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Summary: Simulations based on the peridynamic theory are a promising approach to un-
derstand the processes involved in matrix failure inside fibre reinforced plastics. Before such
complex simulations are carried out, the material behavior of bulk resin material as well as the
influence of numerical parameters have to be investigated. In the present text, the linear elas-
tic part of the material response is used to examine the convergence behavior of peridynamic
simulations. Possibilities to minimize the effect of different discretization schemes are explored
by means of a stochastic material distribution in correlation with scatter found in the material
tests regarding the elastic material response and failure patterns. This procedure may also be
used to investigate the nature of failure initiation and the robustness of the solution.

0  horizon p  mass density 6 dilatation

€ strain tensor o Cauchy stress tensor G shear modulus

‘H  neighborhood K bulk modulus V' volume
V., weighted volume w influence function t  pairwise force density

x  initial bond length y  deformed bond length e bond extension

b external forces u displacements i acceleration

x initial position of refer- x’ initial position of family y deformed position of ref-

ence point point erence point
y’ deformed position of T force vector state Y peridynamic state

family point

1. INTRODUCTION & LITERATURE
1.1 Motivation

Today, the full exploitation of the lightweight potential of fibre reinforced plastics (FRP) is
limited due to missing reliability of failure predictions of real structures, especially when taking
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into account determining manufacturing conditions. The underlying goal behind this study is
to increase the understanding of failure mechanisms in FRP as shown in Figure 1 and their
numerical simulation.

(a) Crack in a CFRP specimen. Courtesy of DLR. (b) Matrix failure [1, 2]
Figure 1: Exemplary failure mechanisms in FRP materials

The current state-of-the-art methods used in industry and research for failure predictions
are based on continuum mechanics (CM) and its numerical implementation in the finite ele-
ment method (FEM). The continuum mechanics is well suited for stress analyses of undamaged
structures, but it is unable to proper model damage evolution after initiation. The basic contin-
uum mechanical theory was originally developed around 1822 by Augustin-Louis Cauchy [3].
The assumptions made by Cauchy lead to a mathematical description of continuous media par-
tial differential equations (PDE). With proper restrictions, the PDEs are elliptic in equilibrium
problems. It is to be noted that the underlying boundary value problems are generally well-
posed for typical materials [3]. This made the PDEs solvable even in the pre-computer time. In
reality, all materials are discontinuous and heterogeneous. For several problems, the usual as-
sumption that at macroscopic length scales a material can be well approximated as continuous,
is not valid. Obviously, a fracture in any material fails to satisfy the smoothness requirement.

To overcome this deficit, additional theories such as fracture mechanics are required and
applied. However, certain levels of inconsistencies within the mathematical assumptions be-
tween continuum and fracture mechanics still lead to inaccurate damage prediction. Motivated
by ideas of molecular dynamics, Stewart Silling developed the fundamental peridynamic theory
in the early 2000’s as an alternative theory to state-of-the-art modelling approaches [4]. In this
theory the fundamental PDE of the momentum conservation is replaced by an integral equation.

Peridynamics (PD) presents a promising approach to simulate damage initiation, evolution
and interaction in any material in one holistic approach. It is a non-local theory which takes
long-range forces between material points in a certain neighborhood, the horizon ¢, into ac-
count. Constitutive models in peridynamics depend on finite deformation vectors, as opposed
to classical constitutive models which depend on deformation gradients [5]. In contrast to the
FEM based on continuum mechanics, the peridynamic governing equations are based on inte-
gral equations, which are valid everywhere - whether a discontinuity exists in the material or
not. Damage is directly incorporated in the material response.
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1.2 Horizon and convergence

A main question in PD simulations is the proper choice of the horizon ¢ and convergence
based on the chosen discretization h, cf. Figure 2. In its basic paper on the meaning of the
horizon explains that the value may be viewed as an effective interaction distance for non-local
effects [6]. The PD horizon does not have to be constant over the domain. [7] reports that if
peridynamics is used to model atomic-scale phenomena, the horizon becomes the cut-off radius
of the atomic potential. In the present text an ideally continuous and homogeneous structure is
considered, in which the standard local theory applies perfectly until failure. However, we still
wish to use peridynamics as a way to model damage and fracture. In this scenario the physics of
the interactions between material points do not directly determine the choice of discretization
type, size and horizon. [8] found that the two dominant physical mechanisms that lead to
size dependency of elastic behavior at the nanoscale are surface energy effects and nonlocal
interactions. They estimated the length scales at which the classical model of elasticity breaks
down for some real materials. They report that in many materials, the length scale, relevant
to forces that determine the bulk properties of materials, far exceeds the interatomic spacing
and thus long-range forces contribute to the material behavior. This is particularly true for
heterogeneous materials. However, the length scales of interest are still dimensions smaller
than the macroscopic behavior investigated in the current context. Thus the question arises: Do
discretization, element size and horizon have any influence on the macroscopic failure of the
considered structures.

It has been shown in various publications that the classical continuum mechanics is a subset
of peridynamics and that for a horizon striving to zero, the peridynamic theory converges to the
local solution of continuum mechanics. According to [6] this is since wave dispersion due to
the size of the nonlocality is reduced as the horizon decreases. [9] shows the convergence to
the local solution for bond-based peridynamics, [10] for an isotropic linear elastic material and
[11] show that the state-based, nonlocal peridynamic stress tensor reduces to the classical local
Piola-Kirchhoff stress tensor in the limit of a shrinking horizon.

Discrete h 0 —0 o Discrete
Nonlocal o 0 Local
R
> . 3 3 >
e s
Continuum 0 40 Continuum
Nonlocal J 6 —0 0 Local PDE

Figure 2: Types of convergence in the peridynamic theory [3]

The convergence of the discretized implementation is a more complex topic compared to the
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finite element method due to the two independent parameters of element size dx and horizon
0. In [7, 12] the terms 0- and m-convergence were introduced, where m = j—x for uniformly
discretized grids. [13] also discusses these types of convergence.

Therein it is said that d-convergence is achieved by fixing m while allowing the horizon
0 — 0 or increasing m at a slower rate than the decrease in . In [14] d-convergence is de-
scribed that if the m-ratio is kept constant, the solution does not change significantly as the
horizon tends to zero. For this type of convergence the numerical peridynamic solution con-
verges to an approximate classical solution. The larger the value of m is, in other words the
smaller the grid spacing dx is, the better the approximation becomes. However, this conver-
gence may not occur in the presence of discontinuities. A non-continuous convergence behavior
is expected for the variation of the two factors. [12] points out that convergence is dependent on
the computation scheme of nodal amount of volume of all points in horizon of single point. Its
calculation is not easy to perform for nodes that are not entirely contained inside the horizon.
Simple algorithms lead to non-uniform m-convergence. The proper choice of horizon has to
capture the damage types and the main features of the damage evolution processes and should
by performed by means of an absolute length scale, independent of the discretization size [14,
15]. A similar observation was found in [16]. The authors tell that § should be at least as large
as the crack tip plastic process zone, to adequately capture the crack tip physics. Additionally,
some experimental intuition may be required to estimate the size of ¢ if local measurements are
not available.

Multiple specific horizon values are suggested in different publications over the years.
0 ~ 3dx and thus m =~ 3, especially m ~ 3.015, is the most common value and is used
for example in [7, 17], [18, 19] for micro brittle material, for bond-based composite DCB and
ENF specimen [20] and for a finite element representation of peridynamics via truss elements
[21]. In a convergence study [22] found m ~ 3 for tension and additionally m ~ V2 for com-
pression specimen to be suitable. It has been found that m ~ 3 also works well for fracture
predictions [17, 23]. m = 4 is applied in [6, 24] for dynamic crack branching problems in
isotropic materials and in [25] for flow through porous medium. Even larger values are used in
[15] for anisotropic materials with m = 5 and m = 6 in [14] for linear elastic isotropic material.
On the other extreme [26] apply 0 ~ 1.1dz for elastic deformation of thin plate in 2D.

Naturally, the necessity for problem-dependent convergence studies becomes obvious. Ex-
amples can be found in [27] for a pitting corrosion problem. [28] focused on the convergence
of numerical solutions of static PD problems to the analytical solutions of those problems under
grid refinement for uniform grids, while keeping the horizon fixed. The source achieves first-
order convergence for smooth solutions. Higher convergence rates can be achieved through
higher-order discretizations, quadrature-based finite difference discretizations with piecewise
linear basis functions [29] or piecewise linear finite element discretizations [29-31], which
leads to a second-order convergence of numerical solutions in PD problems characterized by
smooth solutions. These higher-order methods, however, significantly increase the complexity
of numerical implementations as well as the computational cost of simulations, especially in
higher dimensions. [28] found that achieving convergence is challenging, in particular with
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respect to the proper choice of horizon. The authors found that, especially in higher dimen-
sions, the horizon cannot be so small as to make computations intractable, but it cannot be too
large either as this results in the boundary layer, where displacement boundary conditions are
imposed, being the majority of the simulation domain. [32] performs convergence studies for a
linear elastic static implementation of non-ordinary state-based PD by means of a zero-energy
control term. For dm- & d-convergence the authors find, the optimum value increases with in-
creasing mesh size, where the magnitude of the control term increases roughly linearly with the
number of degrees of freedom. The Jm-behavior shows first-order convergence independent of
the horizon size, whereas the d-convergence shows approximately half the rate of convergence.
Similar findings are reported by [19]. Therein it is stated that choice of the horizon influences
heavily the results. The nodal spacing has to shrink faster than the horizon to obtain conver-
gence. Their results suggest that a good nodal spacing can be found for almost all materials
for each horizon and vice versa if a small error is acceptable. Unfortunately, no regular pattern
was found from which one can determine a simple functional relation between the horizon and
the nodal spacing, which makes the choice of a suitable horizon for a given nodal spacing hard.
Somewhat contradictive observations are made in [14]. Therein, the error in 2D linear elasticity
state-based PD simulations in which the displacement field is linear is not influenced by §.

A further question is how to discretize numerical implementations in peridynamics. A sim-
ple particle-based discretization for the strong form of peridynamic equations was introduced
in [17] and is implemented in currently known codes such as EMU and Peridigm. However,
[33] point out that the governing equations in peridynamics are continuum models and can be
discretized in many ways. In [28] it is mentioned that commonly used meshfree methods in
peridynamics suffer from accuracy and convergence issues, due to a rough approximation of
the contribution to the internal force density of nodes near the boundary of the neighborhood
of a given node. However they are numerically efficient since finite element discretizations
of governing equations are based on weak forms, which for peridynamic equations double the
number of spatial dimensions that need to be discretized [30].

Approximately uniform element sizes are used in most publications. PD in Peridigm does
allow for small gradients in element size if the horizon definition is modified appropriately in
the block definition. [23] proposes an adaptive refinement algorithm for the non-local method
1D bond-based peridynamics. [34] argues that even if convergence is achieved for an element
size, when the discretization grid is refined while using the same horizon, the PD solution may
start to depart from the classical one, converging to something other than the classical solution.

2. PERIDYNAMICS

PD is a non-local theory to describe the physics of materials. Several assumptions made
by the classical continuum mechanics theory are weakened or omitted. In continuum mechan-
ics the medium has to be continuous, the internal forces are contact forces and interact in zero
distance to each other. The deformation has to be two times differentiable [3]. These assump-
tions have no physical motivation. In [35] the comparison of the continuum mechanics and
the ordinary state-based PD for the linear momentum balance is shown. The main difference
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from a mathematical point of view is that the PD theory is an integral formulation whereas the
continuum mechanical theory is a partial differential equation. Therefore, if the material is dis-
continuous the continuum mechanics must fail. If the integral domain is zero PD and CM will
be equal, see Equation 1.

Multiple PD formulations exist. The simplest, the bond based (BB) formulation, was pre-
sented in 2000 [4]. Therein, materials are limited to a Poisson ratio of }l for 3D and 2D plane
strain problems as well es % for 2D plane stress problems [36]. To overcome these restric-
tions, enhancements of the method have been developed. The so called ordinary (OSB) and
non-ordinary state-based (NOSB) formulation of PD are the result.

2.1 Ordinary state-based peridynamics

In the original BB formulations, bond forces only depend on a single pair of material points.
The state-based formulation considers bond forces dependent of deformations of all neighboring
material points. The state-based PD is able to describe materials loosen the requirements on the
Poisson ratio. It must be noted that, within the state-based peridynamic framework, there is
no notion of connectivity such as a spring like force between two neighboring material points.
There simply is a potential between them. The equation of motion of the OSB-PD is represented
as

p(x)i(x,t) = / (I[x, t(x —x) — T[x,t](x — X/>> dV + b (x,1) (1)
H

where H is a spherical neighborhood of radius or horizon ¢ centred at x and where T is the
force vector state field. All points 2’ within the horizon of z are called family of . It maps the
force of the bond (x — x) to force densities per volume [37]. The variables b, p, u and ii are

the external forces, the mass density, the displacement and the acceleration.

.."" X

p--

Figure 3: Family‘: iﬁitial & deformed configuration with deformation state Y [35]

T has to ensure the consistency with basic physical principles as the balance of linear mo-
mentum. This can be shown for any T. To describe a material, constitutive models are needed.
These models map specific deformation vector state fields Y in the force vector state T.
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;}Lno y (I[x, t](x —x) — T[x, t](x — X,>> dV =div(o) (2)

2.2 Material model

It is assumed that the elastic strain energy in a PD solid is equal to the energy of the CM
model. In that case, it is supposed that there is a PD strain energy density function W (A) :
V' — R such, that for some choice of the deformation gradient

Y& =F¢=Fx —x) VE&eH. (3)

Then the PD constitutive model corresponds to the classical constitutive model at F [37,
38]. With the extension scalar state e

|

=y—uz, y = Y], z = |X] 4)

the pairwise force density for an isotropic elastic PD solid

I

3K0 15G
t= TUJW_JJ + Tw%d )
can be determined utilizing the bulk modulus K and the shear modulus GG. The variables

and the deviatoric part of the extension scalar state ¢? are given as

QZ%L(M)'QCZV and deg—% : (6)

The value V,, is the weighted volume and w is the influence function which can be used to
weight the bond stiffness related to the position in . It is a part of the constitutive response.
The complete derivation is given in [37]. The model is similar to the classical one

o = KItr(e) + 2Ge?, (7)

where o is the mechanical stress, tr(e) is the trace of the mechanical strain and €? is the
deviatoric part of the mechanical strain.

2.3 Damage model

One method of introducing failure into PD is through the irreversible breaking of “bonds”
by setting the potential between them to zero. Failure is introduced by allowing the removal of
this potential when certain physical variables reach a critical level [39].

4G,
Rz ®

The critical micro potential can be determined using the energy release rate GG in Equa-
tion 8. [16, 39] describe an energy-based failure criterion which is valid for state-based analysis

We
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by comparison of the critical energy density to the energy density of each state between mate-
rial points. If the bonds micro potential is greater than this value the bond is deleted. With the
history-dependent scalar valued function y (&, t)

1 ifw(e(€)) <w.forall0 <t <t
x(e(§),t) = ( <. ) : 9)
0 otherwise
the damage model can be included in Equation 5.
K 1
t=x(el.?) (%% + é—f%d) (10)

Each “bond” has a simple damage law as shown in Figure 4a, whereas the resulting integral
material response is illustrated in Figure 4b. It can be seen that the integral behavior corresponds
to a standard analytical traction-separation law [3]. The dissipated energy in the material is
simply the integral of the bond breakage energies over all the broken bonds in the family [40].

Bond traction Traction
‘ Bond stretch : Separation
Bond damage Damage initiation
(a) Local behavior of one bond (b) Integral response of the material [3]

Figure 4: Comparison of the bond and integral material damage response

The damage law used in this publication is much simpler. It is assumed that for the one-
dimensional cases considered, a critical bond elongation determined in CM can be used as input
for the so-called critical stretch criterion, as done by [41] for bond-based peridynamics. In that
case Equation 9 is reformulated to

[x!—x| (11)

1 if YYD o forall 0 < < ¢
0 otherwise

with €. as critical stretch value. [3] point out that this method is derived from BB-PD and
that the concept may not apply in state-based material models as used in the current study.
However, no other failure model has been implemented in the current numerical framework yet.

3. PROBLEM

In a first step, the behavior of the fibre-embedding epoxy matrix is investigated. Matrix
cracking is a dominating mechanism for the failure behavior of the overall FRP material and



M. Rédel, A.-J. Bednarek, J. Schmidt, C. Willberg

is most likely to cause other phenomena in the course of damage evolution [2]. Therefore,
tensile material tests are performed and evaluated on bulk LY 564 epoxy resin tensile specimen,
as shown in Figure 5. The goal is to describe the individual component material properties and
failure patterns before application in a more complex structure as shown in Figure 1b.

Stress [MPal
60 |
Cure cycle 1
40 | —— Cure cycle 2
--- Cure cycle 3
20 |
Strain [%]

1 2 3 4 5 6 7

(b) Effective LY564 stress-strain curve

L
(a) Static test rig (¢) Fracture plane micrograph
Figure 5: Bulk resin tensile test

3.1 Specimen geometry

The tested structure is a bulk resin test specimen according to DIN EN ISO 527-2 with
geometry 1BA. The specimen geometry and its dimensions are shown in Figure 6 and Table 1.

Figure 6: Bulk tension test dimensions [DIN EN ISO 527-2, 2012]
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Variable & Description Unit  Standard  Model & Test
[3  Overall length mm > 75 75
[y Parallel narrow length mm  30.0+0.5 30
r  Radius mm > 30 40.45
l,  Distance between wide parallel edges mm 58 =£2 58
b,  Wide parallel edge width mm  10.0 £ 0.5 10
by Narrow parallel edge width mm 5.0+ 0.5 5
t  Preferred thickness mm > 2 2
Lo Measuring length mm  25.0+£0.5 25
L  Clamp distance mm I,*2 58

Table 1: Bulk tensile dimensions for test specimen 1BA [DIN EN ISO 527-2, 2012]

The load-displacement curves are measured using strain gauges on one side of the specimen.
The resulting unsymmetrical behavior in the area of the strain gauge in combination with the
localised change in stiffness in this area leads to failure in the area of the strain gauge.

3.2 Material properties

Low viscosity epoxy resin Araldite LY 564 with Aradur 22962 hardener from Huntsman
[42] is used. The material properties can be found in Table 2.

Variable & Description Unit Test  Literature Model

p  Density 1-107%tmm=3 1.1-1.2 - - 1.15

E Tensile modulus N mm 2 2800 — 3300 3190 - 3190

v Poisson ratio - 0.334 - 0.334

g, Failure strain % 3.5 —-8.0 7.2 - 7.2
Gic Fracture energy Nmm ™! 0.2 —0.26 - [43] 0.2

Table 2: Araldite LY 564/Aradur 22962 material properties

In order not to complicate the work in the present study, only linear material response and
brittle fracture is considered. The material in the peridynamic simulation with Peridigm is
performed using the linear peridynamic solid (LPS) material model. It has to be noted that the
respective material model does not offer surface correction.

10
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4. IMPLEMENTATION
4.1 Computational framework

Peridigm is used in the context of the present study [44]. It is an open-source computational
state-based PD code developed at Sandia National Laboratories for massively-parallel multi-
physics simulations. Peridigm uses a FE mesh as basis for its discretizations. Hexahedron and
tetrahedron elements are transformed into peridynamic collocation points and associated with
the respective element volume. Different material properties can be assigned by dividing the
model into multiple blocks.

4.2 Stochastic model

To reduce possible dependencies of the solution from the underlying discretization scheme,
a stochastic distribution of elastic material properties is proposed to incorporate the statistical
nature of damage initiation (Figure 7). Additionally, this gives a possibility to check whether
a failure pattern is driven by the chosen discretization or an actual phenomenon. [45] pub-
lished a similar idea for capturing damage evolution by introducing fluctuations in the critical
stretch by means of a Weibull or other distribution. The stochastic distribution of the elastic
constants is also motivated by scatter in stress-strain curves and locations of failure of different
test specimen and findings in micrographs in the bulk resin specimen (Figure 5). These devi-
ations may be caused by micro-voids, locally varying degree of cure in the epoxy material or
slight disparities of the specimen geometries caused by the machining process. Introduction of
a stochastic material distribution has the goal to filter and numerical effects in the simulation
and to ensure, that the dominating effect causing the physical failure is adequately described
in the numerical model. The calculations have to be performed multiple times with different
stochastic distributions to assure the dominating effect is adequately triggered.

Te

K
K-A K K+ A
(a) Simple stochastic model (b) Base FE mesh with stochastic block distribution
Figure 7: Implementation of stochastic material distribution for PD simulations

When Peridigm computes the internal force, it computes a force state at each node in the
model and applies that force state to each bond that is attached to the node. For each bond,

11



M. Rédel, A.-J. Bednarek, J. Schmidt, C. Willberg

the resulting force density is applied to the node itself, and negative one times the force density
is applied to the node on the other end of the bond. This is consistent with the state-based
formulation in Equation 1. The way Peridigm handles material interfaces is basically a direct
application of Equation 1. The result at a material interface is an average of the two material
models. Thus, a block-based stochastic model is possible by simply assigning materials with
different elastic constants.

As the nature of the distribution of stochastic effects in the real specimen is currently un-
known, a rather simple approach is chosen for their modeling. During the creation of the
specimen, elements in the damage-prone area are stochastically associated to multiple block
definitions. Each block is associated with a material that has a defined deviation from the nom-
inal elastic constants. The number of different block definitions and the maximum deviation
from the nominal elastic constants can be chosen randomly. More complex distribution, such
as Gaussian or Weibull distribution, may be implemented in the future if the approach seems
promising.

5. MODEL
5.1 Discretization

A FE based mesh input is used by Peridigm. As it is expected there are differences in the
choice of the horizon and element size for structured and unstructured based meshes, both are
considered here. The specimen creation in a versatile parametric model generator allows for a
quick change of the underlying discretization scheme and the element size. The base FE models
and resulting PD discretizations are shown in Figure 8.

The structured mesh is doubly symmetric regarding the specimen z-y- as well as the z-z-
plane. The unstructured meshes are only symmetric about the z-z-plane.

Especially in higher dimensions, the horizon cannot be too large either as this results in the
boundary layer, where displacement boundary conditions are imposed, being the majority of
the simulation domain [28]. Thus, a no-damage zone (red) is introduced in the vicinity of the
specimen ends. In this region failure is not modeled to avoid effects of the boundary conditions
on the failure behavior. Based on the findings in the experiments this approach is valid.

5.2 Loads and boundary conditions

Both specimen ends are clamped in the test fixture. The tensile experiments are strain-
controlled by means of a constant velocity on one of the clamping regions. The homogeneous
displacement and inhomogeneous velocity boundary conditions are applied on respective node
sets at the specimen ends. As these sets are defined on the base FE mesh, there is a small
deviation of the application region in the PD model. This has no effect on the results. Various
combinations of displacement boundary conditions were investigated. The influence on the
results is negligible.

Madenci and Oterkus [46] point out, that simply imposing constant boundary condition

12
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(c) Base tet FE mesh (d) PD representation of tet mesh
Figure 8: Discretization schemes and PD representation

values on a material regions leads to incorrect behavior of the actual boundary and the domain
within a distance of one horizon from the application region. A modified approach to reflect the
correct boundary conditions is proposed but not used here as the no-failure-zone in the model
is large enough to smooth boundary effects.

6. RESULTS
6.1 Convergence

In a first step extensive convergence studies are carried out. Therefore, only the elastic part
of the material behavior is considered. The load-displacement curves of the PD simulations are
compared to the solution obtained by the implicit nonlinear solution in the commercial finite
element solver Abaqus. Identical meshes are used in both cases. Using the versatile parametric
model generator, the identical discretizations are written for Peridigm and Abaqus.

The stiffness convergence is evaluated by means of the load-displacement behavior. Two
aspects of convergence are considered. At first it is investigated if the load-displacement curves
asymptotically approach a common course. On the other hand, the load-displacement curve
from the local FE solution obtained with Abaqus is used as a second convergence criterion for
this simple one-dimensional loading condition. It is not expected that the PD solution must
necessarily exactly coincide with the FE result. But for this simple test, large deviations should
also not occur in the elastic regime of the material response.

13
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(a) Iso view (b) Detail of FE (blue) and PD (green) node set
Figure 9: Constraint and load introduction domains

6.1.1 Hex mesh

Stiffness Figure 10 shows the respective results for an element edge length dz of 0.4 mm and
a structured mesh for different horizons. This element edge length is defined over the thickness
of the specimen. Due to the dimensions from Table 1, the in-plane element edge length is
0.395 mm in z- and 0.357 mm in y-direction. In this study, the horizon is specified by means of
an absolute value as proposed by [14, 15] to be able to directly compare the behavior between
different element edge length. The non-continuous curves for the PD results are caused by
small oscillation in the explicit solution in Peridigm without any damping and a small number
of output time steps.

600 | |—— Abaqus

— 4§ =5mm

— 0 =4mm

0 = 3mm

2400" —— 0 =2mm
5t —— 6 =1.5mm
g ——§=1.25mm
- 200 | —d=12mm
—— 0 =1.18mm

— 0 =1mm
— 6 = 0.875mm

0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045 0.5
Displacement [mm]|

Figure 10: Force-displacement plot in elastic region for hex-mesh with dz = 0.4mm and
various horizons

For the chosen element edge length of dx = 0.4 mm, the stiffness reduces with decreasing
horizon. This finding does not correspond to the results in [47] where a LPS material model
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produces a less stiff behavior than expected. The decrease in stiffness is obtained until m ~ 3,
here m = 2.95 for a horizon of 6 = 1.18 mm. This matches m, = 2.95, m,, = 3.31 and
m, = 2.99. The converged PD solution matches the FE solution. If the horizon is decreased
below this value, the stiffness rises again compared to the FE solution. This may be caused by
the fact, that not enough neighboring points interact in the horizon of a single point to depict
the correct material behavior in all directions, including transversal contraction.

For element edge length above 0.4 mm and thus five PD collocation points over the speci-
men thickness, a similar behavior exists with the exception that the local FE solution is never
reached. This seems to be the result of the missing surface correction in the chosen LPS mate-
rial model implementation in Peridigm. For element sizes smaller than 0.4 mm and thus more
elements over the specimen thickness a horizon with good agreement can be found for all con-
sidered cases.

The results of the study for different element sizes is shown in Figure 11. Since it is im-
possible to show the load-displacement curves for all combinations in the context of this study,
only the relative error of the force at a displacement of 0.1 mm in the load introduction region
to the FE solution with an element edge length of 0.2 mm is compared. Results in the upper left
corner of the figure are not available as the horizon would be smaller than the element size. The
smaller the failure of a combination is, the brighter a point is. A white point corresponds to an
error of zero. The minimum combination of each element size and horizon is shown by dashed
lines.

0.67 F----f----foo-oo-- PO - e----e . PR— 50
E 0S5p=====cemmmmean- *----0--=--- ®----- 0 é ° ° E) 40
£ : :

S 04|-----e----- L : ci) ; . . ° 30
g L
‘2 0.33¢----0----- ®----0---- : 0 0 ° ° * | |20
5 A
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Figure 11: Relative force error [%] to FEM solution for hex-mesh

It can be seen, that the convergence behavior is neither smooth nor continuous. For all
considered combinations a value of m =~ 3 leads to the minimum error compared to the elastic
FE response. Also, the error is reduced for finer discretizations. If the mesh is too coarse or the
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horizon too high, large deviations occur. Here, the limit is that the multitude of peridynamic
families should experience no effect of surface correction. This is not assured for ¢ > 1 mm for
the current model thickness as the characteristic length dimension. As expected, the smallest
error is achieved for the finest discretization (Figure 12). However, the error for dz = 0.4 mm
is sufficiently small and this element size allows a suitable calculation time for the following
studies.

—— Abaqus

300 | |— dr =0.67mm, m =3

—dz =0.50mm, m =3
dr =040mm, m = 3

——dr =0.33mm, m =3

‘D | |—dz=0.25mm, m =3
O £
é dz = 0.20mm, m = 3.125 =

100

Z

0.05 0.1 015 0.2 0.25 03 035 04 045 0.5
Displacement [mm|]

Figure 12: Force-displacement plot in elastic region for hex-mesh with m ~ 3

Failure According to [48], the choice of the horizon is constrained by a relationship between
critical stretch and strain energy release rate. For bond-based peridynamics the respective equa-
tion is also given in [3, 17]. It must be noted that the equation is based on the Griffith crack
model which require an existing pre-crack which is not present in the current model. [49]
claims that a similar equation for state-based model exists. However, the derivation is presum-
ably based on assumptions valid for BB-PD.

] 5G. ] G,
c¢.BB — c.SB* — 1
9K 3G+ (3)" (K -] s

(12)

For both equations, €. = f ((5*%). If a critical stretch is chosen for a specific horizon, the
critical stretch can be recalculated for any other horizon value by means of this relationship. If
the results are compared, for a 1D case, failure should occur at the same displacement. To check
this assumption, the load displacement curves for dz = 0.4 mm are compared until failure for
different horizons (Figure 13).
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(a) Force-displacement plot until failure ®d=12mm (c)d =2mm
Figure 13: Failure for hex-mesh with dr = 0.4 mm and various horizons

It can be seen, that Equation 12 does not hold for state-based PD. The specimen fail at
totally different displacements. A similar pattern as for the stiffness convergence can be seen.
This may be caused by the unequal force states of two points in a “bond”. However, the failure
behavior might be strongly influenced by the missing surface correction in the LPS material
model used in Peridigm. The only proper way to calibrate failure currently is to set the critical
stretch to a value where the specimen fails at the same displacement as in the FE simulation or
enhance Peridigm by an energy based failure criterion.

In quasi-static loading a symmetrical failure pattern is expected at 4 locations of the speci-
men. However, a fairly high velocity is chosen to keep calculation times on a manageable level.
Due to the combination of explicit time integration without any damping and this velocity it
may be possible that inertia effects have an influence on the location of failure. In that case
the specimen should fail in the top half, the side with the velocity constraint. The expected
location of failure is not achieved for the converged horizon but for the higher one. However,
it is possible that the loading speed is small enough that the damage location is dominated by
small numerical effects.

Due to the specimen symmetry failure occurs symmetrically on both sides and evolves in
the direction of the specimen mid-plane. The location of failure is comprehensible and lies in
the transition to the radius. Mild notch effects due to the change in stiffness and long-range
effects of the boundary conditions cause this behavior. A slight kink develops in the crack path,
which is most likely to be caused by the discretization pattern and the non-constant PD point
volume in the mesh transition domain.

For a 1D stress-state in a BB-PD code [41] proposed that the critical stretch can be taken
equal to the maximum principal strain from CM. From a comparison to the Abaqus XFEM
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solution one can see that this assumption is not valid in the current context. The displacement at
failure is even highly unequal between the two discretization types for each converged solution
and the same critical stretch.

6.1.2 Tet mesh

Stiffness Similar studies are carried out for a FE base mesh consisting of tetrahedron el-
ements. The results for the same element edge length are not directly comparable between
structured and unstructured meshes as the latter consists of a lot more elements for the same
edge length. The results of the stiffness convergence behavior are shown in Figure 14.

600
—— Abaqus
— 0 =4mm
— 4 =3mm
_400 { 0 =2mm
Z —— 0 = 1.5mm
§ — 0 =1.2mm
o 6 = 1mm
900 | |[— 6 =0.75mm
—— § = 0.5625 mm

0.05 0.1 015 02 025 0.3 035 0.4 045 0.5
Displacement [mm)]
Figure 14: Force-displacement plot in elastic region for tet-mesh with dx = 0.5 mm and various
horizons

The stiffness decreases monotonically until the horizon is only slightly larger than one. It
can therefore be said, that the unstructured discretization converges to the local FE solution for
smaller horizons. The results of all combinations of element size and horizon are shown in
Figure 15 with the same approach as in Figure 11.

However, this result might not reqpresent the globally converged solution. For smaller ele-
ment sizes it can be observed that the stiffness decreases even below the FEM solution. If the
mesh size is further decreased, the stiffness rises to the CM solution again. Unfortunately, using
these small element sizes comes with tremendous expenses with respect to the calculation time
and computational requirements.

Convergence is more continuous than for the hex mesh but still far from smooth over dif-
ferent element sizes. The minimum error occurs for a horizon slightly smaller than the element
size, here a factor of m = 1.125.
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Figure 15: Relative force error [%)] to FEM solution in elastic region for tet-mesh at displace-
ment 0.1 mm

Failure The results of the force-displacement plots with different horizons and adjusted crit-
ical stretch values are shown in Figure 16. The same observation as for the hex mesh can be
made. The relationship for the critical stretch from the bond-based PD, Equation 12, does not
apply for state-based PD in Peridigm.
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(a) Force-displacement plot until failure (b)d =0.56mm (c)d =1.5mm
Figure 16: Failure for tet-mesh with dxr = 0.5 mm and various horizons

The vertical location of failure is at the expected side of the specimen for the converged
horizon value. As for the hex-mesh, a higher value of the horizon leads to a more extensive
failure domain. It has to be noted that in the converged solution, failure occurs at the exact
location of transition in the specimen radius. In this localised area the discretization is strongly
influenced by the chosen geometrical model. In the present case a subdivision of individual
volumes is located there. This seems to influence the failure behavior which is comprehensible
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for this quasi discrete local model. It seems a quasi continuum nonlocal approach using an
unstructured mesh is well suited to capture failure mechanisms.

6.1.3 Comparison

For both discretizations at least five elements over the smallest specimen dimension should
be used to be able to achieve a convergent solution with negligible errors to the continuum
mechanics solution in the elastic regime. The more entropic discretization using a tet mesh and
avoiding symmetries in the model leads to a more physical representation of failure. Thus, for
more complex studies, the use of an unstructured mesh is proposed.

[11] found that classical elasticity theory is a subset of peridynamics and that PD converges
to classical elasticity theory for small horizons. In the present study, and therefore for the
numerical implementation of PD, it was found that minimizing the horizon to a bare minimum
of m = 1 only leads to the results of the local finite element method for the unstructured
discretization. Structured grids need larger horizon values of m =~ 3 to assure that enough
family members exist so that all directions are adequately covered.

[11] also mentioned that if the only requirement for a peridynamic constitutive model is to
reproduce the bulk properties, then horizon is essentially arbitrary. We found that statement to
be incomplete as the material behavior is a function of the combination of discretization size
and horizon if the behavior is not dominated by small-scale effects.

6.2 Stochastics

The lack of a generally valid failure criterion in state-based PD makes an assessment of the
initial idea to use a stochastic material distribution for the assessment of failure initiation diffi-
cult. However, stochastics may be used to achieve the same entropy in structured discretization
as in unstructured base meshes and to individualize failure locations. The comparison of the
original hex model with dx = 0.4 mm and horizon = 1.2 mm and three models with stochas-
tic material distribution is shown in Figure 17. Ten different blocks are created with a deviation
of the 2 % of the material bulk and shear modulus.

It can be seen that the overall stiffness and failure behavior does not change significantly.
However, the stochastic material distribution makes it possible to spot several possible individ-
ual failure locations. One would expect a less slanted crack propagation. This can be achieved
by using a finer discretization. However, a slightly angular failure path can also be observed in
tests with a little different specimen geometry of the same material, see Figure 18. A contact-
free displacement measurement using a video extensometer is used to avoid an influence on the
crack path.

The same principal results are valid for tet meshes as shown in Figure 19 with a modulus
range of 5 % around the nominal value. It can be noted that the location of failure shifts slightly
away from the geometric feature bordering the two separate volumes in this region. In one case
failure occurs slightly earlier as a result of the stochastic material distribution. Overall, due to
the higher mesh entropy, the effect of stochastic material distribution in tet meshes is smaller
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Figure 17: Failure for hex-mesh with dr = 0.4 mm and stochastics
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Figure 18: Angled crack path in same material specimen with different geometry [2]

than in hex meshes.
7. CONCLUSIONS

In the current study, the convergence behavior of peridynamic simulations is investigated
using the open-source PD code Peridigm. Multiple base discretization schemes are compared.
Different convergence behavior is observed for base hex and tet meshes. While m ~ 3 delivers
the best results for hex meshes, m ~ 1 can be chosen for tet discretizations in case long-range
forces have no effect and PD is merely used to improve the simulation of failure compared to
CM models.

The use of stochastic material distributions in PD simulations in Peridigm is possible and
gives meaningful results. It has proven to be a way to check if the results obtained in PD
simulations concerning failure are dominated by numerics and discretization effects or are really
the dominating physical effect.

If PD is simply used to model fracture in specimen and conditions not dominated by long-
range force effects, the use of tetrahedron base meshes is recommended. The horizon can then
be chosen only slightly larger than the element size. Symmetry planes in the model should
be avoided. In case a hexahedron mesh is used as an input, a stochastic material distribution
is a possibility to increase the model entropy and to get a more consistent prediction of the
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dominating failure pattern.

The critical stretch damage model must be adjusted to the discretization. The bond-based
relationships to the critical strain energy release rate prove unsuited for state-based models.
Thus, an energy-based failure criterion will be implemented during the next development steps.

References

[1] E.K Gamstedt and B.A Sjogren. “Micromechanisms in tension-compression fatigue of
composite laminates containing transverse plies”. In: Composites Science and Technol-
0gy 59.2 (1999), pp. 167-178. DOI: http://dx.doi.org/10.1016/S0266-3538(98)
00061-X.

[2] Daniel Krause. “Micromechanics of the fatigue behaviour of polymers”. DLR Report
2016-26. PhD Thesis. Technical University Braunschweig, 2016.

[3] Florin Bobaru et al. Handbook of Peridynamic Modeling. Advances in Applied Mathe-
matics. CRC Press, 2016.

[4] Stewart A. Silling. “Reformulation of elasticity theory for discontinuities and long-range
forces”. In: Journal of the Mechanics and Physics of Solids 48.1 (2000), pp. 175-209.
DOI: 10.1016/S0022-5096 (99) 00029-0.

[5] Pablo Seleson, Qiang Du, and Michael L. Parks. “On the consistency between nearest-
neighbor peridynamic discretizations and discretized classical elasticity models”. In:
Computer Methods in Applied Mechanics and Engineering 311 (2016), pp. 698-722.
DOI: http://doi.org/10.1016/j.cma.2016.07.039.

22


https://doi.org/http://dx.doi.org/10.1016/S0266-3538(98)00061-X
https://doi.org/http://dx.doi.org/10.1016/S0266-3538(98)00061-X
https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/http://doi.org/10.1016/j.cma.2016.07.039

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Ridel, A.-J. Bednarek, J. Schmidt, C. Willberg

Florin Bobaru and Wenke Hu. “The Meaning, Selection, and Use of the Peridynamic
Horizon and its Relation to Crack Branching in Brittle Materials™. In: International Jour-
nal of Fracture 176.2 (2012), pp. 215-222. DOI: 10.1007/s10704-012-9725-z.

Abigail G. Agwai. “A Peridynamic Approach for Coupled Fields”. PhD Thesis. The
University of Arizona, 2011.

R. Maranganti and P. Sharma. “Length Scales at which Classical Elasticity Breaks Down
for Various Materials”. In: Phys. Rev. Lett. 98 (19 May 2007), pp. 195504-1-195504-4.
DOI: http://dx.doi.org/10.1103/PhysRevLett.98.195504.

Markus Zimmermann. “A continuum theory with long-range forces for solids”. PhD The-
sis. Massachusetts Institute of Technology, 2005.

Etienne Emmrich and Olaf Weckner. “On the well-posedness of the linear peridynamic
model and its convergence towards the Navier equation of linear elasticity”. In: Commu-
nication in Mathematical Sciences 5.4 (2007), pp. 851-864. DOI: http://projecteuclid.
org/euclid.cms/1199377554.

Stewart A. Silling and R. Lehoucq. “Convergence of peridynamics to classical elastic
theory”. In: Journal of Elasticity 93 (2008), pp. 13-37. DOI: 10.1007/s10659-008 -
9163-3.

Florin Bobaru and Monchai Duangpanya. “The peridynamic formulation for transient
heat conduction”. In: International Journal of Heat and Mass Transfer 53.19-20 (2010),
pp- 4047-4059. DOI: http://dx.doi.org/10.1016/j.1ijheatmasstransfer.2010.
05.024.

Youn Doh Ha and Florin Bobaru. “Studies of dynamic crack propagation and crack
branching with peridynamics”. In: International Journal of Fracture 162.1 (2010), pp. 229—
244, DOI1: 10.1007/s10704-010-9442-4,

G. Sarego et al. “Linearized state-based peridynamics for 2-D problems”. In: Interna-
tional Journal for Numerical Methods in Engineering 108.10 (2016), pp. 1174-1197.
DOL: http://dx.doi.org/10.1002/nme.5250.

Wenke Hu, Youn Doh Ha, and Florin Bobaru. “Peridynamic model for dynamic fracture
in unidirectional fiber-reinforced composites”. In: Computer Methods in Applied Me-
chanics and Engineering 217-220 (2012), pp. 247-261. DOI: https://doi.org/10.
1016/j.cma.2012.01.016.

John T. Foster, Stewart A. Silling, and Weinong Chen. “An Energy based Failure Crite-
rion for use with Peridynamic States”. In: International Journal for Multiscale Compu-
tational Engineering 9.6 (2011), pp. 675-688. DOI: http://dx.doi.org/10.1615/
IntJMultCompEng.2011002407.

Stewart A. Silling and E. Askari. “A meshfree method based on the peridynamic model
of solid mechanics”. In: Computers and Structures 83.17-18 (2005), pp. 1526—-1535. DOT:
10.1016/j.compstruc.2004.11.026

23


https://doi.org/10.1007/s10704-012-9725-z
https://doi.org/http://dx.doi.org/10.1103/PhysRevLett.98.195504
https://doi.org/http://projecteuclid.org/euclid.cms/1199377554
https://doi.org/http://projecteuclid.org/euclid.cms/1199377554
https://doi.org/10.1007/s10659-008-9163-3
https://doi.org/10.1007/s10659-008-9163-3
https://doi.org/http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.05.024
https://doi.org/http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.05.024
https://doi.org/10.1007/s10704-010-9442-4
https://doi.org/http://dx.doi.org/10.1002/nme.5250
https://doi.org/https://doi.org/10.1016/j.cma.2012.01.016
https://doi.org/https://doi.org/10.1016/j.cma.2012.01.016
https://doi.org/http://dx.doi.org/10.1615/IntJMultCompEng.2011002407
https://doi.org/http://dx.doi.org/10.1615/IntJMultCompEng.2011002407
https://doi.org/10.1016/j.compstruc.2004.11.026

M. Ridel, A.-J. Bednarek, J. Schmidt, C. Willberg

[18] Stewart A. Silling. A Coarsening Method for Linear Peridynamics. Sandia Report SAND2010-
3303. Multiscale Science Department, Sandia National Laboratories, 2009.

[19] Patrick Diehl et al. “Bond-based peridynamics: a quantitative study of Mode I crack
opening”. In: International Journal of Fracture 201.2 (2016), pp. 157-170. DOI: http:
//dx.doi.org/10.1007/s10704-016-0119-5.

[20] Y. L. Hu, N. V. De Carvalho, and E. Madenci. “Peridynamic modeling of delamination
growth in composite laminates”. In: Composite Structures 132 (2015), pp. 610-620. DOT:
10.1016/j.compstruct.2015.05.079.

[21] Richard W. Macek and Stewart A. Silling. “Peridynamics via finite element analysis”. In:
Finite Elements in Analysis and Design 43.15 (2007), pp. 1169-1178. DOI: 10.1016/j.
finel.2007.08.012.

[22] Andris Freimanis and Ainars Paeglitis. “Mesh Sensitivity in Peridynamic Quasi-static
Simulations”. In: Procedia Engineering 172 (2017). Modern Building Materials, Struc-
tures and Techniques, pp. 284-291. DOI: http://dx.doi.org/10.1016/j.proeng.
2017.02.116.

[23] Florin Bobaru et al. “Convergence, adaptive refinement, and scaling in 1D peridynam-
ics”. In: International Journal for Numerical Methods in Engineering 77.6 (2009), pp. 852—
877. DOI: 10.1002/nme . 2439.

[24] Youn Doh Ha and Florin Bobaru. “Characteristics of dynamic brittle fracture captured
with peridynamics”. In: Engineering Fracture Mechanics 78.6 (2011), pp. 1156-1168.
DOI: https://doi.org/10.1016/j.engfracmech.2010.11.020.

[25] Rami Jabakhanji and Rabi H Mohtar. “A peridynamic model of flow in porous media”.
In: Advances in Water Resources 78 (2015), pp. 22-35. DOI: http://dx.doi.org/10.
1016/j.advwatres.2015.01.014.

[26] Shubhankar Roy Chowdhury et al. “A peridynamic theory for linear elastic shells”. In:
International Journal of Solids and Structures 84 (2016), pp. 110-132. DOI: http://
dx.doi.org/10.1016/j.ijsolstr.2016.01.019.

[27] Ziguang Chen and Florin Bobaru. “Peridynamic modeling of pitting corrosion damage”.
In: Journal of the Mechanics and Physics of Solids 78 (2015), pp. 352-381. DOI: http:
//dx.doi.org/10.1016/j.jmps.2015.02.015.

[28] Pablo Seleson and David J. Littlewood. “Convergence studies in meshfree peridynamic
simulations”. In: Computers & Mathematics with Applications 71.11 (2016). Proceedings
of the conference on Advances in Scientific Computing and Applied Mathematics. A
special issue in honor of Max Gunzburger’s 70th birthday, pp. 2432-2448. DOI: https:
//doi.org/10.1016/j.camwa.2015.12.021.

24


https://doi.org/http://dx.doi.org/10.1007/s10704-016-0119-5
https://doi.org/http://dx.doi.org/10.1007/s10704-016-0119-5
https://doi.org/10.1016/j.compstruct.2015.05.079
https://doi.org/10.1016/j.finel.2007.08.012
https://doi.org/10.1016/j.finel.2007.08.012
https://doi.org/http://dx.doi.org/10.1016/j.proeng.2017.02.116
https://doi.org/http://dx.doi.org/10.1016/j.proeng.2017.02.116
https://doi.org/10.1002/nme.2439
https://doi.org/https://doi.org/10.1016/j.engfracmech.2010.11.020
https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2015.01.014
https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2015.01.014
https://doi.org/http://dx.doi.org/10.1016/j.ijsolstr.2016.01.019
https://doi.org/http://dx.doi.org/10.1016/j.ijsolstr.2016.01.019
https://doi.org/http://dx.doi.org/10.1016/j.jmps.2015.02.015
https://doi.org/http://dx.doi.org/10.1016/j.jmps.2015.02.015
https://doi.org/https://doi.org/10.1016/j.camwa.2015.12.021
https://doi.org/https://doi.org/10.1016/j.camwa.2015.12.021

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Ridel, A.-J. Bednarek, J. Schmidt, C. Willberg

Xiaochuan Tian and Qiand Du. “Analysis and Comparison of Different Approximations
to Nonlocal Diffusion and Linear Peridynamic Equations”. In: SIAM Journal on Nu-
merical Analysis 51.6 (2013), pp. 3458-3482. DOI: https://doi.org/10.1137/
13091631X.

X. Chen and Max Gunzburger. “Continuous and discontinuous finite element methods
for a peridynamics model of mechanics”. In: Computer Methods in Applied Mechanics
and Engineering 200 (2011), pp. 1237-1250. DOI: https://doi.org/10.1016/j.
cma.2010.10.014.

Qiang Du et al. “A posteriori error analysis of finite element method for linear non-
local diffusion and peridynamic models”. In: Mathematics of Computation 82 (2013),
pp. 18889-1922. DOI: https://doi.org/10.1090/80025-5718-2013-02708-1.

M.S. Breitenfeld et al. “Non-ordinary state-based peridynamic analysis of stationary
crack problems”. In: Computer Methods in Applied Mechanics and Engineering 272
(2014), pp. 233-250. DOI: https://doi.org/10.1016/j.cma.2014.01.002.

Etienne Emmrich and Olaf Weckner. “The peridynamic equation and its spatial discreti-
sation”. In: Mathematical Modelling and Analysis 12.1 (2007), pp. 17-27. DOI: http:
//dx.doi.org/10.3846/1392-6292.2007.12.17-27.

Ziguang Chen, Drew Bakenhus, and Florin Bobaru. “A constructive peridynamic kernel
for elasticity”. In: Computer Methods in Applied Mechanics and Engineering 311 (2016),
pp- 356-373. DOI: http://dx.doi.org/10.1016/j.cma.2016.08.012.

Stewart A. Silling. Linearized Theory of Peridynamic States. Sandia Report SAND2009-
2458. Multiscale Science Department, Sandia National Laboratories, 2009.

Dan Huang, Guangda Lu, and Pizhong Qiao. “An improved peridynamic approach for
quasi-static elastic deformation and brittle fracture analysis”. In: International Journal of
Mechanical Sciences 94-95 (2015), pp. 111-122. DOI: http://dx.doi.org/10.1016/
j.1ijmecsci.2015.02.018.

Stewart A. Silling et al. “Peridynamic States and Constitutive Modeling”. In: Journal of
Elasticity 88 (2007), pp. 151-184. DOI: 10.1007/s10659-007-9125-1.

Adair R. Aguiar and Roger Fosdick. “A constitutive model for a linearly elastic peridy-
namic body”. In: Mathematics and Mechanics of Solids 19.5 (2014), pp. 502-523. DOI:
10.1177/1081286512472092.

John T. Foster, Stewart A. Silling, and Wayne W. Chen. “State Based Peridynamic Mod-

eling of Dynamic Fracture”. In: Proceedings of the SEM Annual Conference, Albuquerque,
USA. 2009, pp. 1-6.

Stewart A. Silling and R. B. Lehoucq. “Peridynamic Theory of Solid Mechanics”. In: Ad-
vances in Applied Mechanics 44 (2010), pp. 73-168. DOI: 10.1016/S0065-2156 (10)
44002-8.

25


https://doi.org/https://doi.org/10.1137/13091631X
https://doi.org/https://doi.org/10.1137/13091631X
https://doi.org/https://doi.org/10.1016/j.cma.2010.10.014
https://doi.org/https://doi.org/10.1016/j.cma.2010.10.014
https://doi.org/https://doi.org/10.1090/S0025-5718-2013-02708-1
https://doi.org/https://doi.org/10.1016/j.cma.2014.01.002
https://doi.org/http://dx.doi.org/10.3846/1392-6292.2007.12.17-27
https://doi.org/http://dx.doi.org/10.3846/1392-6292.2007.12.17-27
https://doi.org/http://dx.doi.org/10.1016/j.cma.2016.08.012
https://doi.org/http://dx.doi.org/10.1016/j.ijmecsci.2015.02.018
https://doi.org/http://dx.doi.org/10.1016/j.ijmecsci.2015.02.018
https://doi.org/10.1007/s10659-007-9125-1
https://doi.org/10.1177/1081286512472092
https://doi.org/10.1016/S0065-2156(10)44002-8
https://doi.org/10.1016/S0065-2156(10)44002-8

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

M. Rédel, A.-J. Bednarek, J. Schmidt, C. Willberg

Walter Gerstle, Nicolas Sau, and Stewart Silling. “Peridynamic Modeling of Plain and
Reinforced Concrete Structures”. In: /8th International Conference on Structural Me-
chanics in Reactor Technology (SMiRT 18), 7-12 August 2005, Beijing, China. 2005.

Araldite® LY 564 / Aradur ® 22962 data sheet. Huntsman International LLC. Salt Lake
City, Utah, USA, June 2009.

Dimitrios E. Sikoutris. “Fire Response of Composite Aerostructures”. PhD Thesis. Uni-
versity of Patras, 2012.

Michael L. Parks et al. Peridigm Users’ Guide. Sandia Report Tech. Report SAND2012-
7800. Albuquerque, New Mexico 87185 and Livermore, California 94550, USA: Sandia
National Laboratories, 2012.

Stewart A. Silling, Paul Demmie, and Thomas L. Warren. Peridynamic Simulation of
High-Rate Material Failure. 2007 ASME Applied Mechanics and Materials Conference,
Austin, TX. June 2007.

Erdogan Madenci and Selda Oterkus. “Ordinary state-based peridynamics for plastic de-
formation according to von Mises yield criteria with isotropic hardening”. In: Journal of
the Mechanics and Physics of Solids 86 (2016), pp. 192-219. DOI: https://doi.org/
10.1016/3 . jmps.2015.09.016.

John A. Mitchell, Stewart A. Silling, and David J. Littlewood. “A Position-Aware Linear
Solid Constitutive Model for Peridynamics”. In: Mechanics of Materials and Structures
10.5 (2015), pp. 539-557. DOI: 10.2140/jomms .2015.10.539.

ByoungSeon Jeon, Ross J. Stewart, and Izhar Z. Ahmed. “Peridynamic simulations of
brittle structures with thermal residual deformation: strengthening and structural reac-
tivity of glasses under impacts”. In: Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 471.2183 (2015), p. 20150231. DOI:
10.1098/rspa.2015.0231.

Erdogan Madenci and Erkan Oterkus. Peridynamic Theory and Its Applications. Vol. 1.
Springer, New York, 2014. DOI: 10 . 1007 /978 - 1 - 4614 - 8465 - 3. eprint: arXiv :
1011.1669v3.

26


https://doi.org/https://doi.org/10.1016/j.jmps.2015.09.016
https://doi.org/https://doi.org/10.1016/j.jmps.2015.09.016
https://doi.org/10.2140/jomms.2015.10.539
https://doi.org/10.1098/rspa.2015.0231
https://doi.org/10.1007/978-1-4614-8465-3
arXiv:1011.1669v3
arXiv:1011.1669v3

	Introduction & Literature
	Motivation
	Horizon and convergence

	Peridynamics
	Ordinary state-based peridynamics
	Material model
	Damage model

	Problem
	Specimen geometry
	Material properties

	Implementation
	Computational framework
	Stochastic model

	Model
	Discretization
	Loads and boundary conditions

	Results
	Convergence
	Hex mesh
	Tet mesh
	Comparison

	Stochastics

	Conclusions

