

5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS-5)

9 - 11 July, 2017, NISYROS - GREECE

Exergetic analysis of renewable Fischer-Tropsch fuels production from biomass, CO2 and electricity

Friedemann G. Albrecht, Ralph-Uwe Dietrich

German Aerospace Center (DLR e.V.)
Institute of Engineering Thermodynamics
Stuttgart

ELCAS-5 09-11.07.2017, Nisyros, Greece

Knowledge for Tomorrow

[1] FuelsEurope "Statistical Report" 2010

5th International Exergy, Life Cycle Assessment, and Sustainability Workshop & Symposium (ELCAS-5) 9 - 11 July, 2017, NISYROS - GREECE

Source: iata.org

IATA Technology Roadmap

4. Edition, June 2013

Main goals:

- 1 Improvement of fuel efficiency about 1,5 %p.a. until 2020
- 2 Carbon-neutral growth from 2020
- Potential CO₂ emissions reductions by 2050

Expected demand of ≈ 50 - 60 Mt kerosene equivalent Forecasted CO₂ emissions without reduction measures No action **Technology** European aviation jet fuel **Operations** consumption in 2010: ca. 56.5 Mt^[1] emissions Infrastructure CO₂ (2 **Planned Measures**: -50 % CO₂ Improvement of technologies, operations and airport by 2050 CO₂-certificates and other economic measures Radical technology transitions and alternative fuels 2010 2020 2030 2040 2050

Applied methodology for fuel evaluation

<u>Technical evaluation - focus on:</u>

Ecological evaluation – focus on:

- ➤ CO₂-footprint of produced fuels
- ➤ CO₂-abatement costs

Economic evaluation – focus on:

- Production costs (CAPEX, OPEX, NPC)
- Sensitivity analysis
- Identification of cost reduction potentials (exergoeconomic evaluation)

Applied methodology for fuel evaluation

Ecological evaluation – focus on:

- ➤ CO₂-footprint of produced fuels
- > CO₂-abatement costs

Methodology – exergy analysis

Process Simulation

- Includes all important equipment such as pumps/HEX/Reactors
- Physical exergy $E_x^{\ Ph}$ available in Aspen Plus for every material stream

Exergy Analysis

- Direct link between Aspen and TEPET
- Calculation of chemical exergy E_x^{Ch}
- Automated exergy analysis
- (planned) exergoeconomic optimization

Multiple options for FT-fuels from biomass, power and CO₂

FT-fuel from Biomass – Biomass-to-Liquid (BtL)

Multiple options for FT-fuels from biomass, power and CO₂

FT-fuel from Power and CO₂ – Power-to-Liquid (PtL)

Multiple options for FT-fuels from biomass, power and CO₂

FT-fuel from Power and Biomass – Power&Biomass-to-Liquid (PBtL)

Multiple options for FT-fuels from biomass, power and CO₂

FT-fuel from Power and Biomass – Power&Biomass-to-Liquid (PBtL)

Exergy flows - Biomass-to-Liquid

Exergy flows - Biomass-to-Liquid

Detailed exergy analysis of gasification section

Water quench responsible for:

- ➤ 87 % of exergy destruction within gasification section
- > 35 % of total exergy destruction within system

Promising alternatives:

- > Hot gas cleaning
- Change of gasifier technology

Exergy flows -PBtL

Exergy input: 37.1 MW (Biomass) 63 MW (Power)

Result of exergy analysis

Model	BtL	PtL	PBtL
$arepsilon_{fuel}$	37.8 %	53.7 %	53.1 %
$arepsilon_{total}$	63.5 %	61.2 %	60.4 %
Source of highest exergy destruction	gasification	electrolysis	electrolysis

Conclusion

- High demand of alternative fuels in order to fulfill CO₂-reduction targets
 -> especially with regard to the aviation sector
- DLR has developed a methodology to evaluate fuel production pathways
- Results of the presented case study:
 - Exergy efficiency of fuel production in the range of 37-54 %
 - Most exergy destruction occurs during syngas production -> Technology shift may increase system efficiency significantly

Promising options: BtL- Hot gas cleaning

PtL- High temperature electrolysis (SOEC)

Outlook

- Applying fuel evaluation methodology on other renewable fuel production concepts
 - Butanol
 - Methanol-to-Gasoline
 - HEFA
 - Solar-Fuels
 - etc.
- Economic optimization (Exergoeconomic analysis/optimization)
- Lifecycle assessment
 - CO₂-footprint
 - CO₂-abatement cost
- Application of exergy and exergoeconomic analysis on other thermo-chemical processes
 - DLR-Project IsEN (Isentropic energy storage)

Other options for "green" aviation?

Gossamer Albatross?

Crossing of the English Channel between Folkestone and Cap Gris-Nez by Bryan Allen on 12. June 1979

• Distance: 35.8 km

Travel time: 2:49 hours

This corresponds to:

Flight from Stuttgart (STR)

→ Kos (KGS): 1.970 km

Calculated flight time: 155 hours (6.5 days)

Source: https://de.wikipedia.org/wiki/Gossamer_Albatross

THANK YOU FOR YOUR ATTENTION!

German Aerospace Center (DLR)
Institute of Engineering Thermodynamics, Stuttgart

Research Area: Alternative Fuels

friedemann.albrecht@dlr.de http://www.dlr.de/tt/en

Knowledge for Tomorrow

Example: Process simulation Flowsheet (PtL)

