BJ.: 2017

Institut fiir Robotik und Mechatronik

IB.Nr.: DLR-IB-RM-OP-2017-129

MASTERARBEIT

AN EFFICIENT PROBABILISTIC ONLINE
CLASSIFICATION APPROACH FOR
OBJECT RECOGNITION WITH RANDOM
FORESTS

Freigabe: Der Bearbeiter: Unterschriften

Maximilian Denninger W

Betreuer:

! o f)
Dr. Rudolph Triebel //—; ﬁ i / A
/
Der Institutsdirektor // ' / ‘ / //
-y
Dr. Alin Albu-Schiffer et 1ela),

Dieser Bericht enthdlt 93 Seiten, 23 Abbildungen und 9 Tabellen

Ort: Oberpfaffenhofen | Datum: Bearbeiter: Zeichen:

Robotics, Cognition, Intelligence
(Int. Master’s Program)

Technische Universitiat Miinchen

Master’s Thesis

An efficient probabilistic online classification approach
for object recognition with random forests

Ein effizienter probabilistischer online
Klassifizierungsansatz fr die Objekterkennung mittels
zufélliger unkorrelierter Entscheidungsbaume

Author: Maximilian Denninger

15" examiner: Prof. Dr. Rudolph Triebel
Thesis handed in on: April 12,2017

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

Munich, April 12,2017, 2016 Maximilian Denninger

iv

Acknowledgments

I would like to thank my supervisor and professor Dr. Rudolph Triebel, who helped
me through my whole master thesis. Furthermore for the possibility to research the topics
Random Forest and Gaussian Processes at the German Aerospace Center (DLR) at the
Institute of Robotics and Mechatronics in the department of Perception and Cognition.
With his help throughout my thesis, we were able to make a valuable contribution for
online learning on big data sets.

Furthermore I want to thank my colleagues at German Aerospace Center for their sup-
port, the pleasant atmosphere and the interesting discussions we had.

Abstract

Online learning on big data sets is still an open problem in the classification of images.
Many problems in the real world don’t have all data available in the beginning of the
training. Therefore it is necessary that the approach is able to integrate new incoming data
points. Random Forest have been proven to be good in online learning [SLST09]. However
the existing approaches do only generate very few trees, which only have a height of five.
To overcome this shortcoming this thesis presents several methods to improve the gen-
eration of Decision trees, which leads to an algorithm, which can train thousands of tree
with a sufficient height. Furthermore the Random Forest were then used in combination
with an online sparse Gaussian Process to classify the outliners. These falsely classified
points weren’t classified correctly by the Random Forest in the first place. This whole
approach was then optimized and tested on different datasets. The far most important
result was that the presented online approach always yields better results than the offline
approach, which is a remarkable result for an online learning approach. Furthermore we
outperformed the result from Saffari ef al. on the USPS dataset [Hul94, SLS™09].

vii

viii

Contents

Acknowledgements

Abstract

1 Introduction
1.1 Classification.
1.2 Related Work
1.3 Motivation and goal . .

2 Decision Trees

2.1
2.2
2.3

Introduction
Training
Metrics

2.3.1 Misclassificationrate

2.3.2 Gini impurity . .
2.3.3 Information gain

Random Forest

3.1

3.2
3.3
34

Fast implementation of binary trees, ..

3.1.1 Memory efficient

Advantages and disadvantages of decisiontrees

Deep decision trees . . .
Online learning

Gaussian Processes

4.1
4.2
4.3
4.4

4.5
4.6
4.7

Bayesian Linear Regression

Gaussian Processes for Regression

Gaussian Processes for Classification v v v v v v v i

Kernels for Gaussian Processes« o v v i i i i e

441 Gaussian kernel .

442 Gaussian kernel with expandedlength
443 Random Forestkernel
Informative Vector Machine e

Assumed-density filtering L L o oo

Expectation Propagation

vii

AN P

O O 00 0 00 I 3

11
11
12
14
17
20

23
23
25
27
30
30
31
32
35
36
38

ix

Contents

4.8 Informative Vector Machine as Extensionof EP
49 Hyperparameter optimization for the Gaussian Kernel

491 CMA-ES e e

49.2 CMA-ES for hyperparameter optimization
4.10 Enhanced error measurement e
411 Improved selection of theactiveset.
412 ADFE EP and theactiveset e
413 Multiclass scenario e e e e e

5 Online Random Forest with Informative Vector Machines
51 Onlinelearning e
52 Biggestchallenge

6 Implementation Details
6.1 Onlinelearning o
6.2 Thread Master e
6.2.1 Multithreading L o oo

7 Examples

7.1 MNIST . . e
7.1.1 Results for the Random Forest
7.1.2 Results of the Informative Vector Machine
7.1.3 Results for the Random Forest with the Informative Vector Machine

7.2 USPS . . e
721 Random ForestResults.
7.2.2 Results of the Informative Vector Machine

73 Washington
7.3.1 Result for the Random Forest and the Informative Vector Machine

8 Conclusion and Future Work
8.1 Conclusion e e
8.2 Future Work e

Bibliography

61
61
61
63

65
65
66
68
70
71
72
73
73
74

77
77
78

79

1 Introduction

In the last decades machine learning got more and more attention through the growing
computational power. Many different approaches were developed and presented to the
world. One of the main tasks in modern machine learning is classification, in which the
class of a new data point is estimated. Several solutions have been proposed for that, which
all use different angles to solve this problem. One of them is called Gaussian Processes,
it is a powerful tool for classification and regression problems. The biggest advantages
of them are their non-linear and non-parametric behavior and their explicit probabilistic
formulation of the model, which compares to the learning of an estimation, like in the
most other approaches. However their disadvantage is that the computational time scales
cubically with the amount of data points [RW06, Bis06, Mur12].

This thesis mainly builds up on the work of Frohlich et al. , which combined a Gaussian
Process a the Random Forest [FRKD12]. By doing this the main disadvantage of Gaus-
sian Processes is reduced, which makes them usable for big data sets. However a lot of
problems in the area of mobile robotic do not have all data points in the beginning and an
online approach is therefore necessary. In the most cases just a fraction of the whole data
set is available at the start and the algorithm should already be able to predict unknown
data points. One further advantage of Gaussian Process is their expressiveness on small
data sets, which is important in this thesis.

So the core idea is to generate an online approach, which first splits a given data set
into sub splits with the help of a Random Forest, which are then further used by an online
Gaussian Process. The main challenge here is a fast and online approach, which combines
the Random Forest with the Gaussian Processes. Random Forest on their own have great
properties, like their fast training and prediction time. Furthermore they are without any
extension already useable for multiclass scenarios.

1.1 Classification

The main task of this thesis is classification. In classification the main goal is to determine
to which class a data point belongs to. In order to that trainings samples are given, which
provide the underlying algorithm, with enough knowledge to make an informed decision.
In figure 1.1 two classes are given, one is plotted in blue the other one in yellow. This
simple data set will be later used to explain the different approaches tested in this thesis.
The goal now is identifying the class of a new unseen data point, which does not belong
to the trainings set. Important to note is that all approaches uses some sort of similarity

1 Introduction

measurement to determine the class of an unseen data point. For example an unclassified
point in the upper right corner of figure 1.1, would be classified as yellow by a human. The
reason for that is that the human classification in this case would work by proximity, which
is similar to the so called nearest neighbor algorithm, which is not further elaborated.
In this thesis Random Forest and Gaussian Processes are used to classify unknown data
points.

Figure 1.1: A simple dataset with two classes, which are plotted with little dots. Each dot
represents a 2D data point and the color determines to which class the point
belongs.

1.2 Related Work

As mentioned before the idea of combining Random Forest with Gaussian Process was
presented in the paper “Large-scale Gaussian process classification using random deci-
sion forests” by Frohlich et al. [FRKD12]. This idea is close to the approach of Chang et al. ,
which uses Support Vector Machines instead of Gaussian Processes in their paper "Tree
Decomposition for Large-Scale SVM Problems” [CGLL10]. The combination of two meth-
ods lead to two different related work parts, which are covered here. First the Random
Forest is covered and afterwards the Gaussian Process.

1.2 Related Work

Random Forest

One of the first comprehensive books about Random Forest was “Classification and regres-
sion trees” by Breiman [BFSO84]. It introduced the concept of using splits to separate data
sets and let the group of trees vote for the best result. Breiman also introduced the concept
of bagging in the article “"Bagging predictors”, where he described how randomly selecting
a subset of the data improves the predictive result [Bre96]. In his article ”An experimental
comparison of three methods for constructing ensembles of decision trees: Bagging, boost-
ing, and randomization” Dietterich combined the Breiman’s idea with a random selection
of the split criteria [Die00]. This improves the decision in each node and therefore the
whole tree, which is one of the easiest ways of improving Decision trees. In 2001 Breiman
introduced in his paper “Random Forest”, the concept behind modern Random Forests,
where he combined several approaches like the random split criteria and the bagging con-
cept [BreO1]. These core ideas are used in this thesis, too. Based on that Geurts et al. have
developed the “Extremely randomized trees”, which are published in the paper with the
same name [GEWO06]. These trees select the splits partially or totally random, so there is
not necessarily a connection between the input data and the resulting tree. This idea was
routed in the problem of high variance in the splits, which solely depended on the training
points. This was compared and evaluate in “Investigation and reduction of discretization
variance in decision tree induction” by Geurts and Wehenkel [GW00]. The work ”An em-
pirical evaluation of supervised learning in high dimensions” from Caruana et al. showed
that Random Forest compared to other approaches like neuronal nets, boosted trees and
support vector machines are in better in handling high dimensional problems [CKY08].
The high dimensionality is one of the main goals of this thesis and therefore this approach
could not be used.

In the work "On-line Random Forest” from Saffari et al. an online Random Forest ap-
proach is presented, which tried to unlearn bad selections in the trained trees [SLS™09].
This differs to this thesis in the point that a Decision tree is discarded if a tree does not
represent the data well enough. This is possible through the fast training times of our ap-
proach. Lakshminarayanan et al. presented in their paper “Mondrian Forests: Efficient On-
line Random Forests” a method of using Random Forest with Mondrian trees. Mondrian
trees are in general more expressive than simple Decision trees, however their handling
of high dimensional data is worse, because the trainings time depends on the amount of
dimensions. These trees were not used here, because of that [LRT14].

Gaussian Process

The standard Gaussian Process evolves naturally from the Bayesian Linear Regression and
is therefore best suited for a regression setting. This was shown in the paper “Gaussian
Process for Regression” from Williams and Rasmussen [WR96]. Nonetheless with a few
changes the Gaussian Process can be used for the classification. However these changes
have the disadvantage of removing the analytical solution for the problem, which means

1 Introduction

an approximation has to be made [RW06]. This leads to an algorithm, which is quadratic
in space complexity and cubic in time complexity so that the training for big data sets is
not possible with the standard approach.

In order to overcome this several methods were designed, which are able to find a solu-
tion for classification on big data sets with Gaussian Processes. The paper ”"Sparse Online
Gaussian Processes” by Csaté and Opper presents an algorithm, including basis vectors
from the data set, if the change on the sample averaged posterior mean due to the sparse
approximation is maximal. This can be done in one iteration over the data and furthermore
the amount of points can be controlled by removing the points again, which had the small-
est change [CO02]. However the paper does not over an optimization of the hyperparam-
eters nor is the resulting approximation good enough for high dimensional problems. For
regression Tipping introduced the Relevance Vector Machine it is a probabilistic model on
the Support Vector Machine, which forms therefore a Gaussian Process. This was shown
in the paper ”"Sparse Bayesian Learning and the Relevance Vector Machine” [Tip01]. But
the predictive distribution of their approach suffers from a unreasonable predictive distri-
bution, which can be healed with the approach presented in “Healing the relevance vector
machine by augmentation” from Rasmussen and Quifionero-Candela [RQCO05]. A differ-
ent approach is the “Sparse greedy Gaussian Process Regression”, which finds a subset
in several iteration over the data. This procedure is more expensive than the Relevance
Vector Machine, but yields better results [SBT01]. Lawrence et al. presented the Informa-
tive Vector Machine in the paper “Fast sparse Gaussian process methods: The informative
vector machine” [LSH'03]. In it an algorithm is described, which is able to find a sub-
set of the data, which represents the data best and on it a Gaussian Process is calculated.
This can be done iteratively in combination with the approximation of the posterior, which
makes it faster than the most other approaches. This thesis uses an Informative Vector Ma-
chine, with some changes to perform better with fewer points in the selected subset. The
main reason for selecting this approach is the fast calculation of the active set and the ap-
proximation for the posterior at the same time. In 2006 Snelson and Gahramani showed
in their paper ”"Sparse Gaussian Process using Pseudo-inputs” an approach, where new
points were estimated, which carry the Gaussian Process for a regression scenario. But the
pseudo-inputs always have an initial sampling area in which they most likely occur, which
can be a problem in multi dimensional problems, where the area of interest is unknown
[SGO6]. To make it work on higher dimensional data sets they had to use a Principal Com-
ponent Analyse to find a good representation in a lower dimension. An alternative to the
PCA is Automatic Relevance Detection. Naish-Guzman and Holden used the approach
from Snelson and Gahramani in a classification scenario in their paper “The Generalized
FITC Approximation” . They draw the points randomly from the approximated poste-
rior [NGHO7]. This lead to a very sparse approximation with only few points, however
the computational effort is high and in combination with the estimation of the hyperpa-
rameters of the kernel too unstable for higher dimensional problems. In 2009 the article
”Variational Learning of Inducing Variables in Sparse Gaussian Processes” from Titsias

1.2 Related Work

was published. His approach minimizes the KL-divergence between the true posterior
and an approximated one. This makes it possible to optimize the hyperparameters and
the inducing points at the same time [Tit09]. But this whole approach only works for re-
gression and not for classification. Vanhatalo and Vehtari presented an speed up for the
general Gaussian Process. Their paper "Speeding up the binary Gaussian process classi-
fication” showed that by using a covariance function instead of the full covariance matrix
the inference and the memory requirements could be reduced. However the algorithm
still scales O(n?), which does not fully solve the problem for big data sets [VV12].

The paper “Gaussian Process for Big Data” by Hensman et al. uses a sparse representa-
tion of the input points. They improve the selected points in comparison to the Informative
Vector Machine by blurring them with a Gaussian, using an full covariance matrix for the
points around that basis point. That makes it possible to summarize local data manifold
information with fewer data points [HFL13]. However the computational effort is much
higher and the big advantage is the usage on bigger data sets, which is not necessary here,
because the Random Forest already splits the data set beforehand. Seeger et al. presented
in their paper “Fast Forward Selection to Speed Up Sparse Gaussian Process Regression” a
method to quickly find an active set for representing a given data set. Their approach only
need O(n) steps to find the next point to include in the data. So they use an approximation
for finding the best active set [SWLO03]. Nonetheless this method can not be used here,
because it is not applicable to a classification setting.

The paper “Gaussian process training with input noise” from McHutchon and Ras-
mussen introduces the NIGP, this approach can work on noise input data with noise free
output data, which is the opposite to the usual assumption. Furthermore their approach
can estimates the noise variance alongside the hyperparameters [MR11]. Based on that Bijl
et al. showed in their paper “Online Sparse Gaussian Process Training with Input Noise”
an method for generating a Gaussian Process online on stochastic noisy input data. Their
approach can include additional measurements very efficiently, where each incorporation
only takes constant runtime [BSvWV16]. Nevertheless there is no obvious way of trans-
forming their approach to the problem of classification. The presented methods have all
strong and weak spots. However the main theme is if the approach is fast and stable in
regression, there is no clear way of transforming it to classification. On the hand the clas-
sification approaches all suffer a stable hyperparameter optimization or can not deal with
high dimensional problems. Furthermore using them in an online fashion is in the most
case not possible. Therefore in this thesis the Informative Vector Machine from Lawrence et
al. was used. It offers an online approach, which can be trained fast on different problems
and uses the data points as subset for the active set. This reduces the complexity of the
problem. However a bigger amount of induced points has to be used. The big advantage
of that is that there is no dependency on the amount of dimensions.

1 Introduction

1.3 Motivation and goal

Several approaches have been presented in the past, which already offer different solutions
for classification of images. However these approaches are in general offline and the com-
putation time is not an important factor. Furthermore the most approaches only build up a
model, which estimates the underlying dataset without any probablistic reasoning. Gaus-
sian Processes can calculate a probablistic model for a data set and make their prediction
on it.

Therefore this thesis tries to build up a framework for fast online learning for classifi-
cation. In order to do that an Online Random Forest should be designed, which is able
to work in an online setting. So a new library has to be designed, which supports online
learning on big data sets and can further on use a probablistic model for the reasoning. So
these Online Random Forest are combined with the Informative Vector Machine, which
is a sparse Gaussian Process. Additionally the learning should use all system resources
as best as possible. The overall goal is that the Random Forest and the Informative Vec-
tor Machine can be trained in parallel to improve the global result. The implementation
should always favor the worst classifier, so that the overall solution is improved as fast as
possible.

2 Decision Trees

2.1 Introduction

Decision Trees are simple classifier, which deduces the class of an unlabeled data point by
assigning the point to a part of the split training set. This part should be as pure as possible,
that means that all elements in this part should be from the same class. The point will then
get the class with the majority of points in the split training set. This can be achieved by
splitting the training data at each node along of the axis in a binary tree until the purity of
each node is high enough or the maximal amount of layers is reached. Figure 2.1 shows the
result for data set from the section 1.1. The Decision tree used in this figure has overfitted
and all the test and trainings data points are classified correctly. However the yellow stride
on the right side of the picture only fulfills the purpose of covering only one point and the
area between the point and the main mass of yellow points is blue again. This shows that
the algorithm just tried to fit the points and does not model the data correctly. Still all
points were classified correctly, but the generalization is not optimal.

Figure 2.1: This figure shows the result on the data set from section 1.1. The background
in this picture indicates the membership of new points at this location. This
shows that both of the datasets were correctly classified.

2 Decision Trees

2.2 Training

Labeled Data is usually used to train decision trees and they are therefore considered as
a supervised learning approach. The training follows a greedy approach so in each node
always the best split is performed. These splits depends on the selected metric. A metric
calculates the quality of a split on a training set. Before such a metric is evaluated, a split di-
mension and a split value has to be determined, these values are usually randomly drawn.
First a random dimension is selected out of the possible dimension of the input data. Af-
ter that a random split value is selected depending on the minimum and the maximum
value provided in this specific dimension of the data in this node. This reduction of the
minimum and maximum values for each node leads to better performing trees, because a
split has a higher chance of splitting the data points. If a dimension minimum and max-
imum values have gotten equal than this dimension will be omitted and a new one will
be drawn, because that means in this dimension no information can be gained. A decision
tree consisting out of decision nodes is depicted in figure 2.2. In this figure each decision
node has a split value and a split dimension. Each leaf in the end represents a region of the
input space. These are applied on an input point. If the expression is true the left child is
selected else the right child will be the way to go down the tree. This is performed until a
leaf is reached, in which the input point gets the class probabilities based on the trainings
data in this leaf. Equation 2.1 contains the formula to calculate the probability for an input
value being of a certain class z, which is based on the amount of training points D in a
specified region R. Each leaf of a tree has its on region R in the data D. The sum of the
equation results in the amount of points in R, which belong to the class z. The resulting
class label y is the one with the highest probability y = argmax p(z = c¢| R).
C

1
chR:p(Z:C‘R):m Z :H.(ZZ':C) (2]_)
i€DR

2.3 Metrics

There are different metrics to evaluate a split in a decision node. A metric should always
has its highest value if all classes are distributed equally and the lowest value if only one
class is left. These metrics are then minimized so that in the end only one class is left. Three
metrics are explained in this thesis and all of them are compared in a binary case scenario
in figure 2.3.

2.3.1 Misclassification rate

The simplest of all metrics is the misclassification rate. It gives the amount of misclassi-
fied labels in a decision node. Equation 2.2 calculates the error for each data subset Dx.
It is the sum of misclassified points divided by the total amount of points in Dr. The
misslcassifcation rate is depicted as a red line in figure 2.3.

2.3 Metrics

Decision tree: Divided input space:
x[1]
0
0.5
1.0 * % % x[0]

I
0 025 05 075 1.0

Figure 2.2: On the left is a pretrained decision tree with a height of three depicted. In
each node the data point is checked against the split value in a certain split
dimension. In the root node the input value is checked against 0.4 in the first
dimension, depending on the value of the input one of the children is chosen. If
the value in the first dimension is smaller the left child is selected. This process
is repeated for all nodes. The right side of the figure shows the input space
split by the decision tree, each nodes adds a new split line and the colors of the
nodes correspond to the colors of the splits lines.

errp, = HDlH Z 1(y; # zi) (2.2)

1€DR

2.3.2 Gini impurity

An alternative to the misclassification rate is the gini impurity, which is the sum of the
probability for a class times the counter probability for the same class, see equation 2.3. It
has its maximum if all classes are distributed equally and it is the blue curve in figure 2.3.
Therefore minimizing it leads to a good seperation.

C

Gini(m) = Z e - (1 —me) (2.3)

c=1

2.3.3 Information gain

A third metric can be derived from the theory of information gain. The main idea behind
this is that an unlikely datapoint gives more information than a more likely one. Based
on that the entropy is defined as the average amount of information needed to specify the

2 Decision Trees

state of a random variable. That means a uniform distribution would have the highest
entropy, because the average amount of information is maximized. On the other hand a
pure dataset would have no entropy, because all elements are very likely and therefore
have no information at all. Figure 2.3 shows the described behavior for a binary case,
the green curve depicts the entropy. The equation 2.4 contains the entropy defined by
Shannon [Sha48]. Important to note is that #(7.) is zero for 7. = 0. So entropy can be used
to make an informed decision for picking a good split value [Bis06]. Using the log log.
with a base of C, would give the normalized entropy, which would have at 0.5 a value
of 1. However the entropy would be divided by a constant factor in the binary case this
would be log(2), which would not change the result of the optimization. Therefore it is
omitted in the implementation of the thesis.

C
H(m) = — Z e - log . (2.4)
c=1

metric score

0.75 -
0.50 —+

0.25 -

0.0 i % % w p
0.0 0.25 0.50 0.75 1.0

Figure 2.3: The red line represents the misclassification rate, the blue curve the gini impu-
rity and the green curve the entropy calculated based on the information gain
theory. All of them are computed in a binary example, where the probability
for the first class is p and for the second class is (1.0 — p).

10

3 Random Forest

A Random Forest is the combination of several Decision Trees. This has several advantages
in comparison to one single tree. In order to understand the advantages of a Random For-
est, the disadvantages of a Decision Tree have to be elaborated. The four most important
disadvantages are:

1. Decision Trees tend to overfit, which requires expensive pruning operations
2. Dealing with uneven sized datasets is problematic
3. Instability of the result, which means that minor noise in the data changes the result

4. Classification plateaus, because of the splitting along the axis

All these disadvantages can be eradicated by using Random Forest. Through the combi-
nation of more than one Decision Tree the most of these flaws can be reduced or eradicated.
Figure 3.1 shows the result for a Random Forest trained on the data set presented in section
1.1. Both data sets are well presented by the Random Forest and all points are classified
correctly. The grey areas in the left upper and right lower corner show that there are places,
where the algorithm can not decide to which class a point belongs to.

A Random Forest combines the results of the Decision Trees in a democratic fashion,
that means each tree can vote for a class. In the end the class with the most votes wins.
Furthermore the amount of votes can be used as a certainty measurement. This whole
procedure is explained in more detail in the end of this chapter.

Through the combination of trees pruning is not longer necessary, because the overfit-
ting of the trees get eradicated through the different selections in the trees. The same holds
for the problem with the uneven data set, with the aid of many overfit trees, even small
parts of the data can be represented in the model. In a not overfitted tree, this data might
not get represented at all. So all of the mentioned disadvantages get eradicated by using a
Random Forest. However instead of training just one tree a lot of trees have to be trained,
which is more computational effort and furthermore needs more memory space. The next
sections will provide some solutions for this.

3.1 Fast implementation of binary trees

In order to improve the training time of the Random Forest the single Decision trees are
improved in this section. The reason for this is that the trainings and prediction time of the
Random Forest mainly depends on the amount of Decision trees and their own training
and prediction time.

11

3 Random Forest

Figure 3.1: The result of a Random Forest on the data set from section 1.1 is shown in
this picture. The background indicates the membership of a new point at this
position. The grey areas show that there are areas, which do not belong to any
of the classes.

3.1.1 Memory efficient

Trees are usually implemented with pointers. Each node of the tree gets a pointer to their
two children and to its root. Therefore in each node of the tree three pointers are needed.
This approach has the adavantage that the resulting trees do not have to be balanced.
However the goal of decision trees is that they are as much balanced as possible, because
that means that the data is well distributed over the leaves. For this reason using pointers
only increases the amount of needed space in the memory.

There is an alternative for storing binary trees in the memory. Instead of storing each
element as a single object the information of the decision node can be stored in an array.
Each node in the tree can be accessed by its index. In this arrays the root is saved in the
element with the index 1. The index for the left child can be calculated by multiplying
the index of the root with two, which can be implemented by a bitshift to the left. The
right child is always the next element in the memory ergo multiplying by two and adding
one gives the index of the right child. This is especially useful, because the used decision
nodes only consist out of the split value and the dimension in which the split will be
performed. So only two arrays per decision tree have to be saved one for the split values,
which are saved as doubles. The other one is used for the split dimension, which are saved
as unsigned integers. Each element in the array represents a node in the tree. Furthermore
an array with the amount of leaves saves the winner in each leaf, to speed up the prediction
step. It has the same length than the other arrays and is filled with unsigned integers.

12

3.1 Fast implementation of binary trees

Array:

Figure 3.2: The array at the top represents how a binary tree is saved in the memory. The
element with index one contains the root and multiplying the index with two
leads to the left child adding one to the result gives the right child. These rules
hold for every node in the tree. In addition it is the same for finding the father,
but in this case the index is divided by two. The upper array was only split for
presentation purposes.

This is illustrated in figure 3.2. The lower half of the image contains a binary Decision
tree, where each node gets a number to identify it in the upper array. For both, the split
dimension and the split values, an array is generated and the indices correspond to the
numbers of the nodes in the tree shown in the picture.

Therefore a decision trees needs four bytes for the dimension value, eight bytes for the
split values and four bytes for the winning class in each leaf, eg. a tree with a depth
of eight needs 2% - 16 bytes, which are roughly 4 kB. In comparison a tree consisting of
nodes connected by pointers would need 40 bytes per node and the same array to save
the winning classes per leaf. So a node would then have twelve bytes for the data and
additionally 24 bytes for the pointer on a 64 bit computer. A tree with a height of eight
would then need 11.26 kB. In general using pointers in decision trees uses 2.75 times more

13

3 Random Forest

memory than using the array approach, compare therefore equation 3.1.

(2i9ht . 44 4 40 bytes) = (2" . 16 + 40 bytes) ~ 2.75 (3.1)

pointer approach array approach

The second approach was used throughout this thesis to save the amount of used mem-
ory and to speed up the accessing of nodes in the tree, because the position of each node
in the tree can easily be calculated by bitshifts, which is much fast than following nodes
through the tree. The reason for this is, how objects are stored in the memory, a vector
always lies as one sequential object in the memory. This does not hold for individual node
objects, which are just connected by pointer, which makes pages refreshes much more
likely and therefore the speed of the algorithm is improved by this approach too. Further-
more the training in this array approach can be performed very easily by iterating over
the arrays and filling the split values and split dimensions in. This form of training cor-
respond to a breath first parsing of the tree, which does not need a recursive function call
and therefore prevents a stack overflow. So each level of the tree can easily be processed
by iterating over the array.

3.2 Advantages and disadvantages of decision trees

A advantage of decision trees is there fast training. The approach presented in this the-
sis is able to train many trees, without any problems and the limits are only set by the
memory space available on the system. The amount of trained trees depend on two things
first on the height of a tree and second on the amount of used data points, because both
have a significant influence on the trainings process. At first the influence of the height is
described. Figure 3.3 shows on the left side the dependency of the amount of trained trees

‘ ‘ : 100 F _
10,000 - ¢ ‘+ amount of trees L

8000 |\ i 80| i

6,000 | | sl |
4,000 |- |

40 |
2,000 |- . |

T
s TN 20 - |
o | | | | * —e— correctness in %
5 10 15 20 5 10 1 50
height height

Figure 3.3: On the left the amount of trees generated in 30 seconds with different heights
for roughly 30,000 points per tree. The right shows the correctness for the
trained trees on the MNIST test set, which will be explained in section 7.1.

14

3.2 Advantages and disadvantages of decision trees

on the height of all trees.

These trees were trained in 30 seconds on the MNIST data set, which is described in
section 7.1. It has 60,000 training data points, 10,000 test points and consists out of ten
classes. Each tree was trained with roughly 30,000 randomly drawn points. The amount of
trained trees reduces quadratically by increasing the height of the trees. This is caused, by
the increase in amount of nodes, which have to be processed. The right term of equation
3.1 shows the memory spaces needed for a tree with a certain height. From that a tree
with height of three needs 168 bytes compared to a tree with a height of 22, which needs
67.1 MB. That means by adding 11 layers, the memory consumption rises by a factor of
399,457.8. However the amount of trained trees is only reduced by the factor of 49.28, due
to the optimized implementation of the trees and the fact that not all leaves of the tree will
be processed in the end. Furthermore in figure 3.3 the amount of correctly classified points
on the 10,000 points of the test set, is illustrated. From this plot the demand for deeper
trees can be derived, because a deeper tree can more easily map the data points to classes.
In particular as the amount of trees used for the prediction is even lower.

Secondly the influence of the amount of trainings point per Decision tree is evaluated.
Raising the amount of training points decreases the amount of trained trees, which can be
trained in 30 seconds. The effect of the amount of trainings point is depicted on the left in
tigure 3.4. Instead of changing the amount of points, the step size over the data is changed.
A step size of 25 means that a random number between 1 and 25 is drawn and added to the
last used element index. This procedure is repeated until the whole data set is processed.
The test were performed on the MNIST data set explained in section 7.1. The left of figure
3.4 shows that the amount of used points does only marginaly influence the number of

4,000 - —

. 91

3,000 |- / h 90.8 -

90.6 |- |
2,000 |- i
90.4 |- |
1000 ¢/) 90.2| |
® —e— amount of trees —e— correctness in %
| | | T T T T : - - I L | |
0 20 40 60 80 100 120 0 20 40 60 80 100 12

step size step size

Figure 3.4: The left figure shows the amount of trees, which could be generated with dif-
ferent step sizes. On the right the correctness on the 10,000 points of the MNIST
test data are plotted. This shows that the amount of trees, rises when the step
size is higher. Furthermore the correctness isn’t effected much by the change in
the step size, because the prediction loss in one tree is covered by simply more
trees.

15

3 Random Forest

correctly classified test points. Even with only 482 trees and a step size of one, the result
is still similar to 3877 trees and a step size of 120, which decreases the amount of points
from 30,000 to roughly 992 per tree. The reason for this is that the loss of information in
one tree is covered by simply more trees. One major disadvantage of a decision tree is
the problem of overfitting. That means that a tree will always try to perfectly represent
the trainings data, which implies that the generalization is bad. There are several possible
solutions to overcome this problem. Instead of always performing a split if possible, a split
can only be performed if some extra criteria are meet. One of this criteria could be that the
amount of points in the resulting leaves must be bigger than a predefined threshold. An
other option is pruning the tree, that means remove splits, which do not perform well
on a validation set, which does not belong to the training set. However pruning is a very
expensive operation and therefore not used in Random Forest. Furthermore the overfitting
of one tree can be ignored, because of the amount of other available trees. This means a lot
of overfitted tree have in combination a good generalization. That can be explained with
the Condorcet’s jury theorem [dC85]. The formula is stated in equation 3.2, where 7' is
the amount of trees in the forest and p the probability that a tree is right. The sum starts
att = 0.57 + 1, because that the is the minimal amount of trees necessary for getting the
majority in a binary setting.

T
p= 3y <(T_T;),t,) (p)'a-p" (32)

t=0.5T+1

If all trees have a probability higher than 0.5, then the result of all trees y is higher than
the probability of the individual [dC85]. This means that for 7" — oo the probability of u
gets to infinity. So increasing the amount of trees gives better results, except the probability
of a tree being right is below 0.5 then the overall probability gets down. However getting
in a binary example below 0.5 means the performance is worse than random guessing,
which should already tell that the classifier does not work. This means in general the
probability of a classifier being right must be higher than the one for a random guesser,
which is defined by L

classAmount *

The approach in this thesis had a different focus than the existing approaches, like the
one from Saffari et al. , where they only used a 100 trees with only a depth of five, which
makes in total only 3200 Decision nodes. In comparison on the same problem this thesis
used 23,600 Decision trees with a possible depth of 35, which makes in theory 810 trillion
decision nodes [SLST09]. So instead of getting the best possible tree this thesis tried to find
as many good trees as possible. The reason for this is mentioned above, because more trees
have a higher probability of getting a better result, even if they are in general worse than a
few better trees.

16

3.3 Deep decision trees

3.3 Deep decision trees

The section 3.1.1 describes a efficient way of storing decision trees in the memory. However
there is one problem with this approach. It is not well suited for trees which are very
deep, because e.g. a deep tree with height of 23 already needs 134 MB. This is unpractically,
because big portions of the tree are not used and therefore memory is allocated without
any benefit. A tree with height 23 has 2?3 leaves, which are roughly eight million leaves.
in a scenario with 60,000 different training samples only 1 of 133 leaves would be filled,
which is very inefficient. This can be solved by omitting a subtree, which is not used in a
particular tree. Such a subtree can only be omitted if the layout of a tree is not arranged in

an array.
O First layer

O o X, e O Second layer
>< X >< Third layer

XXX XXXXXX

Figure 3.5: The layer layout used for the deep decision trees is depicted in this figure. The
tirst layer has only one tree and splits the trainings data in subdata sets. The
amount of subsets depends on the amount of leaves in the tree. For each subset,
which can be split again a new tree is generated and used. For the middle tree
in the second layer the splitting criteria wasn’t fulfilled and no new tree was
generated on the dataset. Furthermore all children from this tree were not used,
which dramatically reduces the amount of used memory space.

In order to still get the advantages of the memory efficient implementation. A combi-
nation was performed in this thesis, by splitting a tree in different layers. Each layer then
consists out of a bunch of trees, which are connected with the leaves of the upper trees. In
the root only one tree is placed and this tree is trained first. After the training, the training
set is split according to this Decision tree. For each split, which contains at least two dif-
ferent classes a new tree is generated, which gets as an input this split. This procedure is
repeated for all resulting trees until the amount of needed layers is met or no data points
are left. This separation can be seen in figure 3.5. Each layer has its own color and consists
out of a bunch of trees, except the first layer, which only consist out of one Decision tree.
The big advantage is that not all subtrees will be trained. The crossed out tree in the middle

17

3 Random Forest

T T T T T T T T T T
factor of more trained trees
200 .
1,500 - :
150 | B
1,000 - s
—e— amount of trees 100 - a
—e—amount of deep trees
500 - -\ 7 50 1 i
—
0 e | 0r .
| | | | | | : ! ! ! ! .
21 29 23 24 25 26 21 22 23 24 25 26
height height
T T T I T 17200 T T I I -]
—.— mem. for a tree » 1 factor for saved memory
2-10° | —e— mem. for avg. deep tree // ’ 1,000 |- |
/
1.5-10° /A 800 | 8
/
1-10° / 8 600 |- .
5108 - 3 400 |
e
e 200 |- 1
0
L L L L L L
21 22 23 24 25 26 21 22 23 21 25 2
height height

Figure 3.6: This figures show the behavior of the Deep Decision trees compared to the

memory efficient approach. The left upper plots illustrates how many trees can
be generated in 30 seconds on the MNIST data set. It shows that the amount,
which can be generated in 30 seconds is much higher with the deep approach,
because of the better usage of the memory. In the right upper corner the fac-
tor between the amounts is plotted. It shows that the amount grows nearly
quadratically, because the memory requirements in the old approach increases
quadratically. This can be seen in the lower plots, which show the memory
requirements for a tree for this problem. The deep trees only have an average
given, because the size depends on the used branches, which depends on the
amount of splits and therefore directly on the data.

of the second layer in figure 3.5 wasn’t generated, because there is only one class left. The
important aspect here is that also all the children of the not used tree are not computed,

which then reduces the amount of needed memory space.

In figure 3.6 four different plots show the advantages of the deep Decision trees com-
pared with the approach from section 3.1.1. The used deep Decision trees uses three deep

layers for all tests between 21 and 26. The left upper plot shows that the amount of trees,
which can be generated on the MNIST dataset in 30 seconds, reduces if the height is in-
creased. This was shown before in figure 3.3, which had the same overall conditions.

18

3.3 Deep decision trees

However in figure 3.6 the height is further increased from 21 to 26, which means 67,108,864
leaves are available in a tree with a height of 26. On the right side of this plot it is illustrated
how much more trees could be trained in 30 seconds with the new approach. The only rea-
son the comparison stops at the height 26 is that the creation of 8 trees in parallel already
takes 38 seconds with a height of 26 in the old approach. To increase it further would in-
crease the amount of time and memory. Furthermore the eight trees with a height of 26
need 8.5 GB of RAM, so generating more than 32 trees is a problem for modern computers.

The line for the amount of deep trees continues till a height of 45. In this settings a Ran-
dom Forest with deep trees with a 45 height would be able to train 1626 trees. Where each

tree has 2%°

leaves, which are roughly 35.1 trillion leaves. In the non-deep approach the
computer would need 562 TB of RAM for just one tree. But with the deep technique trees
can be saved in just 504.2 MB and the training time was just 30 seconds. The graphic in the
lower left corner shows how the memory for a tree of the non-deep technique compares to
an average tree of the deep method. The blue line in the plot has nearly no slop im com-
parison, where as the red curve has a very steep slope, caused by the right part of equation
3.1. For the deep method only an average size can be given, because the size depends on
the performed splits, which change the size of each tree. In the right lower corner the plot
shows how much memory per tree can be saved for the deep decision trees. This shows
that the deep method is useful and necessary if an appropriate height for a problem is

chosen. A higher height results in better results, which was shown in section 3.2.

One problem, which now arises is how the amount of layers is chosen. This can be
solved by training all possible options for 10 seconds and take the configuration which
generates the most trees. This works, because the training of the trees depends on how
much sub trees in each tree have to be generated. If the splitting of the data works well
and the demand for new subtrees is low more trees can be generated, which reduces the
overall memory usage and therefore grants a speed up. The current described approach
saves all subtrees for a layer in an array, to guarantee a fast access. The problem with
this is that if the tree gets sparse the amount of not used trees in this array get high, like
depicted in the third layer in figure 3.5. This can be solved by replacing the arrays in the
lower layers with maps, which only save the existing trees, that can reduces the amount of
needed memory drastically, especially if the trees are very deep. For instance a tree with
a height of 45 and a desired amount of layers of 9, would have a height of 5 per layer.
This means that the last layer could have 2%° trees, saving them in an array would need
roughly 8.80 TB for the last layer, which is not possible on a computer at the moment and
furthermore a lot of the trees will not be used in the end. Therefore it is much better to use
a map for the lower layers. The amount of layers and the amount of so called fast access
layers must be defined before hand or can be determined like the described above. In this
scenario each pair of configuration is compared to the others and the one, which was able
to train the most trees in ten seconds is selected.

19

3 Random Forest

3.4 Online learning

Instead of using an offline approach, which already needs all the data at the beginning of
the algorithm an online approach is presented here, which uses the data in a batch fashion.
This means at the beginning of the training an offline step is performed like described in
the sections before. After that an online update step is performed with a new unknown
labeled data set. At first the new points get classified and all of them which are not cor-
rectly classified form the new update data set. This update set is then added to the existing
training set. Afterwards an online update is performed, where all existing trees are first
evaluated on the old and new update points. This evaluation is then used to sort all trees
of the Random Forest after their performance. Then until the performance on the com-
bined sets is good enough a new Decision tree is trained and tested on the combined set.
If this new tree is better than the worst performing tree of the Random Forest it is added
and the worst one is removed. If the new tree is not as good as the worst performing tree
it is forgotten. This behavior is defined in algorithm 1.

Algorithm 1 The Online Random Forest update

Require: D, R = pretrained Random Forest, Dpew
1: Dot = D + Drpew
2: Rsorted = R.sortTreesAfterPerformance(Dyy)
3: while not converged do
4: thew = R.trainNewTree(D,)) > Train a new tree tpew With Dy
5: ¢ = tnew-predict(D,y) > Get performance of ¢new on all points
> If a new tree theyw is better than the worst tree of the sorted Random Forest then
6: if ¢ > Rgorteq-getWorstPerformingTree().getCorrectness() then
7: Rsorted-removeWorstPerformingTree() > Replace worst tree with new tree

8: Rsorteq-addNewTree(tpew, ¢) > Add with insertion sort

By only adding the tree, which performs best on the combined sets. It is assured that
the old and the new data set are presented in a good way. The online step is performed in
this scenario after 200 points are added. However it could be done iteratively, this means
each new point is evaluated by all trees. If the point is classified correctly and the certainty
for the classification is high enough it is not added. But if one of the criteria is not full
filled then the worst performing tree is selected and a new one is trained. This is possible,
because the training for a single Decision tree is very fast.

Selecting the right approach depends on the problem, if there is more than a few mil-
liseconds time, between the different data points then adding them one by one is possible.
If the frequency is higher, the batch system will work better. With this the training can
be adjusted to the frequency of the incoming points. Some results for this are shown in

20

3.4 Online learning

section 7. The results there show that the online learning approach leads to better results
than the offline approach, because only the good performing trees are kept and the bad
ones are removed from the Random Forest.

21

3 Random Forest

22

4 Gaussian Processes

Modeling a probabilistic correlation between the data and the labels is the goal of Gaussian
processes. In order to achieve this the Gaussian process posterior has to be calculated. It
models the relation ship between the input value and the output values. The assumption
is that similar inputs lead to similar results.

4.1 Bayesian Linear Regression

Before using Gaussian Processes for classification, the regression case has to be defined
and this can be done over the bayesian linear regression. The equation 4.1 defines the
regression for the estimated output values y. In this equation ¢(x) is a vector of non
linear basis function and w is a vector of parameters, which specifies the strength of each
non linear basis function. In this scenario a basis function is a Gaussian. The so called
model complexity is the amount of parameters and basis functions M and states how many
Gaussian functions are used to describe the underlying function.

y(x,w) = w! $(x) (4.1)

To get a probabilistic model each parameter needs a probabilistic distribution, describing
the spreading of the values. The Gaussian prior is here defined over the parameter w as
p(w) = N(w | mg,Sy), where my is the mean and Sy is the covariance. This can now
be extended to equation 4.2 to make the treatment simpler. Here a zero-mean isotropic
Gaussian with a single precision parameter « is used.

p(w]|a)= N(w | 0, a711> 4.2)

The corresponding posterior distribution p(w | t, o, 3) is then given by equation 4.5. Here
the observered data value t is defined by equation 4.3 and therefore S is the precision of
the data noise.

t=y+N(0,87'I) (4.3)

From that the probability for getting the observed data from the real data is derived in
equation 4.4.

pt]y) =N(t|y B7'I) (4.4)

The following equations 4.6 and 4.7 define the update rule for the mean and the covariance.
These equations contain ®, which is the design matrix, the elements are given by ®,,,, =

23

4 Gaussian Processes

Om(Xy), that means ® is a N x M matrix and each column consists out of the results from
one specify basis function on each value of the data set.

p(w|t,a,B8) =N(w|my,Sy) (4.5)
my = BSy®’t (4.6)
Sy =ol+387® (4.7)

The posterior can now be calculated step-by-step. At first the prior is multiplied with the
likelihood for the first data point p(¢ | z, w), which describes how likely a regression value
t for the first point = and the parameters w is. After that a new data point is used and for
it the likelihood is calculated and multiplied with the posterior from the last step, which is
now the prior. This procedure is repeated until all points are processed.

In the end the posterior p(w | t, o, 3) has a sharp variance, if the fitting was successful
and the mean coincide with the mode and represents the optimal parameter set. However
in practice it is more interesting to compute new predictions t* for new values x* then
calculating the parameters w.

P X 6 B) = [Bt [w.x' 8)p(w .0,) dw @)
Pt | X b0) = Nt [m(x) 0% (x) (19)
T (x) = 5+ ()" Syb(x) (4.10)

In order to do that the predictive distribution has to be evaluated, which is defined in equa-
tion 4.8. The left part in equation 4.8 is the conditional distribution of the target variable
and the right part is posterior weight distribution defined in equation 4.5. From that the
two Gaussians can be convoluted, which results in equation 4.9 [Abr72]. In equation 4.10
the variance of the predictive distribution is depicted. The left term represents the noise
on the data and the right term is the uncertainty of the parameters w, because both Gaus-
sians are independent the variance is additive. That means after adding N — oo points
the variance Sy should go to zero and therefore the whole left term. So the whole noise
will solely be generated by 1.

One problem this approach has is that for test points further away from the training
points the confidence can be as low as 371. This is counterintuitive, because further away
from the data the confidence should fall and not stay on the same level. This is caused
by the used localized basis functions such as Gaussians. Further away from them reduces
their influence and therefore only 3~! stays as variance. This can avoided if Gaussian
Processes are used. In equation 4.11 the parameters w, where replaced with the means
calculated in equation 4.6, which leads to equation 4.12. Breaking that down for the indi-

24

4.2 Gaussian Processes for Regression

viduals data points lead to equation 4.13.

y(x,w) = w’ ¢(x) = my(x) (4.11)
= (5SN‘PTt)T b(x) = fp(x)" Sy @t 4.12)
= Z Bd(x)" Snd(x,) tn (4.13)

That shows that at a point x can be calculated by a linear combination of the training set
variables t,,. This means it can be replaced by a function defined in equation 4.15, which
is used in equation 4.14. This function is commonly known as kernel and can then replace
the used basis functions, which is the core idea behind Gaussian Processes.

N
y(x,my) Z X, Xp) tn (4.14)
k(x,x') = 5¢()" Snep(x) (4.15)

4.2 Gaussian Processes for Regression

Instead of using a parametric model like before in the bayesian linear regression, a prior
probability distribution over functions is used. This is in theory an approach, which does
work in infinite dimension, but due to the constrainend amount of data points the calcu-
lation can be done in a finite space. This means in general a gaussian process is defined
as probability distribution over functions y(x), so that the evaluation of an arbitrary set
of data points x1, x>, ...,xy has a joint probability distribution. Important to note is that
the joint distribution is completely specified over the second-order statistic, which are the
mean and the covariance of the joint probability distribution of ¥, y2, ..., yn. In the most
cases, there is no prior information for the mean given, which means that is set to zero. So
a Gaussian process is only defined by the covariance of y(x), which was defined in the last
part of section 4.1, as the kernel of two input vectors, see equation 4.16.

E[y(xi), y(x;)] = k(xi,%;) (4.16)

This marginal distribution p(y) is defined in equation 4.17, where K is the Gram Matrix
with K;; = k(x;,x;). This matrix contains the combination of each element with each other
element in the selected kernel space.

p(y) =N(y|0,K) (4.17)

There are possible kernels, which are defined in section 4.4. The most commonly used
kernel is the ‘Gaussian’ kernel, which is also known under the names Radial Basis Function
(RBF) and squared exponential kernel [DG14, Bis06]. It is defined in equation 4.18, where

25

4 Gaussian Processes

UJ% is the signal variance, which is the noise of the process, 12 is the length scale, a% is the
noise variance, which is the noise of the data and ¢;; is the same as 1(: = j).

1
k(xi,xj) = UJ% exp(—ﬁ l|lx; — XjH2) + 51‘]‘07% (4.18)

Usually a selected kernel express the property that two points x; and x;, which are similar
have corresponding values y(x;) and y(x;) so that these are more strongly correlated than
for dissimilar points. The marginal distribution p(t), conditioned on the trainings data
set x1, X2, ..., Xy can be calculated by integrating over y. In order to keep it simple the
dependency on the trainings data is not depcited here. This leads to equation 4.19.

p(t) = /p(t |y)p(y)dy = N(t]0,K + 5 'Iy) (4.19)

The simple addition of the covariance is possible, because the sources of randomness in
the two Gaussians, namely in y(x) and in the noise of equation 4.3 are independent. So far
only a model of the Gaussian Process viewpoint was build, however the goal is to make
a prediction. This means to calculate the value ¢* for a new unseen data point x*. To find
the predictive distribution p(t* | t), the joint distribution p(t*) has to be defined, where t*
is (t1,t2, ..., tn, t*)T. The joint distribution is again a Gaussian and is defined in equation
4.20.

p(t*) = N(t*]0,C*) (4.20)
c=k(x*,x*)+ 47! (4.22)

The covariance C* of this Gaussian is the combination of the covariance of the trainings
data with the new unseen date point. The matrix is depicted in equation 4.21, where c is
defined in equation 4.22. Here k denotes the vector (k(xi,x*), k(x2,x¥), ..., k(xn, x*)N 7,
which represented the kernel combination of each trainings point with the unseen data
point.

Using all this results leads to the conditional distribution p(t* | t), which is also again a
Gaussian with the mean and covariance given by equation 4.23 and equation 4.24, where
c was defined in equation 4.22.

m(x*) =k (K+57'L,) ¢ (4.23)

o*(x*) =~k (K+57'L,) 'k (4.24)

The biggest computation effort is the inversion of the matrix K + 37'I,, in the middle of
4.23, which has O(N?) computatinally complexity. This limits the amount of used train-
ings data drastically, there is an approach to avoid this problem, which is discussed in

26

4.3 Gaussian Processes for Classification

section 4.8.

4.3 Gaussian Processes for Classification

As described before the main topic of this thesis is classification. This can be done with
Gaussian processes. In the last section the regression case naturally evolved from the
bayesian linear regression. The same holds for the classification from the regression. In
figure 4.1 the dataset from section 1.1 is used and a Gaussian process is applied to it. The
dots in the picture are like before the data points, the background indicates the result of
the algorithm. So the blue area illustrates, where the algorithm is sure about assigning
the class label blue. The same holds for the yellow area and furthermore there is a sepa-
rated grey area in which the Gaussian process can say that there is no further information
available and it is neither of the both classes. This is especially usefully to detect outliners
and unknown classes. The size of the areas depend on the hyperparameters of the used
Gaussian kernel.

In order to do that the posterior probabilities of the target value have to lie in the interval
(0, 1), where as before the target values where on the entire real axis. This can be achieved
by applying a logistic function o(x) on the resulting function f(x) from the Gaussian pro-
cess regression. This results in o(f), which is limited to (0, 1). A logistic function can be
anything, which takes an input value and limits it to the interval (0, 1). A typical logistic
function is the sigmoid function, which is defined in equation 4.25 and depicted in red in

tigure 4.2.
1

o(x) = = (4.25)
The sigmoid function has the advantage that it is smooth and differentiable. This enables
the existence of borders between two classes, in which the Gaussian processes then can
say that there is no further information available, based on a probabilistic model. That is

something, which is very unique for a machine learning approach.

An other logistic function is the cumulative Gaussian ®(z), which is defined in equation
4.26. It is the cumulative distribution function over a Gaussian normal distribution. In
this case the standard Gaussian is used with mean zero and variance of one. The function
is plotted in blue in figure 4.2. The cumulative Gaussian has some advantages over the
sigmoid function, which are elaborated in section 4.8.

O(r) = '/xoo N(z]0,))dz (4.26)

The goal is again finding the predictive distribution p(¢* | t), where t* correspond to a un-
seen input value 2* and each element of t to one input data point x1,x», ..., x . This can be
achieved by introducing a Gaussian process prior over the vector f*, where the elements
are f(x1), f(x2),..., f(xn), f(x*). The relation between one output value ¢ and the cor-
responding output of the activation function f(x) leads to the non-Gaussian process over

27

4 Gaussian Processes

Figure 4.1: The dataset from section 1.1 is used in combination with the Gaussian process
approach, where a standard Gaussian kernel is used. As before the data points
are plotted as dots and behind it the color of the background indicates the class
membership. Around each class center the probability for this class is high,
further away it is low. The grey area around both classes shows that there is no
further information available and both classes are equally probable. The size of
the areas depend on the hyperparameters in the Gaussian kernel.

t* by conditioning on t, where t* is ({1, t2, ..., tn, t*)T. This leads to the Gaussian process
prior for £* defined in equation 4.27, where C is the covariance matrix. The elements of C
are like in the gram matrix the combination of two input vectors in the kernel space. This
is defined in equation 4.28, here any valid kernel is possible. Adding a small value to the
diagonal of C can improve the numerical stability, because the labels in the classification
case do not contain any error, they belong either to one class or an other.

p(f*) = N(£*]0,C) (4.27)
C(Xi, Xj) = k(Xz‘, Xj) (428)
For the binary case scenario it is enough to predict p(t* = 1 | t) and calculating p(t* =0 | t)

by 1 — p(t* =1 |t). The predictive distribution is again the marginalization over the prior
and the likelihood. It is defined in equation 4.29 and in equation 4.30 the likelihood was

28

4.3 Gaussian Processes for Classification

0.50

i I I I
I I I I I

-5 -4 -3-2-10 1 2 3 4 5

8

Figure 4.2: Plots of the used sigmoids functions. The magenta line represents the logistic
function o(x) defined in equation 4.25. The blue line is the cumulative Gaus-
sian ®(x) in equation 4.26. For the standard configuration of the cumulative
Gaussian with mean of zero and variance of one, the curve is steeper than the
one of the logistic function.

replaced by the logistic function o(f*). This shows that the predictive distribution is no
longer a Gaussian and is therefore not analytically tractable.

Pt =116 = [ot = 1] £)p(f") 429)
o =110 = [o(f)p(10dF" (4.30)

There are different approaches to overcome the obstacle of intractability. Different meth-
ods have been used in the past to approximate the integral. A good comparison is done
in ” Approximations for Binary Gaussian Process Classification”, which compared Laplace
Approximation, Variational Bounding and Expectation Propagation with each other. Nick-
isch and Rasmussen showed that the Expectation Propagation algorithm produces the best
results, however the computation time is ten times higher than in the Laplace Approxima-
tion case [KR06, NRO8]. So in this thesis the Expectation Propagation was used, because
its iterative behavior can be combined with the training of the Gaussian Process, so that
the result is a fast and precise algorithm. This is elaborated more in detail in the following
sections.

29

4 Gaussian Processes

()12 = 0.22 (b) 2 = 0.82 (©) 12 =1.32

Figure 4.3: These figures show the influence of the length hyperparameter on the result of
the Gaussian process. The left picture (a) has a low length scale of 0.22, which
is in this case to low to fully grasp the data. There are holes between some
data points, which could be better filled like in the middle picture (b), where
the length scale is higher with 0.8? and therefore a broader area is covered.
However in the right picture (c) the length is too big with 1.3% and the covered
area makes assumptions about the data, which are not necessarily true.

4.4 Kernels for Gaussian Processes

4.4.1 Gaussian kernel

There are many different possible kernels for Gaussian processes. The standard kernel
is the Gaussian kernel previously defined in equation 4.18. It has three different hyper-
parameters, which have to be determined. The hyperparameters determines the strength
between the similarity of two data points. Here similarity is measured as the inverse of
the kernel result. A high similarity corresponds to a low value of the kernel result. In
equation 4.18 the length parameter is inverted, which means that increasing it, increases
the similarity between the points by decreasing the kernel result. So increasing the length
scale enlarges the areas of the assigned classification. This can be seen in figure 4.14, where
the length scale is varying and the noise parameters are fixed. On the left side in the figure
4.14 the length is too low and therefore the similarity between the data points is too low.
However on the ride side in the figure the length parameter is too high and the similarity
between the points is so high, that the areas expands far beyond the knowledge of the data.
Good in this scenario is a length of [2 = 0.8%

The second important parameter, which needed to be selected is the signal noise aj%.
It influences the gradient at the border of the areas, where a low noise value also lower
the gradient at the borders and makes a smoother blending. A higher signal variance JJ%
sharpens the edges except there is no other area at the boundary then it just increases the
area in this direction. In figure 4.4 the influence of the signal variance on the data set
from section 1.1 is pictured. The left picture has a low variance, which blurs the edges
of the areas of both classes and in this case the data is therefore not well presented. In

30

4.4 Kernels for Gaussian Processes

(@) O’J% = 0.262 (b) O'J% = 0.7 (c) 0]20 =212

Figure 4.4: Different signal noise hyperparameters are plotted in this figure. In the left
picture (a) a low signal noise value of 0.262 is used, which makes the edges in
this case to fuzzy and the outer points are not clearly covered. The middle is
the optimal case from before. But in the right picture (c) the signal noise is a bit
too high and the border between the classes is too sharp. Furthermore the high
value increases the area, which is not a desired behavior.

a good representation the trainings data would have a high certainty, because without
further knowledge the data points are correctly classified. The middle picture in figure
4.4 is a good representation, the data points are well classified and further away from the
data the Gaussian process detects that there is no knowledge available. However in the
right picture the signal noise is too high and the edge between both areas is just a sharp line
without any blending and this representation does most likely not represent the real world.
Furthermore through the high noise the area increases and makes assumption about the
spaces, which are not necessarily true.

4.4.2 Gaussian kernel with expanded length

In equation 4.18 the Gaussian kernel is defined, but in a high dimensionally space the
standard kernel does not perform best, because the length parameter scales all dimension
equally. In order to overcome this flaw the length parameter can be replaced with a matrix,
this can be seen in equation 4.31.

1
k(Xi,Xj) = 0'J2c exp(—g(xi — Xj)TM(XZ' — Xj)) + 5@‘0’% (431)

Here M can take different forms, in the standard one it is M = [~2I. But now each dimen-
sion can have its own length scale parameter with M = diag(ly, 2, ..., 1 D)*Z, this makes it
possible to adjust the Gaussian Process more to the data. This can be seen in figure 4.5,
where the upper Gaussian process has only one length scale parameter. This leads for this
data set to a bad representation of the points, which can be seen in the right and left corner,
where the blue points are printed on a yellow background. In the lower picture the Gaus-

31

4 Gaussian Processes

(a) With one length parameter [21

(b) With D lengths parameters diag(l1, l2, ..., lD)_2

Figure 4.5: The influence of two different lengths parameters is shown here. The Gaussian
process in the upper figure has the same length parameter for both dimension
and in this scenario this is not enough for representing the data well. However
in the lower picture each dimension has its own length scale and so the vertical
dimension can have a lower length scale, which represents the data better.

sian process uses two length parameter for each dimension one, which leads to a better
representation. The background of the data points contains the right color, which means
that the classification of this data set would succeed. If the amount of dimension would
increase this approach would get even more useful, because in a higher dimensional space
the abstraction with just one parameter is more difficult and then using more than one
could lead to a better representation. However increasing the amount of hyperparameters
means also that the training of these gets more complex.

4.4.3 Random Forest kernel

One other kernel is the Random Forest kernel, it has some advantages and disadvantages
over the standard Gaussian kernel [DG14]. This approach is based on the idea of the
random partition kernel, which defines the kernel function as described in equation 4.32.
The kernel function compares if two input vectors share the same cluster, which is given

32

4.4 Kernels for Gaussian Processes

by the partition function o(x).
k(xi, xj) = E[1(o(xi) = o(x)))] (4.32)

To prove that this is a valid kernel, the kernel from equation 4.32 can be rewritten to equa-
tion 4.33. Here the expected value was resolved into a unbounded sum.

Fxi) = lim + 3" (o(xi) = ofx;) (4.33)

If now only the inner part of the sum is used to generate a kernel, the kernel values can
only be zero or one. The resulting kernel matrix K, for any dataset with /N elements can
now be generated and can be reordered with the permutation matrices P to the matrix
shown in equation 4.34. It is arranged as a block diagonal matrix, that means that each 1
represents a block of ones, which all belong to the same cluster defined before.

PK,P’ = (4.34)

= o O O

00 O
This block diagonal matrix PK,P7 is a positive-definite kernel, because each block matrix
has only eigenvalues which are non negative and the eigenvalues of the whole matrix are
just the combination of all of the block matrices eigenvalues. That means all eigenvalues
are non negative and so the block diagonal matrix is a positive-definite kernel. Further-
more a permutation matrix does not change the eigenvalues of a matrix and therefore K,
is a valid positive-definite kernel. This means that also the inner part of the sum is a valid
kernel. From that it is is possible to conclude that the kernel defined in equation 4.33 is

a valid kernel, because the linear combination of valid kernels is also a valid kernel. This
proves that the kernel defined in equation 4.32 is a valid kernel.

However the computation of this kernel is not possible in practice, to overcome this an
approximation has to be made, which is then called the m-approximate Random Partition
Kernel. To do that instead of calculating the expectation value, the cluster assignment is
evaluated m-times and averaged, this can be seen in equation 4.35. This corresponds to
a maximum likelihood estimator and is also again a valid kernel, because as before the
combination of valid kernels is also valid kernel.

1
bk xj) =

> 1(o(x:) = o(x;)) (4.35)
o

So in order to construct the Random Forest Kernel a Random Forest has to be trained,
as described in section 3. Then the m-approximate Random Partition Kernel from before
can be used to define a valid kernel on a random forest. The pseudo algorithm for that is

33

TODO: nice
citeation for the
math rules

4 Gaussian Processes

defined in algorithm 2.

Algorithm 2 Random Forest Kernel function

Require: D,y, maxHeight,m
1: F < RandomForest(D,y, maxHeight, m)
2: procedure KERNELFUNC(F, x1, X2)

3: sum <0

4 for i in F.amountO fTrees do

5: h < UniformDiscrete(1, maxHeight)

6 if F'[i].haveSameNodeAt(x1, X2, h) then
7 sum <— sum + 1

return sum/m

The required inputs for this algorithm are the data points D and the corresponding la-
bels y for each point. Furthermore the maximal amount of layers of a tree has to be de-
fined in maxzHeight and also the amount of samples m per kernel evaluation. In Line 1
of the algorithm the RandomForest is generated and also trained, the amount of samples
define how many trees have to be trained. So that for each sample step a single tree is
available. The next line defines the kernel function k(x;,x2) for two data points, it uses
the trained Random Forest from before. Now for each tree F[i] in the Random Forest the
function haveSameNodeAt() is called. It returns true if the two data points x; and x»
share the same node at the height h in the tree. This height is sampled from a uniform
distribution between 1 and the height of the trees in the Random Forest. If the function
haveSameN odeAt() returns true the sum is incremented until all trees are processed. In
the end the sum is divided through the amount of trees, which is then the kernel function
result. That means if the two input values are the same it will return 1, because all decision
trees will decide identically. But if they are different the result of the decision trees will
not be similar and then a value between zero and one is returned, describing the similarity
of this two input values. That this algorithm is a valid kernel can be deduced from the
fact that it describes a m-approximate Random Partition Kernel. The indicator function
in equation 4.35 is represents the function call haveSameNodeAt(), which increments the
sum if the result is true. The last line of the algorithm resembles the normalization factor
L in the equation 4.35. This proves that this algorithm is a valid kernel and can be used
in any Gaussian Process. In figure 4.6 the Random Forest Kernel is used on the data set
defined in section 1.1. It demonstrates the properties of a Random Forest Kernel. One
of them is that it is non-stationary, which means that it does not only depend on the dis-
tance between two data points. This means also that it is a piece-wise constant function,
which can be seen in figure 4.6. The lower left corner is classified with a high certainty
to the blue class, even if there is no given evidence for that and this behavior is valid for
the whole area in the lower left area. An other property is that the Random Forest Kernel
has no hyperparameters, which removes the need for an expensive search of them. This
hyperparameter optimization is in general the most expensive part of the training. The
last property is that the kernel is supervised, which means that the trainings data is used

34

4.5 Informative Vector Machine

Figure 4.6: A Gaussian Process with the Random Forest Kernel is used here on the dataset
from section 1.1. Like before the data points are plotted as dots and behind it
the color of the background indicates the class membership. In contrast to the
Gaussian Kernel the area is not smoothly defined, because the splits from the
used Random Forest are always applied to an axis. Furthermore the certainty
around the points is slightly lower than in the Gaussian Kernel case, where
around the centers the certainty of the classification was one. Important to note
is the non-stationary behavior of the kernel, which means the lower left corner
and the upper right corner belong to the class even if there is no evidence for
that.

to generate the kernel. The most standard kernels are unsupervised and only adjust to the
data over the hyperparameters, where as this kernel is supervised and is trained on the
data. This mean that the kernel can overfit. But the tests run by Davies and Ghahramani
does not show that [DG14]. In summary the Random Forest Kernel is a good alternative to
the Gaussian Kernel and has some unique properties, especially the capability not to train
the hyperparameters, can be very useful in the setting of this thesis. Furthermore it can be
as an online kernel, like described in section 3.4.

4.5 Informative Vector Machine

The section 4.3 describes how Gaussian Process can be used to classify points. One big
withdrawal is that the complexity of the standard algorithms rises cubically with the num-
ber of points. To solve this there are several approaches one of them is called Informative
Vector Machine (IVM), which is a Sparse Gaussian Process. That means that not all points

35

4 Gaussian Processes

have to be used. Figure 4.7 compares the full Gaussian Process to the sparse Informative
Vector Machine. In the right picture all points were used and the computation time there-
fore was comparatively high. The left picture however only used 28 of the data points as
inducing points, which dramatically reduces the computational effort. In order to under-
stand how the Informative Vector Machine works the Expectation Propagation algorithm
is explained first. This way the IVMs naturally expands from the knowledge about the
Expectation Propagation [LSH03].

(a) Gaussian Process approach with all points (b) Informative Vector Machine with only 28 in-
duced points

Figure 4.7: The left figure shows the Gaussian Process result for the simple dataset intro-
duced in section 1.1. The Gaussian posterior was calculated on all data points,
which takes more time than only using a subset of points. In the right picture
the Informative Vector Machine was used, it only uses 28 points as active set,
which reduces the trainings and prediction time dramatically.

4.6 Assumed-density filtering

In order to understand the Expectation Propagation algorithm the assumed-density fil-
tering (ADF) is elaborated first. The predictive distribution defined in equation 4.30 is
intractable, therefore an algorithm like ADF has to be used to make an approximation of
the integral [REM11].

There are different approaches to approximate the area of an integral. They can be di-
vided into deterministic and non-deterministic approaches [Min01]. The deterministic ap-
proaches try to calculate the area of the integral, by using for example a couple of function
values over the integral and interpolate from there the true area. The problem with that
is that in the given case the posterior is sparse and furthermore has high a dimensionality,
both mean that this simple approach is not able to capture the area. More complex ap-

36

4.6 Assumed-density filtering

proaches try to use more than just the function values as information. The other side of
the medal are the non-deterministic approaches, these sample points in the integral and
evaluate them. Good approximators are the Metropolis sampling and the Gibbs sampling
[Bis06]. However they are not used in this setting, because it is known that the integrals
of Gaussian Processes are sparse, which makes it easier just to look at the area where the
action is happening [REM11]. This can be done with a deterministic approach like ADF or
the Laplace’s method. However several paper have already proven that the Expectation
Propagation works better than the Laplace’s method, therefore it is not elaborated here
[MinO1, Bis06].

The assumed-density filtering (ADF) is a fast sequential method for approximating the
posterior p(f | D). Where D is again the combination of the input points x with the corre-
sponding labels y and f are the hidden values. The prior p(f) was defined in equation 4.27
and the joint distribution of f and D for n independent observations can then be written
as can be seen in equation 4.36.

p(€.D) = p(6) [o |) 436)

To apply the assumed-density filtering the equation 4.36 has to be split into simple fac-
tors. This is done in equation 4.37.

p(f,D) = ﬁti(f) (4.37)

These splitting can be done in many different ways. In general it is better to use lesser
terms, since it entails fewer approximations. But each term has to be simple enough that
the expectation can be propagated through. From equation 4.36 and equation 4.37 it is
possible to infer equation 4.38 and equation 4.39.

to(f) = p(f) (4.38)
ti(f) = p(x; | f) (4.39)

The next step is to choose an appropriate approximation to explain the assumed-density
filtering. A spherical Gaussian is used, which is defined in equation 4.40.

q(x) ~ N (my, v, 1) (4.40)

After that the terms ¢;(f) have to be incorporated into the approximate posterior. In each
iteration a new ¢(f) is generated from an old ¢"!(f). The series of ¢(f) is initialized with
one and taking the prior term into account is trivial, because no approximation is needed.
However incorporating the other terms ¢;(f) is more difficult, this can be done by taking

37

4 Gaussian Processes

the exact posterior p(f) defined in equation 4.41.

_ ti(f)av(f)
Jeti(£) gV () df

The KL-divergence KL(p(f) ||¢"“"(f)) from the exact posterior p(f) subject to the ¢(f) is
now minimized, where as ¢(f) is part of the exponential family. This minimization is per-
formed to integrated the terms ¢;(f) in ¢(f). For any exponential family this is just the
propagation of the Expectations, which is just the matching of the moments of the expo-
nential family. In each step a normalizing factor Z; is computed, it is defined in equation
442,

p(f)

(4.41)

7 — /f £(£) g(F) df (4.42)

As an extension the assumed-density filtering also estimates the p(D), which can be calcu-
lated by taking the product of all Z;.

The final assumed-density filtering algorithm is than for the spherical Gaussian defined
in equation 4.40:

1. Init m, = 0, v, = prior, s = 1 (as the scale factor)
2. Each data point x;, updates now the parameters (m,, v,, s) based on the old param-

eters (my, vg\;i, s\i> without the new data point x; with:

m, =m\ + U\iTiXi ' m)
BRI |
\@ 2 \i 2 AT T Y
ve =0y = (7\@) +ri(1 —m)< #) (x mx) (3i —my)
vy +1 d(U;Z n 1)
s=s\xZ; (my,%\cl)

In words this algorithm describes that for each point x; the probability r; of not being
part of the approximation is used to make a soft update to our estimate of f(m;) and
change our confidence in the estimate v,. From this procedure it is possible to conclude
that the order in which the points are processed defines the end result. This can be ex-
plained by the probability r;, which always depends on the current estimate of f and
therefore has a big influence on the order of the points. So the error of the assumed-
density filtering depends mainly in which order the points are presented to the algorithm.
This problem is tackled later in the next section.

4.7 Expectation Propagation

In the last section the assumed-density filtering algorithm was explained, which suffers
under the problem that the ordering of the points is essential to the approximation of the

38

4.7 Expectation Propagation

posterior. To overcome this problem the Expectation Propagation algorithm was designed,
which approximation does not depend on the order of the points.

In the ADF the observation term ¢;(f) is exactly used and then with that the posterior
is approximated. However it is also possible first to approximate t;(f) with some ;(f)
and then using an exact posterior with #;(f). That means the observation term ¢;(f) is just
an intermediate state to an higher term. In order to do that the approximate term ¢;(f) is
the ratio of the new posterior to the old posterior times a constant, which can be seen in
equation 4.43. This ensures that the approximation is always possible.

(4.43)

The approximation term #;(f) multiplied by ¢\!(f) gives the ¢(f), which is as desired. The
important property here is that if the approximated posterior is in an exponential family
than the term approximations will be in the same family.

The assumed-density filtering sequentially computing a Gaussian approximation ¢;(f)
to every observation term t;(f) and combines all approximations #;(f) analytically to a
Gaussian posterior on f. This is illustrated in figure 4.8, where the upper line illustrates
the old already transferred observation terms ¢;(f) to the approximation term ¢;(f) for the
tirst and second element. The third element is the actual element and is the next to be
integrated into the posterior ¢(f). This is done as mentioned before in a sequential manor
for all points.

g*(f)
t1(f) ta(f) t3(f) ta(f) t5(f)
t1(f) ta(f) ts(f) ta(f) t5(f)

Figure 4.8: The behavior of the assumed-density filtering is illustrated here. For each new
observation term ¢;(f) an approximation term #;(f) is made and then these are
analytically combined to get the posterior ¢(f) [Min01]

In the Expectation Propagation however the ordering is not important, because one term
is selected and excluded from the posterior. Then then posterior is newly approximated,
which takes into account the whole context. This behavior is illustrated in figure 4.9, where
tirst all approximation terms have to be determined, that means a complete ADF algorithm
is done, before the EP can really start. After that a term is selected and excluded as can
be seen in figure 4.9. The new posterior ¢(f) can be calculated without it and after that
the approximation term is the fraction between the newly calculated posterior and the old

39

4 Gaussian Processes

posterior multiplied with a constant.

¢"3(f) q\3(f)

Figure 4.9: Instead of the sequential behavior of the assumed-density filtering the Expecta-
tion Propagation uses all points by using the posterior ¢\?(f) without the actual
observation term ¢3(f). By integrating over all the others terms and then ap-
proximating the new term by the difference between the old and new posterior
[Min0O1].

So from that the general EP algorithm can be defined as:

1. Init the term approximations ¢;(f)

2. Compute the posterior ¢(f) from the product of #;(f):

~IL L)
af) = J T ta(£) df

3. Till all #;(f) converge (until the change is smaller than some epsilon):
a) Select an approximation term #;(f) to refine
b) Remove this one from the posterior to get an “old’ posterior ¢\!(f), this can be

done by dividing and normalizing again:

g"'(f) af)

ti(f)

¢) The normalizing factor Z; and the new posterior ¢"“"(f) can be calculated like
before in the assumed-density filtering.

d) Update the approximation term:

B qnew (f)
ti(f) = Zi—
0 qVi(f)
4. Atlast p(D) can be computed by:
p(D)~ [[T at

40

4.8 Informative Vector Machine as Extension of EP

A side note here is that step 3b can also be performed by accumulating all other terms ex-
pect term . This is defined in equation 4.44, however the division is usually more efficient,
than multiplying all terms.

q(f) oc [T 15(F) (4.44)
i

4.8 Informative Vector Machine as Extension of EP

As mentioned in the beginning of this section the Informative Vector Machine evolves
naturally from the Expectation Propagation Algorithm. In order to understand this the
problem of the Gaussian Process for classification has to be revisited. In equation 4.30
the posterior p(f | D) for a new data point was defined. This posterior contains the non-
Gaussian part o(f), which makes analytically intractable. Therefore an approximation al-
gorithm has to be used, this approximation algorithm should ideally preserve the mean
and covariance function of the former. For all functions from the exponential family this
can be done by moment matching, where the parameters of the exponential function have
to be equal. The resulting Gaussian approximation ¢(f), which solely depends on the pos-
terior p(f | D), so that the conditional posterior p(f* | f) for a new point x* is identical to
the conditional prior p(f* | £, D) [LSHT03].

This Gaussian approximation ¢(f) can not be computed analytically. However a para-
metric representation can be found in equation 4.45.

q(f) oc p(f) ﬁeXP(_};(Ui - mi)2> (4.45)

This representation is close to the definition in the Expectation Propagation in equa-
tion 4.36. That means that the approximation ¢(f) can be obtained from the true posterior
p(f* | £) by a likelihood approximation. The factors(p;, m;) in equation 4.45 are called sites
and are initialized with zero. This means that in the beginning the approximation equals
the prior ¢(f) = p(f). In order now to update these site parameters the assumed-density fil-
tering algorithm is applied. So a new data point x; is added, by replacing the approximate
site parameters by the true parameters given from p(x; | f). This results in a non-Gaussian
distribution, whose mean and covariance can still be computed. So it is possible to approx-
imate a new posterior ¢"“"(f) by using the properties of the exponential family and just
match the moments. This update of the site parameters is called the inclusion of i into the
active set I, which can also be seen as the minimization of the Kullback Leibler divergence
defined in equation 4.46 [LSH 03, LPJ05].

KL 19"(0) = - [att)ton(£) ar (4.46)

The connection to the assumed-density filtering can be best seen through the local prop-
erty, which only changes one term at a time by adjusting the posterior to it, this correspond

41

4 Gaussian Processes

to the inclusion step in the Informative Vector Machine.

From that the algorithm can be inferred it starts with setting all the site parameters p;, m;
to zero for all ¢ for which ¢ ¢ I, where I C {1,2,...,n} is the active set and ||I|| = d, with
d < n. A big influence on the result of the IVM is the selection of the active set I, because a
bad selection leads to a bad representation of the feature space and therefore to a poor per-
forming Informative Vector Machine. One of the simplest methods is to follow a greedy
select approach, this can be done by calculating a score function over all remaining points
J c {1,2,...,n}\I and selecting the one, which has the highest score. The heuristic sug-
gest by Lawrence et al. in “Fast Sparse Gaussian Process Methods: The Informative Vector
Machine” measurers the decrease in entropy of ¢(f) upon its inclusion [LSH"03]. This
heuristic called differential entropy score, has the advantage that the posterior variance is
reduced. This can be proven over the reduction of entropy, which is derived in equation
4.47 to equation 4.50. The difference in the entropy is always non positive, because the new
entropy should always be smaller or equal than the old one, which implies that oyc /0014
is always smaller than one, so that it is possible to state 0y < 0414 This can also be seen
as selecting the point, which slices the largest possible section away from the feature space,
which is similar to the understanding of variances.

D =H[¢""(f)] — H[q(F)] (4.47)
D= (%ln(Qﬂeafww)) - (%ln(%reagld)) (4.48)
D= m(2222%25) (4.49)
D= m(‘;"l;") (4.50)

Thus, this heuristic favors points, whose inclusion leads to a large reduction in posterior
variance. The biggest advantage of this heuristic is the fast evaluation of the entropy. The
algorithm 3 defines how the Informative Vector Machine works.

The inputs of the algorithm are the size of the active set d, the labels y from the data
points, which have to be either 1 or —1, the Gram matrix defined section 4.2 and the vari-
ance parameter A of the cumulative Gaussian. In comparison to the sigmoid function
defined in equation 4.25, the cumulative Gaussian from equation 4.26 is simpler to eval-
uate in the prediction case, because there is an analytical solution for it. For the sigmoid
function a sampling would be necessary.

In the initialization of the algorithm 3 the active set I is initialized empty and the inactive
set J gets the indices of all data points. The vector zeta ¢ is set with the diagonal of the
gram matrix, which is for the Gaussian Kernel just the noise variance o2. Line four defines
the bias it depends on the fraction of points belonging to the first class. In the lines six to
eleven in the algorithm the entropy reduction for each point of J is calculated. Important
to note is that in comparison to active learning in line five the label y ; of the j point is used.
This is done for each inducing point & in d, from that the highest entropy reduction can be

42

4.8 Informative Vector Machine as Extension of EP

Algorithm 3 The Informative Vector Machine with a simple point selection

Require: d = nr. of inducing points, K, y, A
LJ={12,...,n},I={}
2 u=0m=0,=0
3 ¢ = diag(K)
4 b=1- (%@miy)) > amountOfOnes(y) returns the nr. of ones in y

5 fork=1toddo

6: forall jin J do
Yj

7: Ch—1j = —F7————
VA2 + i1y
8: Uk—1, = Ch—1,5 (k1,5 + D)
: o Gkl _ 1,2 ~1 ,
9: Gkj = NGr exp(2uk_17j) ™ (up—1,5) > ®(x) is defined in equation 4.26
10 Vkj = Gy (Gkj + Uk—1,jCk—1,)
11: AHkJ = —% lOg(l — Uijk*l,j)
12: ny = argmax AHy; > Index from the point with highest # reduction
jeJ
13: gnk = gk Nk and U?’Lk = Uk Nk
g
14: My, = =k 4 Pop—1,ny
nk v
15 By, =
" 1- Unka—l,nk
16: Sk—1,n, = K.col(ng) — Mk_l.col(nk)T Mj_1 > A.col(i) returns the ith column of A

17: i = Bp—1 t InySk—1,n,,
. T
18: Cr = Cr—1— Unkdlaf;(Sk—LnkSkfl,nk)

19: Append | /v,,, s{_l’nk as new row to M,,_; to get M,

N\ T
20: Add Mk_l.col(nk)T as a row to Li_; and add the column vector (OT, vn,f)

21: Add ny, to I and remove it from J

determined, which is done in line twelve. The following lines update the site parameters
and the matrices M and L, where the L matrix is the lower triangle matrix used later
in combination with vector m to make an prediction. For the whole derivation of the
algorithm 3 see “Extensions of the Informative Vector Machine” by Lawrence et al. [LP]05].

The algorithm 4 shows the prediction procedure of an IVM. It only needs the active set I,
the lower triangular matrix L, the vector m and the bias b from algorithm 3. Furthermore
the parameters d and A are predefined and used again in here. In the first line of the
algorithm 4 the new unseen point x* is presented. Between the third and the sixth line
the kernel values for the unseen point in combination with all the inducing points are
calculated and stored in k*. After that the ;* and o* for the unseen point are calculated

43

4 Gaussian Processes

and in the end the probability for belonging to the first class is returned. That means
that the prediction only requires calculating the kernel between all points of the active set
with the new point and evaluating it with the learned lower triangular matrix, which only
needs O(d) time steps. So the prediction only depends on the amount of selected inducing
points.

Algorithm 4 The Prediction for the Informative Vector Machine

Require: d,m,L,I b, \ > Calculated in algorithm 3
1: procedure PREDICT(x*)
2: k* =0;and m = 04

3 fori =1toddo

4 m;, =m,; +b

5: x; = D [I] > x; is the ith inducing point
6 ki = k(xi,x")

7: = L.solve(k™) > Solve correspond to a forward and backward substitution

v
p* = (m,v)
g

9: *=£k(0,0) — (k*,v)
10: return 0.5 1<I> M—*
' T2 V2A~2 4 20+

4.9 Hyperparameter optimization for the Gaussian Kernel

In section 4.4 different kernels for the IVM were explained, as mentioned there the Ran-
dom Forest Kernel does not need any hyperparameters. However the standard Gaussian
kernel does and the estimation of these parameters, defined in equation 4.18, is explained
here. The first approach estimating hyperparameters on Gaussian Processes is always a
Gradient Descent approach. To do that the marginal likelihood is calculating and derivate
in respect to the parameters. Since the derivation of a long term of multiplications is harder
than the derivation of terms of a sum the log of it is used. So the log marginal likelihood is
defined in equation 4.51, where w contains the parameters of the Gaussian kernel.

n(p(t | w)) = —% In(|K|) - %tTK’lt ~ 2 n(2r) (4.51)

This approach works fine for the toy example defined in section 1.1, by using the deriva-
tive of the Gram matrix in respect to the selected hyperparameter, as defined in equation

4.52.
0

+ lel aK K*l
8WZ'

2 8WZ

But in a more complex setting, where the hyperparameters influence the decision bound-

. 8K>

In(p(t | w)) = —%Tr(K o

(4.52)

44

4.9 Hyperparameter optimization for the Gaussian Kernel

aries and even more the selection of the active set, this approach fails. So that means a
simple gradient descent approach does not work any more. This can be understood by an
example, in which the log marginal likelihood for a given problem like the MNIST-dataset
is tried to optimize. Since the log marginal likelihood In(p(t | w)) is non convex there is
more than one maximum, so the algorithm is started with a random sampling in the three
dimensional search space. And after that a gradient descent approach is used. In this the-
sis the Adagrad approach was used, because there is no need of tuning the learning rate
[DHS11]. It is defined in equation 4.53, the learning rate 1 can usually be set to 0.01 and
the matrix G = diag(g) is just a diagonal matrix of the sum of all old squared gradients
g = > Ow?. The epsilon only ensures that the root is always bigger than zero.

new 77
=w — 0 4.53
w w o W (4.53)

The problem of the gradient descent approach in combination with the informative vector

machine is illustrated in figure 4.10. It shows how the log marginal likelihood behaves for
the hyperparameter optimization of the third number in the MNIST-dataset.

— In(p(t [w))

—200 |-

—400 |-

—600 |-

| | |
0 200 400 600 800 1,000

—800 —
steps

Figure 4.10: Optimization of the log marginal likelihood for the number three of the
MNIST-Dataset in a one vs. all fashion. Following the gradient always maxi-
mizes the log marginal likelihood. However it changes the parameters slightly
and after a few steps the active set is calculated again, which then produces
a jump in the log marginal likelihood. In the first 200 steps the objective is
even dropping, because of the changing active set. Important to note is that
the biggest jumps are generated by the changing of the active set, not of the
actual gradient descent approach.

The Adagrad approach is used and the gradients are subtracted from the randomly sam-
pled best starting position. For ten steps the gradient is followed without changing the
active set and in this ten steps the marginal likelihood always increases. However after

45

4 Gaussian Processes

ten steps the active set is calculated again and in the most cases that changes the used
induced points, which then changes the log marginal likelihood. In figure 4.10 it can be
seen that these jumps are not always going up in the first 200 steps the direction is more
down than up. Important to note is that the big changes in the objective are not generated
by following the gradient, but more of the changing active set. It can be seen that only
very small changes are performed on the log marginal likelihood, since the points in the
ten steps only slightly move upwards. This is behavior is more clearly visible at the end
of the optimization. The problem is, moving with bigger steps along the gradient would
also generated bigger jumps in the log marginal likelihood. So the gradient descent ap-
proach for the informative vector machine on more complex problems does not always
yield a good result. This was also shown in the paper “Fast Forward Selection to Speed
Up Sparse Gaussian Process Regression” from Seeger et al. in 2003 [SWL03]. However this
was just the regression case, where the calculation of the posterior and therefore the log
marginal likelihood is much easier.

Therefore an other approach was used in this thesis, instead of following the unreliable
gradient a sampling approach was used. At first a simple sampling approach over the
parameter space was tried. However finding good parameters by just sampling randomly
takes a lot of computational power. Furthermore the result of the log marginal likelihood
is not used at all. There are many different black box sampler, which utilize the func-
tion value. The one chosen for this thesis is the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES), because it is simple, fast and does not need many evaluations of the
objective function [HO96].

4.9.1 CMA-ES

The standard CMA-ES consists of three steps. First new points are sampled, these points
are then sorted by their fitness, in this case by the log marginal likelihood and after that the
internal state variables are updated. This corresponds to the normal behavior of evolution
strategies (ES), where new candidate solutions are sampled from a multivariante normal
distribution. A new mean of this distribution is selected by recombining the samples and
the generation of new samples is done by slightly moving existing samples with a zero
mean Gaussian. The pairwise dependencies between two points are then used to generate
a covariance matrix. The covariance matrix adaption (CMA) is then used to update the co-
variance matrix of the distribution. This approach would only need the similarity between
two points is needed. In this thesis the euclidean distance between two solutions is used,
to express this relation.

In algorithm 5 the CMA-ES is defined. It starts with the initialization of the used pa-
rameters. Important here is the parameter)\, which is the population size, describing the
amount of samples generated in each iteration. It is the only parameter, which has to be
chosen in the CMA-ES sampling. Except for the o, which defines how big the search space
is. The parameter n is again the amount of data points used in this example. The mean
and the covariance are initialized and the isotropic and anisotropic path are set to zero. The

46

4.9 Hyperparameter optimization for the Gaussian Kernel

Algorithm 5 CMA-ES

Require: \,n,o
I Initm,C=1Lp, =0,p.=0,u=\/2
2: fori=11in p do
3: w; = 1n<,u + %) — In(7)

: while Not terminated do > Need a terminate condition

4

5: fori=1in A do

6 x; = N (m, 02C) > Sample a new point from A (m, 02C)
7

fi = fitness(z;) > Evaluate new point

Sort x to X, so that the first has the highest f;

9: m = Y ¥ w;x; > Use only the j best of the sampling
10: updatePs (pa, olC 2 (m — mold)) > Update the isotropic evolution path
11: updatePs(p,, o0~ (m — myq), [P,) > Update the anisotropic evolution path

12: updateC(C, Pe» {a‘l(xl — mold) ,O'_l(XQ — mold) S e O'_I(X)\ — mold)})
13: updateSigma(o, ||p,||) > Update the step size

14: return m

lines two and three describe how the weights for the mean are calculated. After that the
real optimization starts, at first some samples are drawn from the multivariante Gaussian
and evaluated in the fitness function. After the sampling the samples x would be sorted
in descending order after the corresponding fitness values. And then the first half of them
would be combined with the weights from the beginning to get the new mean m. After
that the two path are refined. There are two paths to get a better grasp of the underly-
ing function, they contain information about how to consecutive steps are related to each
other. The first path is used for the covariance matrix adaptation step and the other path
is used an additional step-size control. This control tries to make sequential movements
of the multivariante Gaussian orthogonal in expectation. This prevents effectively prema-
ture convergence and still it allows fast convergence to an optimum. At last the covariance
matrix is updated. These update steps are done in the lines 10 to 13, the complete update
steps are covered in ”A Restart CMA Evolution Strategy With Increasing Population Size”
by Auger and Hansen [AHO05].

4.9.2 CMA-ES for hyperparameter optimization

The CMA-ES is used to estimate the hyperparamters of the Gaussian kernel. The estima-
tion of three parameters can be very efficiently done with the CMA-ES approach, for that
the extern library ”“c-cmaes” is used. It provides the algorithm defined above in a numeri-
cal stable way [Han14].

In figure 4.11 the population development for the CMA-ES on an IVM used on the data

47

4 Gaussian Processes

2 [T T T]
15] L . ©
) x X x x X X
9 x x X X x
(e X Xxx X
) x X Xx X
g 10 x X x x |
< x
> x)
x X «1. 35 populations
0.5 «, x 02. 35 populations ||
x 3. 35 populations
* 44, 35 populations
| | I I
0.5 1 1.5 2
length

Figure 4.11: The population development of the CMA-ES for the example from section 1.1
is shown in this figure. The red circles depict the first 35 population samples,
in blue the second 35 populations are illustrated. Each population consists out
of five samples. The area of the bluesamples is already much smaller than the
initial samples. This behavior is the same for the circles in green and orange,
which are the last two groups of populations.

set defined in section 1.1 is shown. The first 35 populations are sampled in red, these cover
the whole search space. Each of the populations consist out of five samples and an update
step as described in algorithm 5. In the next 35 population steps the area covered by them
is already much smaller, the samples of it are depicted in blue.

Figure 4.12 shows the development of the objective function. The points are again sam-
ples of the CMA-ES and the color indicates the objective function with a linear scaling,
where as the yellow dots have the worst objective value and the blue ones the best. The
background is calculated by a k-nearest neighbor search. In figure 4.12 a k of seven was
used and it illustrates, which values the background could have at this positions. The fig-
ures 4.11 and 4.12 indicate the fast convergence of the CMA-ES for the hyperparameter
optimization for the Informative Vector Machine.

4.10 Enhanced error measurement

The CMA-ES for the hyperparameter optimization relies on the quality of the log marginal
likelihood, which was defined in equation 4.51. However the log marginal likelihood does
not always yield to the best result. This can have several reason. One of them could
be that the best solution lies inside of a field of unattractive samples. An other could
be that the log marginal likelihood is low, but the representation of the data is not the

48

4.10 Enhanced error measurement

variance

0.6 [
0.4

0.2

().‘2 04 06 08 1 1.2 14 16 1.8

Figure 4.12: The error term for the samples of the CMA-ES is plotted here. A linear scaling
is used, to show how the search space is processed, where yellow is the worst
value and blue is the best. The background is the combined value of the k-
nearest neighbors, where k is seven in this image.

best possible. This can be seen in figure 4.13, which shows the result of the optimization
on the basic log marginal likelihood, all values are classified correctly. But the average
probability belonging to the blue class is 0.6034 and the average probability for the yellow
class is 0.5604 in this image. In a perfect trained model it would return for both an average
probability close to 1.0.

This means the log marginal likelihood, can be further improved. In order to do that
this thesis combined the log marginal likelihood with the misclassification error on a test
set. This is defined in equation 4.54. To compare this values it is necessary to divide the
log marginal likelihood by the number of inducing points, so that there is no correlation
between the amount of points and the result. That means in the beginning of the optimiza-
tion the log marginal likelihood is optimized, because in the beginning the average error
for the prediction of the test set is random and will be around 0.5. The average error is
calculated by predicting for each data point the probability, that it corresponds to the right
class. At the end the term is multiplied by 100 to make it more comparable to the error.
The value 100 and the division by d are values, which were defined by experimenting.

1 100 .
Cnew = In(p(t|w)) + - Z 1—ply; =vi | xi,t,w) (4.54)
=1

log marginal likelihood misclassification error

One further step is to expand the misclassification error in a binary setting to equation 4.55.

49

4 Gaussian Processes

Figure 4.13: One possible result for the informative vector machine if the log marginal like-
lihood is solely maximized. All of the points are classified correctly. However
the over all certainty is low.

In this the misclassification rate is calculated for both classes(—1, 1) and then the average is
computed. Here m, is the amount of points of the class 1 and m_; is the amount of points
for the other class, with m; + m_; = m. The average avoids that a unequal share of the
classes leads to a wrong result, for example the case m; << m_; would favor the correct
classification of the —1 class, but would ignore the classification for the 1 class. This can
be expanded even more, by adding a weight value 6 to the formula, resulting in equation
4.56. Instead of just combining both rates a weighting between them can be chosen. In
order to avoid the favoring of a result, in which the predictive distribution always returns
a high probability for elements which belong to the 1 class and a low probability for the
elements of the —1 class. In this case the weighting could favor the —1 class more so that
the training optimizes both at the same, without disregarding one of the terms.

1 . 1= .
Cavg = 2_7nl i:1(1 _p(yi =1 | Xivtaw)) + m ;(1 _p(yi =-1 | Xivtvw)) (455)
1 1 s
av 0) = — 1-— =1 i b, e ee— 1-— ;k:_l i t,
cavg(0) = - i:ZI(Py} = 1% 6. W) + v — z_:1(p(y | %i,t,w))

(4.56)

This improved error measurements furthermore can be used later in the online evalua-
tion, because already an evaluation of the Informative Vector Machine was performed and
should be used at as many points as possible. By doing so the amount of reevaluation can

50

4.11 Improved selection of the active set

be reduced.

4.11 Improved selection of the active set

In figure 4.14a the predictive distribution of the Informative Vector Machine was shown.
The selection criteria for the IVM was defined in section 4.8. A drawback of this simple
approach can be described with the help of the figure 4.7b. The right upper corner of the
image does not contain any inducing point, which means this area is not that well repre-
sented. But at the border a lot of inducing points are used, which means that the selection
criteria does not always find the best representation. Furthermore the representation does
focus too much on finding a separation to other data points and not a separation to non-
data. Figure 4.14b contains the Informative Vector Machine with an improved approach

(a) With just the entropy as selection criteria (b) With the improved selection criteria

Figure 4.14: Both pictures contain an IVM with 28 inducing points. However in the left
picture the original selection criteria from Lawrence et. al was used [LSH"03].
In the right picture the result of an improved version is shown. This approach
suppress points which are too similar to points from the active set, which can
then later be used to reduce the number of points.

for selecting the next point. It results in a far more spread representation of the data points,
which does not only rely on representing the border well. This can achieved by suppress-
ing points, which are similar to points from the active set. The improved selection criteria
is defined in equation 4.57.

HOW (x) = H(x) — 3 Kl x) H (x) (4.57)

L . . I X
original information gain e weight

51

4 Gaussian Processes

The new selection criteria consists of maximizing the new information gain H"*"(x) for
points, which are not in the active set J. The improved information gain is the old in-
formation gain minus the weighted sum of the information gain of the active set. The
weighting decides how much a point of the active set I influences the information gain of
the current point x. Using the kernel is the natural choice, because it already provides an
excellent measurement of the similarity between a new point and the points of the active
set. It is also important to note, that the results of the kernels do not have to sum up to
one, because only the maximum for %" (x) is important. The overall maximum stays the
same if all points of J are punished in the same way This can be assumed, because the
used kernels are valid Mercer kernels [Mer09].

In order to compare the old with the new selection criteria a binary classification was
selected. The MNIST dataset was used, it is described in section 7.1. In this example the
handwritten zero was trained against the rest. Both approaches were trained on all 60,000
points of the MNIST training set and were tested on the 10,000 test data points. The active
set I has a size of 800 in both cases. Table 4.1 shows the results for the new and the old
approach. The two rows show the results for the old and the improved approach. The
amount of correctly classified points rise dramatically with the improved selection crite-
ria, because with the original one the amount of inducing points is not enough. This can
be seen in the first column of the table. However the second column shows the average
time an optimization step for calculating one IVM for a new hyperparameter configura-
tion needs. By using the improved approach the time needed for an fast IVM step goes
up. Furthermore the times for the original approach vary far more than for the improved
approach. With the original method wrong parameters need around 50 seconds, better pa-
rameters in comparison only need around 30 seconds. But the amount of good parameters
is very low in the original method, so more sampling steps are needed and furthermore
the best result isn’t as good as the one from the improved approach. Both IVMs only check
randomly around 200 points for choosing the next inducing point and not all of J. This
can be achieved by choosing a random number between 1 and 100 and add this to the cur-
rent index. This means that in general around 200 points are checked. By doing that the
speed can dramatically improved otherwise the training would need around 20 minutes
per optimization step. Checking only 200 points is not as good as checking 60,000 — ||I|],
but the influence is not as strong and the training can be done in manageable time. After
the optimization of the hyperparameter the whole dataset is used, to choose the best pos-
sible active set I. The last two columns show the recall for the original and new selection
criteria. The original method does not capture all zero numbers and misclassify some of
them, where as in the new method the recall for both is equally high and therefore a better
splitting was found.

52

4.12 ADE EP and the active set

correct time for IVM Recall for 0 Recall for rest
classified optimization
Old approach | 91.27 % 45.21 sec 90.3750 % 99.3212 %
New approach | 98.39 % 53.80 sec 98.4694 % 98.3814 %

Table 4.1: This table compares the original proposed approach from Lawrence et. al with
the improved approach presented in this thesis [LSH"03]. It shows the advan-
tages of the new method in comparison to the original method on a binary clas-
sification task on the MNIST dataset. Here the handwritten zero was trained
against the rest.

4.12 ADE EP and the active set

The Expectation Propagation has one major advantage over the Assumed Density Filter-
ing. The approximation of the EP does not depend on the order of the points, which is
a drawback in the ADFE. However through a good selection approach this drawback can
be reduced to a point where the difference to the Expectation Propagation algorithm gets
small. This could be achieved by different factors the first one is the improved selection
criteria explained in section 4.11.

Additionally instead of selecting always the point with the highest reduction in entropy
independent of the class. The point with the highest information gain, which also balance
out the classes in the active set I can be used. This means the next used class cpext can
be calculated with equation 4.58. For the first inducing point (||I|| = 0) a random class
is chosen. For all points after that the amount of inducing points belonging to a certain
class is compared to the desired fraction v for the 1 class. It is defined in equation 4.59.
The desired fraction for the 1 class in the active set I is the fraction of the data set, which
belongs to the 1 class. In order to avoid that the fraction gets too small it is averaged with
0.5. This helps in situation where not many data points are used for the class 1. The norm
of a set || D|| returns the number of elements and the amount of points in a set of the 1 class
is D],

lor —1 if[|I||=0
. [1T]ly
1 else if —~ >
Crext = TR (4.58)
-1 else if 1Ty >1—wv
1]
1Pl 1)
V== o (4.59)
2(1Dl 2

Instead of using the Expectation Propagation algorithm after the Assumed Density Filter-
ing. It is also possible to use another ADF, where the active set I is fixed and the points
from the active set (x; with i € I) are processed in a flipped order. Without the search for

53

4 Gaussian Processes

10 + -
0 - |
710 - .
—eo— 1 class
—o— —1 class
| | | | I I

0 20 40 60 80
points

100

(a) Result for the latent function f for all
points of the active set I
10 [T I T -
—e— 1 class
—o— —1 class

0 20 40 60 80
points

!
100

(c) Difference between the normal and the
flipped result for the latent function f

T T
10 |
O -
10}
—eo— 1 class
—o— —1 class
I I | | |

l
0 20 40 60 80 100

points

(b) Result for the latent function f for all

points of the reversed active set I
T T T T T

10 - a

—eo— 1 class
—o— —1 class

! ! : ‘ \

0 20 40 60 80
points

100
(d) Result for the latent function f of the com-

bination of the original and the reversed
points of the active set I

Figure 4.15: This four plots show the different results for the latent function f after the
training. They have different colors for the different classes. The 1 class is red
and the —1 class is blue. The left upper figure shows the result for the initial
training of the ADF. The picture in the upper right shows the result for the
reversed active set I. In the lower left the absolute difference between both is
plotted and to the right of it the combination of both is illustrated.

the active set the calculation of the Informative Vector Machine is ten times as fast, which
means this does not influence the trainings time. However the calculation of the flipped
active set is not always possible. If it is possible the latent functions are combined with the
values from the other order. This is visualized in figure 4.15. The upper left figure 4.15a
shows the latent functions result from the ADF on the example from section 1.1 with 100
inducing points. It shows that the latent functions for the first values varies the most. This

54

4.13 Multiclass scenario

is caused by the unstable posterior estimate from the ADF and the bad selection of the first
values, because the selection criteria depends on the already seen points. The right upper
tigure 4.15b contains the result of the latent functions for the reversed active set. In order
to compare both the order was flipped for presentation purposes. Again the last points in
this figure, which were selected in the first iteration of the IVM nearly randomly, produce
the most noise. The difference between the normal and the reversed is plotted in the lower
left figure 4.15c. At the beginning and at the end the values are the most different, which
can now be smooth through the combination of both results. The combination is shown in
figure 4.15d, it reduces the overall noise.

With this approach there is no need for the expensive Expectation Propagation, which
then makes the training of the Informative Vector Machine by a factor of seven to ten faster.

4.13 Multiclass scenario

In the sections so far the binary case was covered. This means only two classes were used,
however the most problems in machine learning consists out of more than two classes. In
order to achieve a multiclass algorithm between two approaches can be chosen.

The first approach is to expand the Informative Vector Machine to a multiclass approach,
where there are more than two classes(—1, 1). One advantage is that the computation can
be done in a block matrix fashion. However the disadvantage is that the inducing points
have to be split through the existing classes, which decreases the amount of information
per class. This can be solved by increasing the amount of inducing points nonetheless the
computation time grows quadratically with the amount of inducing points. Furthermore
the kernel can now only carry one set of hyperparameter, which decreases the effectiveness
of the kernel. Therefore this approach wasn’t used in this thesis.

An alternative to this is using instead of one giant Informative Vector Machine, several
small binary trained IVMs. These are trained in a one vs all fashion, this means in a sce-
nario with C classes, C' IVMs are trained. Each of them gets its own class and is trained
against the other C' — 1 classes. These IVMs then have through the training process their
own best hyperparameter set and can therefore better express the difference between this
class and the rest of the classes. The biggest disadvantage of this approach is that if one of
the IVMs can not find good hyperparameter and always returns a probability of one for a
point belonging to its class. Then the whole result is bad. The reason for this is that each
point gets the class from the IVM with the wrong hyperparameter.

So in order to get good results, the parameters of all sub IVMs have to be trained care-
fully as shown in section 4.9.

55

4 Gaussian Processes

56

5 Online Random Forest with Informative
Vector Machines

The last two chapters described two different approaches to get a solution for a classifica-
tion problem. The Online Random Forest is a fast and adaptive learning procedure. The
Informative Vector Machine builds up a full probabilistic model instead of estimating one,
but it can’t handle big data sets. In order to get a better algorithm both algorithms are
combined here. The resulting algorithm can handle big streams of data and still builds up
a probabilistic model on the data.

The combination of both can be achieved by using the Random Forest as a partition
approach of the input data set. That means that the Random Forest splits the data set
in sub splits. Then a multiclass IVM is used on the resulting splits of data, which are
smaller than the complete data set. This reduces the points used in the IVM approach and
furthermore improves the results of the splits of the Random Forest. This idea is a basic
one in computer science and is known as divide and conquer. The reason for that is that the
IVM can not handle big amounts of data, because the calculation of the kernel on so many
elements takes too long. However after the problem is split in some smaller subproblems
IVMs can be used to find a good solution for it. In theory the Random Forest should be
able to classify all training points, as long as the information is given in the data. However
through limitations like the memory space or trainings time the optimum can not always
be reached.

The Random Forest with the Informative Vector Machine is used in figure 5.1. In the
upper part of the picture are four datasets illustrated. There are two yellow classes, which
are plotted as stars and two blue classes, which are represented as circles. The assumption
is that similar shape and color means that the classes are harder to separate and that the
classes it self represents something similar. This could be for example in a classification
setting for pictures, that the yellow ones are animals like cats and dogs and the blue ones
are tools like a power drill or a screwdriver. Both classes have similar features like the fur
for the animals and plastic on the tools. The Random Forest is now used to separate the
color and shape structure of the problem. In figure 5.1 this is shown by a black line, which
resembles a Decision tree with just one Decision node. Both of the split datasets are then
further processed by the Informative Vector Machine. The result of that is shown in the
lower part of the picture. As before the background of the image shows the membership
of belonging to one of the classes. Furthermore for a better separation the lines for the
different probabilities were drawn too, where as the line in the middle shows the points,
which have a probability of 0.5 belonging to one of the classes.

57

5 Online Random Forest with Informative Vector Machines

Figure 5.1: The upper part of the figure shows a data sets with four classes. Two blue ones

and two yellow ones, each pair is kind of similar. In this example only one
decision tree with one node was used. The separation generated by this tree is
represented by the black line between the four sets. On the left and the right
set an Informative Vector Machine is now trained and the result is shown in the
lower part of the figure. The decision boundaries for different probabilities are
drawn in too. Both approaches combined makes it possible to separate these
four data sets.

58

5.1 Online learning

5.1 Online learning

In order to make this whole approach online, first an offline step has to be performed. In
which the first Random Forest is trained like described in section 3. After that the points
are separated after the prediction of the Random Forest. If now all points are classified
correctly then the algorithm has finished. However this is only the case if the dataset is
small or too simple for this online approach. In an usual application not all points are clas-
sified correctly and the points, which belong to the same predicted class are combined and
given to a multiclass Informative Vector Machine. This combined points consist of many
samples of the true class and the points, which were classified by the Random Forest as
this class label. These wrong classified points are in general outliners. So the trained Infor-
mative Vector Machine is mainly trained with the true class and some outliners to make
the borders of the class clear to the algorithm. So that if a new point comes in the Random
Forest can first decide, which Informative Vector Machine should be used. Afterwards the
right IVM tells then if the points belongs to this class or not.

After this offline step has be done the approach get a new batch of data, which is first
classified by the Random Forest and then the points are tested on the Informative Vector
Machine. If the amount of correct values fall under a certain threshold, the Informative
Vector Machine is trained again with the same hyperparameter. If the final result is then
above the threshold the next Informative Vector Machine is evaluated until all of them are
processed. However if one of them does not get above the threshold after the retraining
the hyperparameter are trained again, which takes far for my time and can be considered
as an offline step in the online learning. If the approach is used in an online fashion, where
the prediction shouldn’t be stopped, then the IVM could optimize the hyperparameter in
a separate thread or could do that at later point.

However training of this approach is difficult, because of the unstable behavior of the
Informative Vector Machines on the predictive class data sets.

5.2 Biggest challenge

From the explanation of the Online Random Forest with Informative Vector Machine the
biggest challenge can be deduced. A Random Forest separates the data set into different
subset, which are most likely not pure. This means each predicted class contains some
values, which are not from the true class. These few points, which classified incorrectly
are mostly outliners, which are already in some way similar to the true labels. Separating
these points is therefore especially difficult. That also means that the selection of the hy-
perparameter is more challenging than for a usual problem, because these outliners could
miss the necessary information in their feature vectors to classify them correctly.

59

5 Online Random Forest with Informative Vector Machines

60

6 Implementation Details

6.1 Online learning

In order to get an easy to use and simple designed online learning approach. The under-
lying classes have to be designed in way that from the beginning the data is a container
which supports online updates.

In order to do that a class was designed, which implements the observer pattern [Gam95].
In which the online storage is the subject an each learning approach is an observer, which
gets notified if any change on the storage is made. These notifications in general contain
an add event. With this information an online approach like the Online Random Forest
can then reevaluate their result on the new set. From that the Random Forest can consider
if a new training is necessary. The great thing about the observer pattern is that an append
to the existing array is enough to trigger the whole background update of the model. This
is implemented in all existing models and combinations in this thesis. That means the
same Online Storage can be used in an IVM and a Random Forest and both of them would
be start their training if necessary, after the append function was called. This procedure
makes the algorithm easy to use in an online scenario, because the algorithm has the nec-
essary structure to update its own during the arrival of new data. Otherwise the user of
this approach would always have to trigger the training by himself and have to plan in
advance when an online step is performed or has to decide in which intervals an offline
training step is necessary.

6.2 Thread Master

In order to guarantee that the learning is done online and as fast as possible, some control
mechanisms have to be in place to ensure that the right thing is learned at the right time.
For that each training and prediction step is performed in a single thread. The execution of
this threads are controlled by the so called Thread Master. It decides, which training step
is more important than an other.

This problem arises through the fact that in this thesis several approaches where com-
bined. The combination of the Online Random Forest with the Informative Vector Machine
leads to a splitting in the dataset, which changes the requirements for the IVMs during the
training. In this section the focus is more on the processing of the problem than on the
original splitting. As mentioned before the splitting of the input data set is done by the
initial training of the random forest, where as each available core on the machine is used

61

6 Implementation Details

for the training of the trees. This can training process can be easily separated into mul-
tiple threads without any problems. It would be even possible to train that on different
machines and just combine the resulting trees in a new forest. This is possible, because the
training of one tree is independent of the rest of the trees. In the case that only an Online
Random Forest is used, there would be no need for a Thread Master.

But in combination with the Informative Vector Machines the simplicity vanishes. If the
amount of points in a split of the trainings data generated by the ORF is high enough and
has furthermore enough samples, which where classified wrong. A multibinary IVM is
generated with this dataset, which adds a new thread to the Thread Master. This multibi-
nary IVM then itself generates binary IVMs if they are needed. In this thesis the necessity
for such a new binary IVM, was determined by the amount of available points in the data
set of the corresponding class. In a multiclass scenario with several classes the amount of
threads can grew very fast. Therefore it is important to manage the order of execution of
these trainings threads. At first they are sorted by priority, the initial training of the Online
Random Forest for example has a higher priority than an following IVM training. The rea-
son for this is simple the first offline training has to be completed before any IVM training
can be started.

After the offline training of the ORF is finished the training of the Decision Trees is done
in parallel to the IVM. In order to decide, which thread runs next the attraction for a certain
thread is calculated with the formula given in equation 6.1.

M +c if DPmaz > Pmin
Pmaz — Pmin
attr(c,p) = (6.1)

c else

The attraction consists of the amount of correctly classified values ¢ in percentage and
the amount of used points p in this thread. Without further knowledge the assumption
is that the amount of correctly classified points is as important as the share of the used
points. So this means py;, is the minimum amount of points of any running thread at
the moment and py,,q, is the maximum of amount of points of any running thread. If all
running threads have the same amount of points just the correctly classified share is used.
The Thread Master checks ten times per second if the running configuration of threads is
the best to go. If one of the waiting threads has a lower attraction value than one of the
running threads it is replaced. To avoid that the threads are changed to often a certain
amount of time is waited until a thread can be put on the waiting list again. In this thesis
each thread was always guaranteed to train for at least two seconds. For a smooth and
controlled running of the Thread Master each new thread got an Information Package,
which needed to get live updates from the runnings threads. So that the Thread Master
can make an informed decision on the actual state of the system.

62

6.2 Thread Master

6.2.1 Multithreading

In order to provide a fast and dynamic algorithm the whole training and update process
has to be parallelized. In this thesis a computer, which supports multithreading and which
can run up to eight threads in parallel, is used.

Online Random Forest Then in the Random Forest approach this means that eight trees
can be trained at the same time. This is possible, because the training of a single Decision
trees does not depend on the training of an other tree. The biggest problem for training
decision trees in parallel is to guarantee that the used random number generators are de-
terministic. So that each execution with the same random seed leads to the same result.
This can be solved by using a different random generator for each thread. So in the case
that the same amount of trees is generated in each thread then the resulting trees should
all be the same. However if the a few thousands to million trees are trained and in the end
the training is ended. It can happen that the amount of trees generated by a single thread
vary and therefore the result changes slightly. To avoid this a fixed number of trees in each
thread can be calculated, to achieve a complete deterministic learning approach.

For the online update this process gets more complicated, because all threads work on
the shared list of Decision trees, which is sorted after their performance. So adding and
removing have to be synchronized, this was implemented by an Insertion Sort. This means
a tree is added by walking over the list of trees and adding it in front of the first tree, which
performance is better than the one newly generated. This adding operation takes in the
worst case O(n), where n the amount of trees in the list is. To speed up the whole process
even more the initial sorting process of the trees on the new combined set can be done in
parallel too. At first a eight threads are started, which first split the existing trees evenly
under one each other. After that each thread evaluates the given trees for the combined
data points and then the list are combined with a merge sort algorithm.

Informative Vector Machine The steps of a binary IVM can not be easily parallelized,
because the assumed-density filtering is used and each approximation directly depends
on the result of the last iteration. However for a new batch of data important points could
be calculated and these are then added to the approximation. This is not done in this
thesis, because the recalculation time of only a binary single Informative Vector Machine
with known hyperparameters is fast.

63

6 Implementation Details

64

7 Examples

In order to verify the implemented algorithms different commonly known datasets were
tested.

7.1 MNIST

One of the most commonly known datasets is the MNIST dataset [LBBH98]. It contains
handwritten digits, which can be seen in figure 7.1. There are 60,000 training images and
10,000 test images. Each class has a similar amount of pictures in the training and test set.
A picture consists of 28 x 28 pixels, where each pixel is a grey value from 0 to 255. These
pictures are then transformed into a column vector and this vector with 784 dimensions
is used as an input vector. However it is important to note that through the vectoriza-
tion some local information of the picture is lost. Nonetheless the presented approaches
achieve good results on this dataset.

000D 000000000020D000
o B X b 3Nl Bk Xl 2o
L224+42222283232223%2
33333233%3333230%%3833%323
Y944 4UYYQYYY I SYYE] 4947
¢5E55§55575S558565588555¢5
bbbibbelbeCbeeobtlbévé
r A e e B I
PECETICBLEBYSTPLIEBOYK
\N?997299217999999499%49
Figure 7.1: This picture shows some random handwritten digits from the MNIST dataset

[Eic14]. All of them have 28 x 28 pixels

To reduce the amount of processed data, these vector are filtered beforehand and all the
dimension which don’t carry any information are removed. Figure 7.2 shows in black all
the pixels of all images, which don’t change their value in any of the 60,000 training images
and are therefore removed from all the training and test vectors. In grey the used pixels
are illustrated. These procedure reduces the amount of dimension from 784 to 717, which
reduces the memory usage from 439 MB to 401 MB. Each MB which can be saved reduces
the trainings time. The data is clamped to the interval from 0.0 to 1.0, so that the kernel
evaluation in the Informative Vector MachineA case is easier.

65

7 Examples

-

L J

Figure 7.2: The black pixels shows the values of the MNIST images, which never changed.
These 67 black pixels are therefore removed from the vectors. The grey areas
illustrates which part of the images is later used in the algotihm.

7.1.1 Results for the Random Forest

The Random Forest has short training times. Table 7.1 shows the result for the test set
in a one vs. all scenario. The amount of trees were limited by the trainings time. The
trainings time was set to 30 seconds and the height was set to 35, which means the Deep
Dynamic Decision Tree was used. In general around 800 trees were trained. The first row

| Class |0 1 | 2 |3 4 5 |
Error: 0.004 0.0027 0.0107 0.0123 0.0089 0.0122
OC: 0.0541 0.084 0.0483 0.0297 0.0259 0.0173

uc: 0.3805 0.2300 0.4985 0.5730 0.5320 0.5522

] Class \ 6 \ 7 \ 8 \ 9 H Avg \ Var ‘
Error: 0.0061 0.0099 0.0154 0.0143 0.00966 0.00001
OC: 0.0613 0.0621 0.0210 0.0570 0.04607 0.00042
uc: 0.3843 0.4515 0.6336 0.5588 0.47944 0.01291

Table 7.1: The results for the binary case, one vs. all are shown here. The error is shown
in the first row and the second and third contain the over- and underconfidence
defined in equation 7.1 and equation 7.2.

of both tables contains the number of the handwritten digit, which was trained against all
other classes. In the second row the overconfidence for the correct classified is shown. The
overconfidence is defined as one minus the average entropy over the wrong classified ones
[MTC15]. A value close to one would mean the approach is sure about the wrong classified
ones. In this case the value is close to zero, which means the wrong classified ones can not
be ordered to one of the classes. The last row shows the underconfidence, which is defined
as the average entropy over the correctly classified points [MTC15]. A value close to one
would mean that the prediction is correct, however the predictor is uncertain about the
result. In this scenario the approach is not that sure for correctly classified points. The
over- and underconfidence o and u are defined in equation 7.1 and equation 7.2 [MTC15].
The average of the whole table 7.1 is written in the lower table in the second last column,

66

7.1 MNIST

on the right from it the variance for this data is printed.

DY L(y; # vi)(1 — H(x:))
>or L(y; # vi)
Y 1(y; = yi) H(xi)
i Wy = i)

(7.1)

(7.2)

The multiclass performance was measured too. In order to avoid overfitting the data
was trained in an online fashion, which was described in section 3.4. The 60,000 data points
where split into 10 sets of data and each of them were presented to the Online Random
Forest. For the first data set an offline approach was chosen and it generated 2,002 trees
with a depth of 35, which lead to a perfect fitting on the trainings data. That means each
sample of the 10,000 points could be matched with the corresponding class. However on
the test data only 91.84 % were classified correctly. This can be seen in figure 7.3. It shows
the percentage of correctly classified points on the 10,000 points of the test data set. It
was evaluated after adding a new batch to the already used training set and retrain the
decision, which performed poorly on the new data points. By only adding the wrong
classified points to the trainings set the result on the test set tends to go upwards after
each iteration. However this must not always be the case, in this example each training
steps increases the accuracy on the test dat set. So a trend is clearly visible and therefore
using an online approach to train the trees, improves the overall result to an overall error
of 0.0382. The average trainings time for a new batch is 90 seconds.

96 - -
95 -
g
g o4l .
S
o
93 -
21 —e— correctly classified in % ||
| I I I I
2 4 6 8 10
splits

Figure 7.3: The result for the correct classified points on the 10,000 points of the test data
set is illustrated in this figure. It is visible that by adding the wrong classified
points of the new batch to the trainings set the amount of correctly classified
points on test rises. However that must not always be the case.

The Random Forest is not as good as the best state of the art approaches. However

67

7 Examples

the Random Forest didn’t used any local features on the images and only had the feature
vector as an input, which decreases the amount of information presented to the algorithm.
Furthermore it is an adaptive online learning approach, which can adapt more easily to
new data points in comparison to existing algorithms. Therefore comparing just the final
results is not justified.

Outliner detection

One important thing of an machine learning approach is the ability to recognize if a certain
points does not belong to any of the learned classes. In order to test that all pictures of the
handwritten digit five were removed from the training set and later on were tested on
the algorithm. The goal is now that the algorithm is not confident on the result and that
not always the same class for the unknown is returned, because that would me that the
classifier has overfitted. Table 7.2 shows the result of a Random Forest, which has 104 trees
with a depth of 35. These Random Forest has never seen a picture of a number five and
therefore this label was not used once. However all the other numbers are there at least
once, the result often contains the three and the eight, which are already close to a five.
The overconfidence after equation 7.1 is for this test data set 0.16356, which is close to zero
which means that the Random Forest is not certain on the classification of the unknown
points. If the Random Forest would be used in active learning setting, a human supervisor
could be asked to classify these data points, because the algorithm is uncertain about them.

[Class [0 [1 [2 [3 [4 [5 |6 |7 |8 |9 |
(# |15 Je1 |7 [311 |55 [0 |48 [34 [217 [44 |

Table 7.2: The results for the test data set are plotted here. All of them have the same
true label, which is in this example five. The reason because no value of five is
recognized is, because the Random Forest has never seen a five before. Important
is that none of the classes is completely favored, which means that the algorithm
has not overfitted.

7.1.2 Results of the Informative Vector Machine

At first the Informative Vector Machine is evaluated in a binary one vs. all fashion. The re-
sult for this is shown in table 7.3. As before for the Random Forest case each class is trained
against the other ones. The error for this is in the first row of the table 7.3, the second and
third row contain the over- and underconfidence defined in equation 7.1 and equation 7.2.
The results are flipped in comparison to the Random Forest, where the overconfidence
was low and the underconfidence comparatively high. This is in general a better result,
because this means that the algorithm was sure on the correctly classified ones and just a
little bit to sure for the very few falsely classified points. The error for example for the first
class is 0.004, which means only 40 pictures were classified incorrectly. On these points the

68

7.1 MNIST

algorithm was too sure, but compared with the certainty on the correct ones is this not so
bad.

| Class |0 1 [2 |3 | 4 5
Error: 0.0048 0.004 0.0107 0.0123 0.0089 0.0122
OC: 0.8685 0.5022 0.0483 0.0297 0.0259 0.0173
ucC: 0.0011 0.0090 0.4985 0.5730 0.5320 0.5522

] Class \ 6 \ 7 \ 8 \ 9 H Avg \ Var ‘
Error: 0.0061 0.0099 0.0154 0.0143 0.00966 0.00001
OC: 0.0613 0.0621 0.0210 0.0570 0.04607 0.00042
ucC: 0.3843 0.4515 0.6336 0.5588 0.47944 0.01291

Table 7.3: The results for the binary one vs. all on the MNIST data set are shown here. The
first row contains the error on the 10,000 points of the test data set. The second
and third row display the over- and underconfident for the result.

The Informative Vector Machine is used in a multi binary setting here, which means
that several binary classificatiors are trained and in the end all of them are evaluated to
get the final result. The biggest problem with a multi binary approach is that if one of the
binary Informative Vector Machine is too confident the good results of the other ones are
overshadowed. This can happen if the selection of the hyperparameters fails. To reduce
this effect the amount of classes in such a multi binary setting shouldn’t be too high to
avoid generating a bad trained IVM. In table 7.4 the confusion matrix for the multiclass

predicted label

0 1 2 3 4 5 6 7 8 9

0 | 946 0o 1 2 0 8 1 0 6 1

1/ 0 1049 3 2 0 0 40 20 18 3
12| 5 1 9% 22 12 4 12 3 33 4
213 0 4 287 0 6 6 4 6 32
o4 0 3 2 8 671 14 24 0 42 218
£/5| 3 1 0 26 1 69 3 0 9% 31
6| 3 1 0 0 6 898 0 2 0

7| 2 13 18 22 3 20 0 68 37 228

8| 0 2 0 7 2 1 13 1 927 21

9] 1 6 0 7 9% 13 1 7 22 858

Table 7.4: This table shows the confusion matrix for ten binary IVMs trained in a one vs.
all fasion on the MNIST data set.

binary Informative Vector Machine is shown. From it is easy to see, which class are more
easy to separate and which ones are harder. For example the handwritten number zero,
can be separated with a high accuracy. However the numbers four, six and seven are
more difficult. The optimized algorithm used in this thesis deals with it. Here the training
heavily relies on the Thread Master. As described before based on their performance on

69

TODO: Nur
Klasse 0 und 1
sind korrekt,
der Rest ist
noch falsch!

7 Examples

the test set the Informative Vector Machines get differently much trainings time. So after
the zero class has good parameters more computational power is spend on the numbers,
which perform worse. The reason for this is that the overall result can be more improved
by always training the worst classifier most.

7.1.3 Results for the Random Forest with the Informative Vector Machine

In order to use this approach on this special data set some things have to be changed.
The online approach is not applicable here, because if the 60,000 points are split in ten
subsets then each subset would only contain 6,000 points. From these 6,000 points only 3
pictures would be classified incorrectly, because all the trees where apple to perfectly fit
them and the classification error is therefore only 0.0005. These three pictures spread over
ten classes, which is not enough to train a Informative Vector Machine. Even by adding a
new batch, without changing the Random Forest and only forwarding them through the
Random Forest, the error would be 0.0822, which would lead to more points. However
these points are spread over all different combinations of true label with predicted labels.
In this example the highest error can be measured between the true label four and the
Random Forest returning a nine, but these are only 30 points, which are not enough to
train an IVM.

This means the offline approach has to be chosen. At first the Random Forest is trained
to have enough wrong classified points. To achieve that only 320 trees with a depth of 14
are used. These trees produce the following result on the 60,000 points of the training set
given in table 7.5. The rows of this confusion matrix correspond to the true values of the
data points, the column however is the predicted label of the Random Forest for this point.
The sum of a row corresponds therefore to the total amount of points of this class. Some
remarks to the result are, that nearly all the ones were classified correctly. However a lot
of other numbers where falsely classified as one even though they weren’t. Remarkable
here is that the amount of eights classified as one is the highest amount of wrong classified
points in the whole matrix.

Each column represents one of the predictive class mentioned above. These columns
are then given to a multiclass Informative Vector Machine, which generates for each class,
which has more than 100 points a binary IVM in a one vs. all fashion. These are then
trained and the hyperparameter for this special case are then found, which then results in
the confusion matrix shown in table 7.6.

This confusion matrix shows the result for the combination of the Random Forest with
the IVMs. The bold numbers show the results, where an Informative Vector Machine was
used, in nearly all cases the result could be improved with an IVM. However the hyperpa-
rameter optimization on such outliners is hard and not in all cases an improvement could
be reached. There are two examples in this confusion matrix for that. The first one is the
true label nine, which was confused with an seven, the IVM used for this example couldn’t
find stable parameters for the problem and made the result worse than the original pre-
diction of the Random Forest. The same holds for the IVM with the true label five and the

70

7.2 USPS

predicted label

0 1 2 3 4 5 6 7 8 9

0 | 5647 32 1 18 5 4 185 1 20 10

1 0 6708 17 4 0 0 5 5 1 2
12 47 339 5351 29 41 0 35 60 53 3
,qé 3 37 410 71 5413 3 10 23 66 55 43
o | 4 5 417 15 2 4805 0 106 46 4 442
g 5| 117 454 11 589 29 3931 162 18 32 78
6 56 252 2 1 3 16 5586 0 2 0

7 18 445 24 2 27 0 2 5612 3 132

8 92 784 28 366 32 21 48 52 4344 84

9 55 436 5 85 135 2 7 287 14 4923

Table 7.5: This table shows the confusion matrix for a Random Forest on the MNIST data
set.
predicted label

0 1 2 3 4 5 6 7 8 9

0 | 4831 10 22 17 0 1007 0 8 20 8

1 3 6708 17 2 2 3 0 4 1 2
12 16 0 5690 9 11 74 2 13 55 88
f.; 30 14 1 77 5816 11 44 1 63 55 49
o |4 0 0 26 1 5746 6 0 11 6 46
§ 5 0 6 15 0 7 5242 0 67 33 51
6 10 0 2 1 27 262 5612 0 2 2

7 2 3 39 0 0 20 0 6161 3 37

8 33 8 32 0 19 111 4 87 5482 75

9 21 0 7 43 3 71 1 1361 33 4409

Table 7.6: The confusion matrix on the MNIST data set for a Random Forest with an Infor-
mative Vector Machine is plotted here.

confused result of zero, which overshoot the result by far. It reduced the amount of falsely
classified fives as zeros however it increased the amount of zero recognized as fives. How-
ever with these two IVMs the overall result still improved from a correctness of 87.200%
to 92.828%, ignoring these two bad IVMs would improve the result further to 93.815%.
This result show the possibilities of the Random Forest with the Informative Vector Ma-
chines. However it also shows the disadvantages and the limitations of this method.

7.2 USPS

An other well known data set consisting of handwritten digits is the USPS dataset [Hul94].
It is consider to be much harder than the MNIST data set, because not all classes occur with
the same amount of samples and the test set contains some images, which are not as clear

71

7 Examples

as in the MNIST dataset. There are only 7291 images for the training and 2007 for testing.
The share for the trainings data is shown in table 7.7. Each image has a size of 16 x 16,
which results into a 256 element vector. However in this data set each pixels changes at
least once and therefore no reduction is performed. In comparison to the MNIST dataset
the amount of data is lower by a factor of around 25.20. The test data set is only lower by
a factor of 15.26, which shows that in this example there is in comparison to MNIST less
data and more test data.

[Class|[0 |1 [2 [3 |4 [5 6 |7 [8 |9 | Total]
Train [| 1194 [1005 | 731 [658 [652 [556 | 664 [645 [542 [644 [7291
Test || 359 [264 | 198 [166 [200 [160 [170 [147 |166 | 177 [2007

Table 7.7: This table shows the amount of samples per class in the USPS data set [Hul94].

7.2.1 Random Forest Results

Like for the MNIST data set in section 7.2.1 decision trees were trained. For this dataset
just the multiclass performance was evaluated. In this case 23,664 trees with a height of 35
were used, they allocated 15 GB of the RAM. The data was split again in 10 splits and they
were presented to the algorithm. As result of the increased amount of trees the algorithm
needed 59 seconds per trainings step. The performance was evaluated on the 2007 points
of the test set. After each split the whole test set was measured, this is plotted in figure 7.4.
In the end the algorithm could classify 1863 points correctly and only missed 144 points.

T T T T
92 :
e 90 |- a
=
o
o
881 a
86 |- .
—e—correctly classified in %
| I I I I
2 4 6 8 10
splits

Figure 7.4: The amount of correctly classified points in percent on the 2007 points of the
test set is illustrated in this figure. Each adding of a new batch improves the
overall result of the Random Forest.

For comparison choosing an offline approach here would go faster but it would only

72

7.3 Washington

achieve 91.47 % correctly classified points on the test data set. However the the online
method achieves 92.83 %, which is slightly better than the results from Saffari et al. [SLST09].
They presented an online Random Forest algorithm too, which only used 100 trees with
a height of five and an final online result for the USPS data set of 91.4 %. That means the
approach of this thesis was able to classify 29 pictures more correctly than theirs. Further-
more the approach presented in this thesis is able to train more trees and even deeper trees
then their approach, which explains the result.

7.2.2 Results of the Informative Vector Machine

The multiclass Informative Vector Machine was used in this section. The confusion matrix
for the result is shown in table 7.8. It has an overall error of 14.5491%, which means that
in this example 292 pictures were classified incorrectly. Furthermore similar handwritten
digits like before in the MINIST scenario have difficulties here. Nonetheless was the mul-
ticlass Informative Vector Machine approach able to find for each class hyperparameter,
which give good results and don’t destroy the overall performance.

predicted label

0 1 2 3 4 5 6 7 8 9

0 | 340 0 2 1 1 0 13 0 1 1

1 0 206 4 0 48 0 4 0 0 2
12 5 0 182 4 2 1 1 1 2 0
f?': 3 5 0 3 149 0 5 0 0 3 1
o | 4 1 1 6 2 160 1 4 0 0 25
§ 5 3 0 0 12 1 131 4 0 5 4
6 5 0 3 0 3 2 154 0 3 0

7 1 0 3 1 5 1 0 100 1 35

8 4 0 2 7 0 3 2 0 145 3

9 3 0 3 1 17 2 0 1 2 148

Table 7.8: The confusion matrix for a Informative Vector Machine on the USPS data set is
plotted here.

7.3 Washington

In this section the publicly available University of Washington RGB-D Object dataset was
used [LBRF11]. It is a widely used multi-view dataset, which already was used by many
others and is therefore great for benchmarking. The dataset contains 300 different house-
hold objects, which can be categorized into 51 classes. Because of the structure of this
work we focused on the object category recognition on this dataset. The possible instance
recognition was neglected. All of the images were taken on a rotatable table with changing
views and angles for all the objects. This results in 200,000 RGB images, depth pictures and
binary masks for each configuration of the camera position and instance.

73

7 Examples

0P =citd
§-ro@0 81
wvaslo o e@
TR EZ L NI

Figure 7.5: In this figure some of the used classes are illustrated. All of them are separated
from the background and display different objects [LBRF16].

These pictures could be now transformed like before into vectors, which are then used
in the selected approach. However there is a better approach for generating features on
pictures than using their pixel information. The best known approach to extracted features
from a picture is called convolutional neural networks. These are able to extract local
information and combine them in several steps to reliable features, which are even better
than human crafted features. This was shown by different authors like Bluche et al. and
Antipov et al. [BNK13, ABRD15]. They even outperformed existing feature extractors like
SIFT [FDB14].

As a result of this, this thesis uses calculated features from a CNN and classifies them.
The training of these features was done by Monika Ullrich in her work “Combined Deep
and Active Learning for Online 3D Object Recognition” [Ull16]. We used the combined
features from the embedded depth and the RGB features, which were reduced from 8192
dimensions to 1000 by using MaxRel [Ull16]. These 1000 long vectors were presented to
the Random Forest with the Informative Vector Machine and the results our shown in
the next section. This data set was not tested on the pure Informative Vector Machine,
because training 51 stable binary Informative Vector Machine, with so less data points is

not possible. The chance that one of them would become an overconfident classifier is too
high.

7.3.1 Result for the Random Forest and the Informative Vector Machine

Before the results are described here, the problem has to be formulated more carefully.
Each class consist out of several instances and the training was performed with all but one
instances and the not used instance was used for the testing. This means that the approach
has seen for example five different bananas and has then to decide for an unseen instance

74

7.3 Washington

of a banana, if it is a banana or something else.

The results of the Random Forest with the Informative Vector Machine show the big
challenge behind this formulation. The training is done like before in an online fashion
on the training set, where 135 Decision trees with a height of 35 were used. The test was
performed on the third fold generated by Ullrich, because the results for all folds generated
in her thesis are similar only one was used here. This training set was split in five subsets.
Each of these splits only contains out of 6898 data points. The results for the test data
set and the next training split are shown in figure 7.6. The blue line shows the result
after the training of the split number shown on the x-axis. This means the first point in
the line corresponds to the first online update. The results are measured before the next
trainings split had been integrated in the Random Forest. This means all of these points
were never been seen before by the algorithm and still the result is above 98.35% for all the
training splits. This shows that the training set consists out of instances, which can easily
be recognized and the error is generated by the difference between the trainings instances
and the test instance. This means this information is probably not covered in the selected
features provided by Ullrich and can therefore not be separated here[Ull16]. This can be
seen in the line for the test points, which is plotted in red. In the end it reaches 87.722%
correctly classified points on the test data set.

100 | DRI]
95 | -
o —o— test points in %
S —e—next training points in %
o
90 |- g
85 L L I —
1 2 3 4)
splits

Figure 7.6: The classification result for the test and the next training split are shown here.
The red line shows the result for the test result after each online step, the first
step corresponds to the offline step with the first split. In blue the amount of
correct classified points for the next trainings data split is given. All the results
are calculated after the Random Forest where updated. That’s why there is no
point for the fifth iteration, because no new trainings split is available.

The classification result for the next training split shows a challenge here. The multiclass
Informative Vector Machine is build on the wrong classified points, which is a problem in
this scenario. The reason for this is that each split only consists out of 6898 points and only

75

7 Examples

112 were classified incorrectly, this can be seen by the blue line in figure 7.6. These 112
wrong classified elements are spread over the existing combinations of the 51 classes. So
that each binary Informative Vector Machine only would get at most 10 falsely classified
points, which is not enough to train reliable hyperparameter for a 1000 dimensional prob-
lem. In the end the Informative Vector Machines couldn’t be used at all. The problem here
is that the whole trainings data set from Ullrich only consist out of 34,488 points and even
if this whole set is presented to the Random Forest all trainings points are then classified
correctly. So that no Informative Vector Machine could be used here and furthermore the
overall results on the test is only 86.8417%.

76

8 Conclusion and Future Work

8.1 Conclusion

This thesis presented an online learning approach for big data sets. It used Random For-
est as dataset splitters, which are able to classify big portions of the dataset. The falsely
classified points in these sub splits are then processed by an Informative Vector Machine.
This whole approach was trained in an online fashion, where not all points were available
in the beginning. By improving the Decision trees used in this thesis, the overall trainings
time and memory consumption for a Decision tree could be dramatically reduced. This
reduction made it possible to train the Decision trees in an online fashion during the ex-
ecution of the algorithm. Furthermore the result of the online trained Random Forest are
better than the offline results, which was shown on the MNIST, USPS and the Washing-
ton data set. The results of our Online Random Forest for the USPS data set were better
than the online approach presented by Saffari et al. [SLST09]. Furthermore our approach
nearly always leads better results than our own offline approach, which is remarkable for
an online training.

However the results for the combination of the Random Forest with the Informative
Vector Machine have shown the advantages of this approach. The combination of both
approaches lead to a improved result than the Random Forest on its own. However this
was only possible because the trained Random Forest was limited in trainings time and
height, which was necessary, because of the simplicity of the MNIST dataset. Even for the
dataset from the University of Washington the problem still arose that a Random Forest
could be trained, which was able to capture the data better than a bad trained Random
Forest with a combined Informative Vector Machine.

The Informative Vector Machine used in this thesis was improved with several ideas,
like the better selection criteria for the active set or the approximations for the flipped ac-
tive set instead of an full Expectation Propagation approach. Several other improvements
were performed to get a fast and online learning approach, which is able to train stable
hyperparameter even on high dimensional problems like the MNIST dataset. However
the flaws of the binary one vs. all method were discussed and could be reduced through
a thorough use of the Thread Master. It always trained the worst Informative Vector Ma-
chine first and so improved the one, which was most likely to give a bad result. Nonethe-
less is the hyperparemeter optimization of the Gaussian kernel still the hardest part of the
Informative Vector Machine.

So this thesis presented two different approaches, which were changed to fit the online
requirements of this thesis and were further improved to give the best possible results in

77

8 Conclusion and Future Work

as little time as possible.

8.2 Future Work

In a future work the newly designed online approach of this thesis could be used on a real
world online problem, where the data is only available in a stream fashion. This would
use the advantages of this method best and could lead to state of the art results, because
of the fast and adaptive learning approach presented in this thesis. The reason for that is
the fast trainings times of the Random Forest and the fast online update of it.

The Decision trees it self could be improved by a better decision criteria, which would
improve the quality of each splits. One of the big with drawls of the entropy and gini index
are that the influence of the size of the split is not represented well enough. This means that
a split, which only splits a few points away, could have a lower cost than splitting of more
points in a correct fashion. So improving the splitting criteria could lead to a even better
performing tree and therefore Random Forest. Additionally the splitting in the different
layers in a deep decision tree, could be improved by a more dynamic approach, where the
amount of necessary layers can be estimated by the current split. This means that after the
root tree was calculated the depth for the following trees depends on the amount of points
in the leaf, which would increase the flexibility of this approach and further improve the
trainings time and the memory demands.

On the other hand the Informative Vector Machine could be further improved. A better
hyperparameter optimization could be searched, which would decrease the trainings time
and would make it possible to increase the amount of used inducing points even further.
Because in the moment the trainings time solely depends on the amount of evaluations
necessary to find stable and good hyperparameter for the Gaussian kernel. If the Random
Forest Kernel is used the kernel evaluation time should be optimized, because evaluating
several hundred Decision trees takes more time than just the inner product between two
vectors. Furthermore the selection of the active set could be improved by designing an
online approach, which would be able to select induced points, which aren’t part of the
trainings set. However there is currently no approach to do that for high dimensional
problems, because finding the right spot to place such a point is still an unsolved problem.

78

Bibliography

[Abr72]

[ABRD15]

[AHO5]

[BFSO84]

[Bis06]

[BNK13]

[Bre96]
[BreO1]

[BSYWV16]

[CGLL10]

[CKYO08]

MILTON Abramowitz. 1. a. stegun, 1972: Handbook of mathematical func-
tions. National Bureau of Standards Applied Mathematics Series, 55:589-626, 72.

Grigory Antipov, Sid-Ahmed Berrani, Natacha Ruchaud, and Jean-Luc Duge-
lay. Learned vs. hand-crafted features for pedestrian gender recognition. In
Proceedings of the 23rd ACM international conference on Multimedia, pages 1263
1266. ACM, 2015.

Anne Auger and Nikolaus Hansen. A restart cma evolution strategy with
increasing population size. In Evolutionary Computation, 2005. The 2005 IEEE
Congress on, volume 2, pages 1769-1776. IEEE, 2005.

Leo Breiman, Jerome Friedman, Charles] Stone, and Richard A Olshen. Clas-
sification and regression trees. CRC press, 1984.

Christopher M.. Bishop. Pattern recognition and machine learning. Springer,
2006.

Théodore Bluche, Hermann Ney, and Christopher Kermorvant. Feature ex-
traction with convolutional neural networks for handwritten word recogni-
tion. In Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on, pages 285-289. IEEE, 2013.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123-140, 1996.
Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Hildo Bijl, Thomas B Schén, Jan-Willem van Wingerden, and Michel Verhae-
gen. Online sparse gaussian process training with input noise. arXiv preprint
arXiv:1601.08068, 2016.

Fu Chang, Chien-Yang Guo, Xiao-Rong Lin, and Chi-Jen Lu. Tree decomposi-
tion for large-scale SVM problems. J. Mach. Learn. Res., 11:2935-2972, Decem-
ber 2010.

Rich Caruana, Nikos Karampatziakis, and Ainur Yessenalina. An empirical
evaluation of supervised learning in high dimensions. In Proceedings of the
25th international conference on Machine learning, pages 96-103. ACM, 2008.

79

Bibliography

[CO02]

[dC85]

[DG14]

[DHS11]

[Die00]

[Eicl4]

[FDB14]

[FRKD12]

[Gam95]

[GEW06]

[GWO00]

[Han14]

[HFL13]

[HO96]

Lehel Csat6 and Manfred Opper. Sparse on-line gaussian processes. Neural
computation, 14(3):641-668, 2002.

Marie-Jean Antoine Nicolas de Caritat. Condorcet. essais sur 1’application de
I'analysea la probabilité des decisions rendues a la pluralité des voix, 1785.

Alex Davies and Zoubin Ghahramani. The random forest kernel and other
kernels for big data from random partitions. arXiv preprint arXiv:1402.4293,
2014.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121-2159, 2011.

Thomas G Dietterich. An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and randomization.
Machine learning, 40(2):139-157, 2000.

Hubert Eichner. Neural net for handwritten digit recognition in javascript.
http://myselph.de/neuralNet .html, 2014.

Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox. Descriptor match-
ing with convolutional neural networks: a comparison to sift. arXiv preprint
arXiv:1405.5769, 2014.

B Frohlich, E Rodner, M Kemmler, and] Denzler. Large-scale gaussian pro-
cess classification using random decision forests. Pattern Recognition and Image
Analysis, 22(1):113-120, 2012.

Erich Gamma. Design patterns: elements of reusable object-oriented software. Pear-
son Education India, 1995.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized
trees. Machine learning, 63(1):3-42, 2006.

Pierre Geurts and Louis Wehenkel. Investigation and reduction of discretiza-
tion variance in decision tree induction. In European Conference on Machine
Learning, pages 162-170. Springer, 2000.

Nikolaus Hansen. Cma-es. https://github.com/CMA-ES/c—cmaes,
2014.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for
big data. arXiv preprint arXiv:1309.6835, 2013.

Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal muta-
tion distributions in evolution strategies: The covariance matrix adaptation.

80

http://myselph.de/neuralNet.html
https://github.com/CMA-ES/c-cmaes

Bibliography

[Hul94]

[KRO6]

[LBBH98]

[LBRF11]

[LBRF16]

[LPJ05]

[LRT14]

[LSH*03]

[Mer09]

[Min01]

[MR11]

In Evolutionary Computation, 1996., Proceedings of IEEE International Conference
on, pages 312-317. IEEE, 1996.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE
Transactions on pattern analysis and machine intelligence, 16(5):550-554, 1994.

Malte Kuss and Carl Edward Rasmussen. Assessing approximations for gaus-
sian process classification. Advances in Neural Information Processing Systems,
18:699, 2006.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278-2324, 1998.

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchi-
cal multi-view rgb-d object dataset. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 1817-1824. IEEE, 2011.

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Washington homepage.
https://rgbd-dataset.cs.washington.edu/index.html, 2016.

Neil D Lawrence, John C Platt, and Michael I Jordan. Extensions of the in-
formative vector machine. In Deterministic and Statistical Methods in Machine
Learning, pages 56-87. Springer, 2005.

Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. Mondrian
forests: Efficient online random forests. In Advances in neural information pro-
cessing systems, pages 3140-3148, 2014.

Neil Lawrence, Matthias Seeger, Ralf Herbrich, et al. Fast sparse gaussian pro-
cess methods: The informative vector machine. Advances in neural information
processing systems, pages 625-632, 2003.

James Mercer. Functions of positive and negative type, and their connection
with the theory of integral equations. Philosophical transactions of the royal so-
ciety of London. Series A, containing papers of a mathematical or physical character,
209:415-446, 1909.

Thomas P Minka. A family of algorithms for approximate Bayesian inference. PhD
thesis, Massachusetts Institute of Technology, 2001.

Andrew McHutchon and Carl E Rasmussen. Gaussian process training with
input noise. In Advances in Neural Information Processing Systems, pages 1341—
1349, 2011.

81

https://rgbd-dataset.cs.washington.edu/index.html

Bibliography

[MTC15]

[Murl2]

[NGHO7]

[NRO8]

[REM11]

[RQCO05]

[RWO06]

[SB*01]

[SGO6]

[Sha48]

[SLST09]

[SWL03]

[Tip01]

[Tit09]

Dennis Mund, Rudolph Triebel, and Daniel Cremers. Active online confi-
dence boosting for efficient object classification. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pages 1367-1373. IEEE, 2015.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Andrew Naish-Guzman and Sean B Holden. The generalized fitc approxima-
tion. In NIPS, pages 1057-1064, 2007.

Hannes Nickisch and Carl Edward Rasmussen. Approximations for bi-
nary gaussian process classification. Journal of Machine Learning Research,
9(Oct):2035-2078, 2008.

Naveen Ramakrishnan, Emre Ertin, and Randolph L Moses. Assumed density
filtering for learning gaussian process models. In Statistical Signal Processing
Workshop (SSP), 2011 IEEE, pages 257-260. IEEE, 2011.

Carl Edward Rasmussen and Joaquin Quinonero-Candela. Healing the rele-
vance vector machine through augmentation. In Proceedings of the 22nd inter-
national conference on Machine learning, pages 689-696. ACM, 2005.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

Alexander] Smola, Peter Bartlett, et al. Sparse greedy gaussian process re-
gression. Advances in neural information processing systems, 13:619-625, 2001.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using
pseudo-inputs. Advances in neural information processing systems, 18:1257, 2006.

C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27(4):623—-656, October 1948.

Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst
Bischof. On-line random forests. In Computer Vision Workshops (ICCV Work-
shops), 2009 IEEE 12th International Conference on, pages 1393-1400. IEEE, 2009.

Matthias Seeger, Christopher Williams, and Neil Lawrence. Fast forward se-
lection to speed up sparse gaussian process regression. In Artificial Intelligence
and Statistics 9, number EPFL-CONF-161318, 2003.

Michael E Tipping. Sparse bayesian learning and the relevance vector ma-
chine. Journal of machine learning research, 1(Jun):211-244, 2001.

Michalis K Titsias. Variational learning of inducing variables in sparse gaus-
sian processes. In AISTATS, volume 5, pages 567-574, 2009.

82

Bibliography

[Ull16]

[VV12]

[WR96]

Monika Ullrich. Combined deep and active learning for online 3d object
recognition. Master’s thesis, Technical University of Munich, November 2016.

Jarno Vanhatalo and Aki Vehtari. Speeding up the binary gaussian process
classification. arXiv preprint arXiv:1203.3524, 2012.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes
for regression. Advances in neural information processing systems, pages 514—
520, 1996.

83

