSE - Source: Wikimedia/Falk2

CRH400 - Source: Wikimedia/N509FZ

CRH3 - Source: Wikimedia/Brücke-Osteuropa

TGV Duplex - Source: Wikimedia/PS-2507

Project Next Generation Train Since 2007, 11 DLR Institutes, current phase until 2018

 Ultra-high-speed train (400 km/h, 202m, 800 seats, double-deck, 16 MW) NGT HST

 High-speed regional train (230 km/h, 120m, 480 seats, double deck) NGT LINK

 High-speed Cargo train (up to 400 km/h, currently in design process) NGT CARGO

Operational aspects of a commercial speed of 600 km/h Passenger demand on reference line Paris-Vienna

- Usage of the NGT European Rail Passenger Model
- Gravity model with population and economy data
- Calibrated with 2010 Eurostat data
- 2 700 cities
- 2 000 train routes
- 20 100 km HSR
- 80 000 km Intercity
- 80 000 km regional
- 10.2m train-km/day

NGT Model for 2025 (Thickness: rail passenger demand) BaseMap: OpenTopoMap / OpenStreetMap Contributors

Operational aspects of a commercial speed of 600 km/h Passenger demand on reference line Paris-Vienna

- Speed 300 à 600 km/h: Increase of demand from 19 to 31 bn Pkm/year
- International traffic profits the most (especially Austria-Germany and France-Germany)

Reference line Paris-Vienna	300 km/h	400 km/h	500 km/h	600 km/h
Travel time (hours)	4:42	3:51	3:23	3:03
Passengers (mio/year)	55.3	69.1	77.2	83.0
Passenger-km (bn. Pkm/year)	19.00	24.84	28.38	30.99
Energy consumption (at wheel) (MWh/run)	19.2	31.6	44.8	60.8

Operational aspects of a commercial speed of 600 km/h Energy consumption

- Energy consumption increases by factor 3 from 300 to 600 km/h
- One run from Paris to Vienna: 20 à 60 MWh
- For very high speed: renunciation of traction force buffer à speed decrease in slopes à travel time increase hardly noticable

Operational aspects of a commercial speed of 600 km/h Reference Timetable

Reference line Paris-Vienna	300 km/h	400 km/h	500 km/h	600 km/h
Average speed (km/h)	244	297	338	375
Average speed of all passengers using the line at least for a part of the journey including dwell times (km/h)	119	130	138	146
Specific energy consumption at wheel level (Wh/(km * seat))	21.0	34.5	48.9	66.4
Number of NGT trainsets (incl. 10% operational buffer)	37	40	42	44
Operational performance (Mio trainset-km/year)	29.4	36.3	40.7	46.3
Average operational performance of one NGT trainset (km/year)	786 000	916 000	973 000	1 052 000
Seat utilization (reservation compulsory)	81%	86%	87%	84%

Vehicle – Components to have a look at

Infrastructure – Components to have a look at

Vehicle dynamics

- Sub-Tasks of the transportation task are: Load bearing, Guidance, Traction
- Guidance is depending on hunting motion, whose stability depends strongly on speed
- Measures: adjust stiffness of primary suspension, low equivalent conicity, additional yaw dampers, long wheel-base (everything solvable)
- Wear: Sliding friction, speed dependency is difficult to quantify
- Exemplary calculation with standard HSR configuration shows a progressive increase of abrasion due to guidance forces à
- Traction potential drops with incr. speed, according to Curtius and Kniffler, friction coefficient $\mu = 0.1$
- Aerodynamical drag causes the equipment of as much wheels as possible to be powered

Aerodynamics

- Aerodynamic drag exceeds mechanical friction at higher speeds and increases with the square of driving speed
- Measures: long nose, plane surface, plane wagon interchange
- Also important: Crosswind stability especially with the lightweight construction (NGT as example)
- Measures: specific devices for active control of stability, wind (and noise) fences
- Noise problem: over 300 km/h aeroacoustic emissions dominate
- Pantograph sound scales with U^6 a measures for a noise-optimization such as the Shinkansen pantograph

Signalling and Train Control

- Braking distance grows approximately by square of the speed
- Current high-speed train control systems (e.g. ERTMS) could solve speeds up to 600 km/h without significant problems
 - Cab signalling instead of trackside signals
 - Radio connections capable of working with high-speeds
 - Balise message transmission capable of working with high-speeds
- Due to long braking distances the Moving Block promises higher capacity (fixed obstacles like junction switches can be found in areas with lower speed)

Conclusions

- Many technical aspects can be solved (like speed records show)
- The problem will be the economic side: effort grows progressive, the benefit (travel time reduction) decreases, energy consumption is only a small part

