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Abstract
Initial tests in cooperative control for autonomous landings of an Unmanned Aerial Vehicle
(UAV) on a moving car have presented promising results. However, the identification of a
high-fidelity simulation model is a step of great importance towards the development of
more effective model predictive control strategies, which rely on precise models to allow
cooperative control of High Altitude, Long Endurance (HALE) UAVs with autonomous
ground vehicles. In this context, this work aims to develop a reliable model for the Penguin
BE aircraft used in cooperative landing tests at the German Aerospace Center (DLR),
and to design a high-performance pitch attitude controller applying the parameter space
approach. The system identification procedure has been carried out by applying both, the
Output Error and the Two Step methods, and a linear longitudinal model of the aircraft
has been developed. Parameter Space Control has been applied to the identified model in
order to suggest a set of alternative gains to the ones that are currently in use, which have
been fine-tuned in flight, using the Ziegler-Nichols method, which will not be viable in the
scope of stratospheric missions.

Keywords: System identification. Parameter space control design. Output Error Method.
Two Step Method. UAV.
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1 INTRODUCTION

Recent studies being performed at the German Aerospace Center (DLR) aim
to develop new technologies in order to land High Altitude, Long Endurance (HALE)
Unmanned Aerial Vehicles (UAVs) on a platform mounted on the top of a ground vehicle,
which, cooperatively with the UAV, controls position and velocity until successful landing
is achieved. The main purpose is to eliminate the need for an aircraft-mounted landing
gear and also to facilitate landings in crosswind situations. As a result, the total mass
of the aircraft would be significantly reduced. This would allow its operation for long
periods of time since this kind of UAVs demands very lightweight structures and at the
same time heavy batteries, required for overnight flight. If a reliable integrated landing
system for such UAVs is successfully developed, a large step will be taken towards their
commercial use. The main advantage of such ultralight stratospheric aircraft consists in
its versatility to be applied in numerous applications, including tasks that are usually
performed by satellites, e.g. earth observation, atmospheric research, and communication
networks. HALE UAVs are attractive options to supplement or substitute satellites due
to high costs, necessity of rocket launch, and dependence of orbits intricate to the use of
these spacecraft.

Cooperative landings have successfully been performed with the use of a demon-
strator setup (Fig. 1), comprised of a Penguin BE small unmanned aircraft and a car with
a human driver. However, a high fidelity model of the small UAV is required in order
to eliminate or reduce the need for in-flight tuning of control parameters and to further
improve the performance of the system through optimal control design. Adding to that, a
reliable simulation model of the aircraft would accelerate the process of developing more
effective cooperative control strategies to finally allow the first tests with actual HALE
UAVs and unmanned ground vehicles. The approach that will be applied, namely Model
Predictive Control, aims to generate feasible and optimal trajectories, based on a priori
knowledge of the vehicles. Therefore, deficient models would compromise the application
of such technique.

In this context, this work aims to develop a reliable model for the Penguin BE
aircraft used in cooperative landing tests, as well as to analyze the pitch attitude control
design that is currently in use and suggest alternative designs within the predefined
specifications.

Two different approaches are applied in system identification, namely time-domain
Output Error Method and Two Step Method. Control design is performed through the
application of a parameter space analysis. The thesis is divided into two major parts:
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Chapter 2 provides an explanation of the identification methods being utilized and how
they have been applied, as well an overview of the model validation tools adopted. It
also provides a presentation of Parameter Space Control Design and the way it has been
adapted for the intended application. Furthermore, related papers on each subtopic are
also cited in this chapter. In sequence, Chapter 3 presents the results of the identification
methods and a comparison between them, as well as the results of control design and
analysis in the space of parameters.

1.1 Previous work on the application
Several articles and conference papers about the DLR cooperative landing of HALE

UAVs have been published. The concept was firstly introduced by Laiacker et al. (2013),
which is mainly focused on the presentation of the multi-sensor system used in the landings.
The paper gives specific details about vision-based state estimation and sensor data fusion
methods employed.

A couple of years later, Muskardin et al. (2016) presented details about the cooper-
ative control algorithm and the results of the first simulations. Subsequent development
and the first results of successful landings with the demonstrator setup are presented by
Muskardin et al. (2016). Ultimately, Muskardin et al. (2017) also adds new advances within
the application and results of additional landing experiments. The main improvements are
the inclusion of vision-based state estimation and some alterations in the the high-level
mission control structure in order to provide safer and smoother cooperative landings.

Adding to that, three master’s theses have been produced within the field. The
first, Balmer (2015), was mainly concerned about modeling, simulation, and development
and testing of aircraft control strategies, including Total Energy Control System (TECS)
(KASTNER; LOOYE, 2013). The second, Persson (2016), performed a linear analysis
of the cooperative system, further developed control strategies, and presented results
of the first tests. The third, Lee (2017), aimed to identify high fidelity models for both
Penguin BE and the optionally piloted UAV Elektra One Solar1 (Figure 2). The results
and methods applied to Penguin BE system identification are compared with the ones
achieved in this work.

1.2 Penguin BE UAV
The aircraft being used in the demonstrator setup, whose longitudinal model is

identified in this work, is a Penguin BE UAV (Fig. 3), developed by UAV Factory2. It is an
1 <https://www.elektra-solar.com/>
2 <http://www.uavfactory.com/>

https://www.elektra-solar.com/
http://www.uavfactory.com/
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Figure 1 – Successful cooperative landing with demonstrator setup.

Source: Muskardin et al. (2017).

Figure 2 – Elektra One Solar.

Source: Lee (2017).

electric high-wing unmanned aerial vehicle with a negative V-tail configuration, powered
by a 640 Wh battery cartridge made from 48 lithium-polymer cells. Brsides that, this
aircraft is propelled by a geared brushless DC motor and a 19×11 inch propeller in pusher
configuration. Furthermore, it has 3.3 meters of wing span and 2.27 meters of length. Its
empty weight, including battery cartridge and standard landing gear, is 14.9 kg with a
maximum payload capacity of 6.6 kg (UAV FACTORY).
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Figure 3 – Penguin BE UAV.

Source: UAV Factory.

The DLR’s Penguin BE UAV instrumentation provides measurements of the
variables used in system identification. A LORD MicroStrain3 3DM-Gx3-25 inertial mea-
surement unit (IMU) measures linear accelerations, angular velocities and orientation, at
a sampling rate of 100 Hz. The Swiss Air-Data4 PSS-8 pitot-static system, mounted on
the nose of the aircraft, provides true airspeed and temperature data, at a 20 Hz sampling
rate. The Novatel5 Flex-Pak6 RTK receiver comprises a differential GPS and is responsible
for measuring latitude, longitude and altitude, at a sampling rate of 20 Hz. In addition, a
wireless local-area network (WLAN) sets up the communication with the ground station.

3 <http://www.microstrain.com/>
4 <http://www.swiss-airdata.com/>
5 <http://www.novatel.com/>

http://www.microstrain.com/
http://www.swiss-airdata.com/
http://www.novatel.com/
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2 IDENTIFICATION AND CONTROL DE-
SIGN FOR PENGUIN BE

2.1 A priori model
The first attempt to model and simulate the DLR’s Penguin BE aircraft was

performed by Balmer (2015). In his master’s thesis, Balmer developed a Simulink R© model
of the aircraft, which was created using the AeroSim Blockset (UNMANNED DYNAMICS).
In order to model the aerodynamics, an integration of the potential flow solver named
Athena Vortex Lattice (AVL) (DRELA; YOUNGREN, 2004) and a program for the
design and analysis of subsonic isolated airfoils, XFOIL (DRELA; YOUNGREN, 2000),
was performed, according to the method described in Klöckner (2013). Furthermore, a
propulsion model was developed from both, experimental data and information provided by
the manufacturer. In order to estimate the total moment of inertia, the aircraft components
were modeled as hollow hulls (fuselage), flat plates (wings and tail), or point masses (other
parts). Then the aircraft states have been calculated by introducing the modeled forces
and moments into the six-degree-of-freedom (6DOF) nonlinear equations of motion. An
overview of the resulting model can be seen in Figure 4.

As mentioned by Balmer (2015), the conceived model presented inaccuracies which
compromised its use in inner-loop control design; therefore control parameters had to be
re-tuned in flight by applying the Ziegler-Nichols method.

Despite the mentioned inaccuracies, a work developed by Persson (2016) described
an effort to obtain a linear model of the Penguin BE UAV through trim and linearization of
the Simulink model presented by Balmer (2015). The resulting state-space model describing
the longitudinal dynamics of the aircraft is given in Equation 2.1.



u̇

ẇ

q̇

θ̇

ω̇


=



−0.10 0.39 −1.4 −9.8 0.006
−0.64 −3.6 22 −0.6 0
0.19 −2.8 −5.6 0 −0.001

0 0 1 0 0
21 1.2 0 0 −2.6





u

w

q

θ

ω


+



0.38 0
−7.3 0
−65 0

0 0
0 2027


δe
δt

 (2.1)

where u and w are the linear velocities along x and z axes, respectively, in the body frame;
q corresponds to the pitch rate; θ denotes the pitch angle; and ω represents the engine
angular velocity. δe and δt are the elevator and throttle commands, respectively. All states
and measurements are in the International System of Units (SI).
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Figure 4 – Simulink R© model of Penguin BE, created using AeroSim Blockset.

Source: Balmer (2015).

The system has a total of five poles, with one real pole from engine dynamics and
two complex-conjugate pairs related to the phugoid and short period modes, described in
Section 2.2.

Phugoid: -0.03072 +− 0.5349j
Short period: -4.5935 +− 7.7958j
Engine dynamics: -2.6515

Being the most accurate linear representation of the aircraft available, this setup
has been used in this work as a priori model.

2.2 Optimal Input Design
The optimal input design process consists of defining a set of maneuvers, based on

a priori knowledge of the system, which best excite the aircraft modes, in an attempt to
maximize the effect of their dynamics in the measurements of the states. This step is crucial
to aircraft system identification since the estimation of a given parameter is impossible
unless its variation affects the data being analyzed. Therefore, the accuracy and reliability
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of estimates are closely attached to how much information about the desired parameter is
available in the measured response. This amount of information, in turn, clearly depends
on the nature of the given input for linear and nonlinear dynamical systems, including
aircraft (SHANNON, 1948).

Since Milliken Jr. (1947), the design of proper inputs has been widely considered
as a step of great importance for aircraft parameter estimation purposes. Much work has
been performed in the area up to date. Mehra (1974), Hamel and Jategaonkar (1996)
present reviews on the topic. Qian, Nadri and Dufour (2017) is a more recent study on
the application, focused on nonlinear system identification.

According to Jategaonkar (2015), two approaches are commonly applied to optimal
maneuver design. The first is based on statistical properties of the estimate and is performed
by assuming that the amount of information about a specific parameter in the data being
analyzed is a function of the overall model and of the inputs given. Therefore, by keeping
the parameters fixed at some a priori values, the variation of the information content
will be mainly determined by the inputs applied to the system. That being performed, an
optimization procedure, having input shape as parameter, is carried out with the intent of
achieving the maximum amount of information. This is usually determined by the Fisher
matrix (FISHER, 1934), given by Equation 2.2.

Fij = E

{
∂2 ln p(z | Θ)
∂Θi∂Θj

}
(2.2)

where p(z | Θ) represents the conditional probability density function of measurements
z with respect to a parameter vector Θ, and E{.} denotes the expected value. A more
detailed view on the statistical approach can be found in Gupta and Hall Jr. (1975), where
both, time and frequency domain input designs are demonstrated.

The second approach, which is used in this work, is an engineering approach based
on the frequency of the aircraft eigenmodes. In this method, the natural frequencies of an
a priori model of the aircraft are computed, and input signals are conveniently designed
to exhibit maximum energy around those frequencies. This approach is based on the
principle that deterministic signals can be represented by a linear combination of complex
exponentials in the time domain, which represent components with a specific amplitude at a
specific point in the frequency domain. This is achieved by computing the Fourier Transform
of the signals (FOURIER, 1878). Therefore, a set of multistep inputs are conveniently
designed to exhibit larger components in a sufficiently wide range of frequencies to excite
the natural vibrations of the a priori model. The use of multistep signals is also justified
by their relative easiness to be applied manually. Other types of signals like the Mehra
input and the DUT input may also be used (PLAETSCHKE; SCHULZ, 1979). However,
these approaches lead to continuous smoothly-varying maneuvers and usually require an
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autopilot to be properly performed.

For the purpose of this work, only the longitudinal aircraft modes are to be excited,
namely phugoid (or long period) and short period. The phugoid is a lightly damped
low-frequency oscillation (generally between 0.1 rad/s and 1 rad/s) in the axial velocity
u, which is also visible in pitch attitude θ, altitude h, and, to a lesser extent, in angle of
attack α and pitch rate q. The short period mode, in contrast, is a damped high-frequency
oscillation (typically between 1 rad/s and 10 rad/s) in the pitch attitude θ, which mainly
affects pitch rate q and angle of attack α (COOK, 2012).

According to Jategaonkar (2015), since the short period mode is well damped, it
requires a fast changing input to excite it. The signal used to induce this oscillation was
the so called DLR 3211 (KALETKA et al., 1989), which consists of a pulse with three time
steps (∆t) duration and amplitude of 0.8, another pulse with 2∆t and amplitude of -1.2,
followed by one positive and one negative pulse of duration ∆t each and amplitude of 1.1.
In this case, the amplitudes presented correspond to the ratio between the amplitude of
each pulse and the average absolute value of all amplitudes in the maneuver. An example
of the DLR 3211 input is shown in Figure 5.

Figure 5 – Example of DLR 3211 input.

Source: The author.

The phugoid mode, being lightly damped, can be satisfactorily excited by a pulse
signal. A suitable ∆t for the phugoid maneuver has been chosen such that its bandwidth
is large enough to account for uncertainties in the a priori model and its energy is not
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unnecessarily spread over an excessively large range of frequencies. In addition, a throttle
doublet has also been used to excite the long period motion in order to identify the effect
of the engine dynamics in the system. A doublet in thrust is usually used for this purpose;
however a satisfactory model of the aircraft engine has not yet been obtained and the
relationship between throttle and thrust has not been mapped yet. The time steps of the
doublet and DLR 3211 maneuvers have been calculated such that their energy peak is at
the natural frequency of the mode they are intended to excite. The formulas presented in
Jategaonkar (2015) to achieve optimal time steps for the doublet and DLR 3211 maneuvers
are presented in Equations 2.3 and 2.4, respectively.

∆tDBLT = 2.3
ωn

(2.3)

∆t3211 = 1.6
ωn

(2.4)

where ∆tDBLT and ∆t3211 denote the time steps of the doublet and DLR 3211 maneuvers,
respectively, and ωn is the undamped natural frequency of the mode to be excited.

Jategaonkar (2015) also states that, for parameter identification, the system should
be allowed to oscillate freely for at least one period of oscillation of the intended motion.

The designed maneuvers have been used as inputs to the Simulink R© model presented
by Balmer (2015). Their amplitudes have been adjusted to avoid instability and actuator
saturations.

Ultimately, Bode plots containing the frequency response of each term of the a
priori model have been used to check if the set of designed maneuvers is sufficient to
estimate all derivatives. “Term”, in this case, is used to denote the product of a concise
derivative and a state, e.g. xuu. In this stage a rule of thumb, presented by Plaetschke and
Schulz (1979) is used. This criterion states that a derivative is not considered identifiable
unless its term represents at least 10% of the largest term’s magnitude in the maneuver
frequency range.

2.3 Output Error Method
According to Jategaonkar (2015), the Output Error Method (OEM) is the most

widely adopted approach in time-domain aircraft parameter estimation from measured
flight data (WANG; ILIFF, 2004; MORELLI; KLEIN et al., 2005). It consists of iteratively
adjusting model parameters in order to minimize the error between measured data, from
flight tests, and predicted data, from integration of state-space model equations.

In the application of this method, the state-space setup presented in Section 2.1
has been adopted as a priori model. The derivatives considered identifiable according to
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the 10% rule, presented in Section 2.2, have been estimated for a satisfactory fit between
the measured and simulated states. In addition, constant terms have been added to the
state equations in order to account for measurement biases. On that account, the system
has been considered to be as shown in Equation 2.5.

ẋ(t) =Ax(t) +Bu(t) + bx, x(t0) = x0

y(t) =Cx(t) + by
(2.5)

where bx and by correspond to state and measurement bias vectors, respectively.

The Output Error system identification has been carried out through the application
of the OEM-Software, presented by Jategaonkar (2015), with some minor modifications.
Figures 6 and 7 display the block schematics of the Output Error Method and its imple-
mentation within the OEM-Software, respectively.

Figure 6 – Block schematic of the Output Error method.

Source: Jategaonkar (2015).

The major steps taken in this work to achieve minimum output error followed the
guidelines presented in Jategaonkar (2015), which are

1. Setting initial values of the parameters according to the a priori model.

2. Computing the outputs of the model through integration of the state equations, and
comparing them with measurements.

3. Estimating the measurement noise covariance matrix.

4. Minimizing the cost function defined in Equation 2.9.

5. Iterating on step two and checking for convergence.
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Figure 7 – Details of the OEM-Software.

Source: Jategaonkar (2015).

The minimization of the cost function has been performed through the application
of the Levenberg-Marquadt method (JATEGAONKAR, 2015). In addition, the state
equations have been numerically integrated by a fourth-order Runge-Kutta integration
method, which is included in the OEM-Software (JATEGAONKAR, 2015). Furthermore,
the error between the measurements and model outputs has been minimized and optimal
parameters have been obtained through maximum likelihood estimation.

2.3.1 Maximum likelihood estimation and cost function formulation

The maximum likelihood estimation is based on the maximization of the likelihood
function, defined in Equation 2.6 (FISHER, 1925).

p(z | Θ) =
N∏
k=1

p(zk | Θ) (2.6)
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where p(z | Θ) is the probability of a set of N observations z, given the unknown parameter
vector Θ.

The procedure consists of finding suitable values of Θ that maximize p(z | Θ).
Contrasting to what is performed in the statistical approach of optimal input design (see
Section 2.2), in the Output Error Method, inputs recorded during the flight test are applied
and model parameters are varied in order to maximize the likelihood function. For the sake
of the fact that p(z | Θ) is usually exponential, its negative logarithm is commonly utilized
to find optimal parameters, without affecting the solution. The expression of the logarithm
of the probability density function p with respect to measurements z, parameters Θ, and
the measurement error covariance matrix, R, is given in Equation 2.7. (JATEGAONKAR,
2015)

L(z | Θ, R) = 1
2

N∑
k=1

(
[z(tk)− y(tk)]TR−1[z(tk)− y(tk)]+

N

2 ln [det(R)] + Nny
2 ln (2π)

) (2.7)

where z(tk) and y(tk) represent the measurements and model outputs, respectively, and
ny is the number of system outputs.

The error covariance matrix, R, is defined in Equation 2.8.

R = 1
N

N∑
k=1

(
[z(tk)− y(tk)][z(tk)− y(tk)]T

)
(2.8)

The set of parameters that ensure maximum likelihood between flight measurements
and model outputs result from the minimization of Equation 2.7. The cost function can
be simplified to Equation 2.9 (JATEGAONKAR, 2015).

J(Θ) = det(R) (2.9)

This definition of the cost function ensures the computational feasibility of the
method.

2.4 Two Step Method
The Two Step Method is a system identification procedure comprised of two

stages, namely flight path reconstruction (LOMBAERTS et al., 2010; TEIXEIRA et al.,
2011; MULDER et al., 1999) and estimation of force and moment parameters through
linear regression. Its advantages are the possibility of estimating measurement biases
independently from derivative terms, avoiding correlations between these quantities, the
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elimination of the need for initial guesses for the parameters, and the assurance of global
minimum convergence within two iterations in the second stage. This approach has been
performed by numerous authors, including Grymin and Farhood (2016), Grymin (2013),
and Oliveira et al. (2005). Lee (2017) has performed two step system identification of the
same aircraft analyzed in this work; however a stochastic approach based on an Extended
Kalman Filter (EKF) has been applied in first step, rather than the deterministic one,
based on maximum likelihood estimation, performed in this composition. Martin and Feik
(1982), Evans et al. (1985), and Jategaonkar (2015) state that both procedures usually
yield similar results; however the deterministic approach is more advantageous when there
is no accurate a priori knowledge about noise statistics.

2.4.1 Flight path reconstruction

Flight path reconstruction, also known as data compatibility check, consists in
verifying the compatibility of measured data by inputting the variables recorded during
flight into the 6DOF rigid-body kinematic equations. This allows for the estimation of
instrument errors present in the measurements. The procedure is also performed using the
OEM-Software presented in Section 2.3.

In this stage both lateral and longitudinal measurements are used, although only
estimates of errors present in the latter are adopted as inputs to the next step.

The nonlinear state equations used in this stage are shown in Equation 2.10.

u̇ = −(qm −∆q)w + (rm −∆r)v − g sin θ + (aCGxm −∆ax) , u(t0) = u0

v̇ = −(rm −∆r)u+ (pm −∆p)w − g cos θ sinφ+ (aCGym −∆ay) , v(t0) = v0

ẇ = −(pm −∆p)v + (qm −∆q)u− g cos θ cosφ+ (aCGzm −∆az) , w(t0) = w0

φ̇ = (pm −∆p) + (qm −∆q) sinφ tan θ + (rm −∆r) cosφ tan θ , φ(t0) = φ0

θ̇ = (qm −∆q) cosφ− (rm −∆r) sinφ , θ(t0) = θ0

ψ̇ = (qm −∆q) sinφ sec θ + (rm −∆r) cosφ sec θ , ψ(t0) = ψ0

ḣ = u sin θ − v cos θ sinφ− w cos θ cosφ , h(t0) = h0

(2.10)

where v denotes the aircraft’s linear velocity along the y-axis in the body frame; φ and ψ
represent the roll and yaw angles; h stands for the aircraft altitude; pm, qm, and rm are
the measured angular rates; aCGxm , aCGym , and aCGzm are the measured linear accelerations at
the aircraft center of gravity; ∆ stands for biases in the measured quantities.

The OEM-Software compares the integrated state equations and calculates the
biases through maximum likelihood estimation (see Section 2.3). The procedure is run
iteratively in order to minimize errors between the model outputs and measured data.
A good match means that the estimated biases are similar to the ones present in the
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measurements. This is performed through the minimization of the cost function presented
in Equation 2.9, with instrument biases as parameters. In this part, different biases for
each maneuver were considered, as suggested by Jategaonkar (2015).

Once the biases are estimated, the longitudinal forces and moments, which were
acting on the aircraft during the flight experiment, could be reconstructed from the
corrected linear accelerations and angular rates. Since the maneuvers performed were
meant to excite only the longitudinal dynamics, the estimates of biases in lateral motion
are not reliable.

2.4.2 Estimation of the force and moment components

The second stage of the Two Step Method is a linear regression of the force and
moment equation parameters. After an estimate of the linear accelerations and angular
rates has been obtained, the total longitudinal forces and moments (aerodynamic and
propulsion) have been reconstructed from the corrected measurements. However, in order
to obtain mathematical expressions for the forces and moments, it is necessary to discover
the contributions of each state and input to the result of the previous step. In order
to accomplish that, the expressions for the total longitudinal forces and moments are
considered to be a linear combinations of states and inputs, as shown in Equation 2.11.

X = X0 +Xuu+Xww +Xqq +Xδeδe+Xδtδt

Z = Z0 + Zuu+ Zww + Zqq + Zδeδe

M = M0 +Muu+Mww +Mqq +Mδeδe

(2.11)

where X, Z, and M correspond to the reconstructed axial and normal forces, and the
pitching moment, respectively. The components that multiply inputs and states on the
right-hand side are constant terms that define the amount of force or moment that is
generated by each variable. These terms correspond to the fist-order terms of the Taylor
series expansion of the left-hand side variables with respect to each of the right-hand side
ones. In addition, subscript 0 means constant biases in the force and moment equations.

The constant terms of the equations are initially set to zero, and their optimal
values are obtained through Levenberg-Marquadt minimization of the adapted maximum
likelihood cost function (Equation 2.9). This aims to achieve the best fit between the
reconstructed forces and moments and the ones generated by the linear polynomials from
Equation 2.11. This entire procedure is run through an adaptation of the OEM-Software.
The minimization procedure is terminated after two iterations. Since the model is linear in
parameters and in the independent variables, convergence is achieved within one iteration;
however the software needs a second iteration to check if the minimum value has been
encountered.
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The Two Step Method results in linear expressions for the total forces and moments
acting on the aircraft. However, if a linear state-space model of the overall aircraft is
required, the 6DOF equations of motion have to be linearized as well. Figure 8 shows a
simplified block diagram of a nonlinear aircraft simulation model. In the Two Step Method,
a linear model for the dashed rectangle (total forces and moments) has been obtained;
however the 6DOF equations of motion have been used in their nonlinear form during the
identification procedure.

Figure 8 – Simplified aircraft block diagram.

Source: The author.

In order to analyze the match between the measured states and the ones resulting
from the Two Step Method, the longitudinal states have been generated by inputting
the estimated forces and moments into the longitudinal 6DOF dynamic equations. The
measurements of the lateral states are included, as well as the lateral angular rates
measurements corrected with the estimated biases, as shown in Equation 2.12.

u̇ = X

m
− qw + (rm −∆r)vm − g sin θ

ẇ = Z

m
− (pm −∆p)vm + qu− g cos θ cosφm

q̇ = 1
Iyy

(
M +

(
(rm −∆r)2 − (pm −∆p)2

)
Ixz + (pm −∆p)(rm −∆r)(Izz − Ixx)

)
θ̇ = q cosφm − (rm −∆r) sinφm

(2.12)
where m is the aircraft mass; Iyy, Izz, Ixx, and Ixz denote the aircraft moments of inertia
and a product of inertia with respect to the axes indicated in the subscripts; X, Z, and
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M are the estimated longitudinal forces and moments; subscript m stands for measured
lateral variables, and ∆ denotes the estimated biases in lateral angular rates.

2.5 Model validation
Model validation, as defined by Schlesinger et al. (1974), is an essential process to

judge the applicability of the identified models to the intended purpose. It is performed by
checking whether the simulated and measured data match.

In order to provide means of comparing results with Lee (2017), the model validation
performed in this work has followed the same procedure presented by Lee.

The simulated states, obtained from both identification methods, have been evalu-
ated by two statistical measures, namely Goodness of Fit (GOF) and Theil’s Inequality
Coefficient (TIC). The former is a residual analysis criterion to measure model fit, which
can be evaluated by multiple statistical metrics. In this project, the normalized mean
square error (NMSE) is used as GOF metric. Its definition is given in Equation 2.13.

Theil’s Inequality coefficient (Eq. 2.14), according to Jategaonkar (2015), provides
more insight about the correlation between measured and simulated data than the GOF.
In the process of comparing estimates of dynamic system states, the NMSE measure can
be inadequate. As far as this metric concerned, even a straight line may be considered
better than a signal that is out of phase with the reference. According to Jategaonkar
(2015), values of TIC<0.3 indicate good agreement.

NMSE varies between −∞ and 1, where negative values mean that a straight line
matches the reference better than the estimated value, with −∞ as the worst possible fit,
Positive values indicate that the estimate fits better than a straight line. A value of one
means perfect match between the data. TIC values range between 0 and 1, and the lower
its values, the better the fit.

On the other hand, three statistical analyses have been applied in order to follow
what has been performed by Lee (2017) in the evaluation of the estimated forces and
moments. R2, root mean square error (RMSE), and normalized root mean squared error
(NRMSE) are defined by Equations 2.15, 2.16, and 2.17, respectively. R2 varies between 0
and 1. Zero indicates that the estimate fits worse than a straight line, and one means a
perfect match.

RMSE is also known as the fit standard error. It has the same unit as the dependent
variable. Smaller values of this measure indicate better fit. NRMSE, on the other hand, is
the value RMSE divided by the variable range, which makes this measure dimensionless.
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GOFi = NMSEi = 1− ||zi(tk)− yi(tk)||
2

||zi(tk)− z̄i(tk)||2
, i = 1, 2, . . . , ny (2.13)

TICi =

√
1
N

∑N
k=1[zi(tk)− yi(tk)]2√

1
N

∑N
k=1[zi(tk)]2 +

√
1
N

∑N
k=1[yi(tk)]2

, i = 1, 2, . . . , ny (2.14)

R2
i = 1−

∑N
i=1 [zi(tk)− yi(tk)]2∑N
i=1 [zi(tk)− z̄i(tk)]2

, i = 1, 2, . . . , ny (2.15)

RMSEi =
√∑N

i=1[zi(tk)− yi(tk)]2
N

, i = 1, 2, . . . , ny (2.16)

NRMSEi = RMSEi
zmax − zmin

, i = 1, 2, . . . , ny (2.17)

In Equations 2.13 through 2.17, N is the total number of data points, and ny is the
total number of system outputs. z and y are the measurement and model output vectors,
respectively. z̄ is the the mean value of z, and ||.|| indicates the 2-norm of a vector.

A summary of the characteristics of the statistical measures used in this work is
presented in Table 1. The column named “Variables” stands for the variables evaluated by
each measure, according to what has been performed by Lee (2017). All measures can be
interchangeably used to evaluate states, forces, and moments. However, in order to allow
a comparison with the results obtained by Lee (2017), the measures have been applied
in the same way. The column named “Threshold” defines the limits that indicate good
agreement between measurements and estimates. Except for TIC, a threshold for the other
measures could not be found in the aircraft system identification literature.

Table 1 – Characteristics of the model validation statistic measures.

Measure Range Worst match Best match Threshold Variables (LEE, 2017)
GOF (NMSE) −∞ ∼ 1 −∞ 1 undefined states

TIC 0 ∼ 1 1 0 <0.3 states
R2 −∞ ∼ 1 −∞ 1 undefined forces and moments

RMSE 0 ∼ +∞ +∞ 0 undefined forces and moments
NRMSE 0 ∼ 1 1 0 undefined forces and moments

Source: The author.

2.6 Parameter space control design
Parameter space control design is a widely used approach in robust control applica-

tions. It consists of designing a control system to meet some stability and/or performance
specifications by conducting a study on how the controlled plant will behave with respect to
parameter variations (ACKERMANN, 1980). In robust control applications, both control
and plant parameters are taken into account, which usually includes controller and model
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variations, quantization effects, and sensor failures. The objective is to find a controller
that behaves satisfactorily even if anomalous system variations occur. An application of
this approach is described by Ackermann (2008), where the author cites his effort to find
a set of fixed gains for an aircraft control system, instead of performing gain scheduling.

Ackermann (2012) and Lavretsky and Wise (2013) are books on robust control,
which give a detailed explanation of the parameter space approach. Demirel and Guvenc
(2010) and Saeki (2013) present cases where the technique has been applied.

The aim of this work slightly differs from robust control design objectives; however,
a similar procedure is applied. The goal is to analyze the PID control parameter space
for a set of predefined stability and performance requirements and check whether the
currently used control gains fall inside or close to the intersection of the specifications
when applied to the identified model. These gains have been tuned in flight using the
Ziegler-Nichols method, which does not require a model. Similar performance of the in-
flight-tuned controller would be a possible indicator that the model is suitable for control
design. This would eliminate the necessity of in-flight re-tuning and also allow for optimal
control design.

In order to perform that analysis, a grid search has been performed in a region
around the currently used gains. Multiple combinations of proportional, integral, and
derivative gains have been tested to check if the resulting closed-loop system would meet
the specifications.

For the purpose of this work, only the pitch attitude control system has been
analyzed, whose control law is given in Equation 2.18.

δe = −
(
Kθ + Kiθ

s

)
(θdes − θ)−Kq(qturn − q) (2.18)

where Kθ, Kiθ, and Kq are the proportional, integral and derivative gains, respectively. θ
and q are the measured aircraft pitch angle and angular rates. θdes is the reference for θ
and qturn is the reference for q, which is used for coordinated turns.

The requirements are: stable system, overshoot less than 5%, rise time (Tr) less
than 1 second, and settling time (Ts), 5% criterion, less than 10 seconds. The result of
the analysis is a set of plots. Each specification corresponds to a circle of a specific color.
Circles are plotted in the coordinates corresponding to the parameters being tested, in case
the closed-loop system meets that requirement. A total of four plots have been generated,
namely Kθ ×Kiθ, Kθ ×Kq, Kq ×Kiθ (Fig. 20), and a three-dimensional figure (Fig. 21).
The gains that are currently being adopted and the range where the grid search has been
run are shown in Table 2.

The ranges of gains have been chosen such that the behavior of the system could
be analyzed in multiple points around the gains tuned in flight. The range of Kθ has been
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Table 2 – Values tuned in flight and grid search range of gains.

Gain Currently adopted value Grid search range
Kθ 1 0.9 ∼ 1.2
Kiθ 0.14 s−1 0.05 ∼ 0.4 s−1

Kq 0.2 s 0.1 ∼ 0.4 s

Source: The author.

defined not to cover gains much greater than 1. This value caused small occasional actuator
saturations during the flight, which did not compromise the efficacy of the control system.
The gains Kiθ and Kq have been initially set to range between 0.1 and 0.4 seconds−1, for
the former, and 0.1 and 0.4 seconds, for the latter. However, in order to find a minimum
value of Kiθ that would not comply with the specifications for any values of the other two
gains, the lower bound of its range has been slightly decreased to 0.05 seconds−1. The step
of variation for all gains has been set to 0.01.



27

3 RESULTS AND DISCUSSION

3.1 Considerations about the experiment
The natural frequencies of the a priori model are: 0.5358 rad/s and 9.0485 rad/s

(0.085 Hz and 1.44 Hz), which correspond to the long and short period modes, respectively.
These frequencies have been used as inputs to Equations 2.3 and 2.4.

The characteristics of the optimal inputs, designed as described in Section 2.2, are
presented in Table 3. ∆t are the optimal time steps. These values have been calculated with
Equations 2.3 and 2.4 for the throttle doublet and short period maneuvers, respectively,
and chosen as described in Section 2.2 for the phugoid input. “Maximum amplitude” stands
for the highest amplitude of the input to avoid instability and actuator saturation, tested
on the model presented by Balmer (2015). The maximum amplitude of the DLR 3211
represents the average absolute amplitude of this signal. The throttle doublet input starts
at throttle equal to 0.5, adds up to full throttle, decreases to zero, and returns to 0.5.
“Oscillation time” is the minimum time that the aircraft should be allowed to oscillate
freely after the maneuver. This value is equivalent to the period of the mode it is intended
to excite (see Section 2.2).

For the purpose of this work, the bandwidth of the inputs have been considered to
be the range of frequencies that exhibit at least 50% of the maximum energy of the signal.
It is assumed that only the dynamics within that range will be excited with sufficient
energy to affect the measurements. The analysis of identifiability of the derivatives is
carried out by taking into account the magnitude of their terms within the bandwidth of
the signals.

Table 3 – Characteristics of optimal elevator and throttle inputs.

Maneuver ∆t(s) Maximum amplitude Oscillation time Bandwidth
Short period 0.18 0.6 rad 0.81 s 1.76 ∼ 15.60 rad/s
Phugoid 1.6 0.18 rad 11.75 s 0 ∼ 1.73 rad/s

Throttle doublet 4.29 0.5 +− 0.5 11.75 s 0.27 ∼ 0.85 rad/s
Source: The author.

The input signals in the time domain, as well as their power spectra are shown in
Figure 9. The frequencies of the modes each maneuver is intended to excite are indicated
with arrows.

Since there is no strict requirement on the time step of the long period input, a
value of ∆t equal to 1.6 seconds was found suitable. Longer time steps easily destabilize
the system. To avoid that, the elevator deflection would have to be reduced, which would



Chapter 3. RESULTS AND DISCUSSION 28

significantly lower the energy of the maneuver. Hence, the advantage of having larger
energy content in signals with longer ∆t described by Jategaonkar (2015) is, in this case,
absent. On the other hand, small values of ∆t generate signals with energy contents spread
over a large range of frequencies, but with very small magnitudes, which may not be
enough to properly excite the system (JATEGAONKAR, 2015). In that context, the time
step of the phugoid maneuver was chosen such that its bandwidth would not overlap with
the bandwidth associated with the short period maneuver.

(a) Elevator DLR 3211 in the time domain. (b) Elevator DLR 3211 power spectrum.

(c) Elevator pulse in the time domain. (d) Elevator pulse power spectrum.

(e) Throttle doublet in the time domain. (f) Throttle doublet power spectrum.

Figure 9 – Optimal inputs in the time and frequency domains.

Source: The author.

Due to time constraints, there has been no possibility of performing maneuvers
with the optimal ∆t values found using Equations 2.3 and 2.4 in flight tests. Therefore, the
available flight data has been used in system identification. The set of inputs performed
in the flight tests has been designed by Lee (2017). Instead of centering the maximum
energy peak at the eigenfrequencies, Lee defined ∆t values such that the bandwidth of the
maneuvers would be appropriate to identify all derivatives, except xδe, according to the
10% rule. Regarding the number of parameters considered identifiable, both methods have



Chapter 3. RESULTS AND DISCUSSION 29

yielded the same results, despite the one presented by Lee (2017) not being concerned
about the optimality of the inputs.

Table 4 shows the characteristics of the actual maneuvers performed in flight.
The input signals in the time domain, as well as their frequency responses are shown in
Figure 10.

Table 4 – Characteristics of the inputs from flight data.

Maneuver ∆t(s) Amplitude Oscillation time Bandwidth
Short period 0.3 0.2 rad ∼7 s 1.04∼9.19 rad/s
Phugoid 1 0.2 rad ∼27 s 0∼2.78 rad/s

Throttle doublet 3 0.6 +− 0.4 ∼27 s 0.38∼1.22 rad/s
Source: Lee (2017).

(a) Elevator DLR 3211 in the time domain. (b) Elevator DLR 3211 power spectrum.

(c) Elevator pulse in the time domain. (d) Elevator pulse power spectrum.

(e) Throttle doublet in the time domain. (f) Throttle doublet power spectrum.

Figure 10 – Actual flight data inputs in the time and frequency domains.

Source: The author.

As previously discussed, the time step of the phugoid was chosen such that the input
does not excite frequencies already excited by the short period maneuver. However, since
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the phugoid mode is lightly damped and requires relatively low energy to be excited, the
choice on ∆t is somewhat flexible. Hence, a time step of 1 second should yield equivalent
results to the one previously selected. In what concerns the throttle doublet maneuver
applied, its power spectrum has its peak at about 0.77 rad/s while the natural frequency
of the phugoid mode from the a priori model is excited with about 79% of the maximum
power. Despite not being optimal, this input may also be sufficient since the natural
frequency of the mode is within the identifiable bandwidth of the maneuver and reasonably
close to its peak. On the other hand, the DLR 3211 maneuver used in the flight test has its
peak at about 5.26 rad/s, while the natural frequency of the mode it is intended to excite is
located at a point that represents about 56% of the maximum power. Considering that this
value is still within the bandwidth, the maneuver is also considered acceptable. Adding to
that, it is known that the actual oscillation frequency of damped modes, i.e., their damped
natural frequency, is lower than their natural frequency (MILLER; MATTUCK, 2010).

After examining the time steps of the recorded inputs, a frequency domain analysis
of the a priori model has been performed in order to validate the set of maneuvers, according
to the 10% rule. To accomplish that, it is assumed that the linearized longitudinal model
of the aircraft is as given in Equation 3.1.

u̇ = x0 + xuu+ xww + xqq + xθθ + xωω + xδeδe

ẇ = z0 + zuu+ zww + zqq + zθθ + zδeδe

q̇ = m0 +muu+mww +mqq +mωω +mδeδe

θ̇ = q

ω̇ = k0 + kuu+ kww −
1
Tω
ω + kω

Tω
δt

(3.1)

where x0, z0, m0, and k0 are biases; xu, xw, xq, xθ, xω, xδe, zu, zw, zq, zθ, zδe, mu, mw,
mq, mω, and mδe are the so called concise derivatives, which have this name because
they represent larger expressions involving the aircraft dimensional derivatives. These
are adopted for the sake of notation simplicity. The equivalent expressions to the concise
derivatives can be found in Cook (2012). ku, kw, −1

Tω
, kω

Tω
are engine dynamics components.

The concise derivatives and engine dynamics components are defined in Appendix A.
The engine dynamics equation has been assumed to be of this form in order to account for
all nonzero components of the fifth line of the a priori model (Section 2.1). The Laplace
transform of this equation is shown in Appendix A. Furthermore, all the biases are assumed
to be zero, and the values of the derivatives have been taken from the a priori model.

Bode plots containing each term on the right-hand side of Equation 3.1 have been
generated in order to investigate the identifiability of the parameters within the range
of each flight test maneuver, according to the 10% rule defined in Section 2.2. The plots
can be seen in Figure 11. The Bode diagrams of the derivative terms are generated by
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plotting the frequency response magnitude of the terms in Equation 3.1 as a function of
the input signal, which for the left-hand-side plots is the elevator command and for the
right-hand-side figures is the throttle command.

To demonstrate the procedure applied, axial force equation is considered. The
frequency response magnitudes of each of the terms, namely xu, xw, xq, xθ, xω, and xδe,
are plotted with respect to the elevator input. The magnitudes being computed in this
case are shown in Equation 3.2.

∣∣∣∣∣xuu(ω)
δe(ω)

∣∣∣∣∣,
∣∣∣∣∣xww(ω)
δe(ω)

∣∣∣∣∣,
∣∣∣∣∣xqq(ω)
δe(ω)

∣∣∣∣∣,
∣∣∣∣∣xθθ(ω)
δe(ω)

∣∣∣∣∣,
∣∣∣∣∣xωω(ω)
δe(ω)

∣∣∣∣∣,
∣∣∣∣∣xδeδe(ω)
δe(ω)

∣∣∣∣∣ (3.2)

where argument (ω) denotes the Fourier transform of the variables.

The individual components are then computed from the output equation y =
C[u w q θ ω]T + Dδe, with the observation matrices C and D defined as shown in
Equation 3.3. The values of the vectors are taken from the a priori model. The subscripts
denote the observation matrices for the corresponding components.

Cu = [−0.10 0 0 0 0], Du = [0]

Cw = [0 0.39 0 0 0], Dw = [0]

Cq = [0 0 − 1.4 0 0], Dq = [0]

Cθ = [0 0 0 − 9.8 0], Dθ = [0]

Cω = [0 0 0 0 0.006], Dω = [0]

Cδe = [0 0 0 0 0], Dδe = [0.38]

(3.3)

The same procedure has been performed for throttle as input and for all other
equations, except the one for θ since the first derivative of this variable is considered to be
equal to q. Consequently, there are no parameters to be identified in this equation.

The blue, red and black dashed boxes shown in the Bode plots delimit the regions
of identifiability of phugoid, short period and throttle doublet maneuvers, respectively. In
addition to the identifiability analysis, a study of the best input to identify each derivative
is also performed by analyzing the maximum magnitude of a term compared to the other
terms within the maneuver range. In order to avoid overlapping and make the choice
clearer, the left edge of the bandwidth of the short-period input was defined to start at
the right cutoff frequency of the phugoid maneuver. Since all frequencies in the bandwidth
of the inputs are excited, the investigation is carried out by comparing the maximum
magnitude of all terms within that range, even if the maximum values do not happen at
the same frequency. The results of this analysis are shown in Table 5.
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(a) Axial force terms. Elevator as input. (b) Axial force terms. Throttle as input.

(c) Normal force terms. Elevator as input. (d) Normal force terms. Throttle as input.

(e) Pitching moment terms. Elevator as input. (f) Pitching moment terms. Throttle as input.

(g) Engine dynamics terms. Elevator as input. (h) Engine dynamics terms. Throttle as input.

Figure 11 – Bode plots of derivative terms. The blue, red, and black dashed rectangles
represent the regions of identifiability of the phugoid, short period, and throttle
doublet maneuvers, respectively.

Source: The author.
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In order to clarify the choice on the best maneuver to identify each derivative the
analysis of the mu term, from Figure 11 (e) and (f), is explained.

In the throttle doublet maneuver range, mu exhibits a maximum magnitude of 22.9
dB, in contrast with the maximum values of the other terms, which are 21.7 dB, 2.54 dB
and -1.91 dB.

In the bandwidth of the phugoid input, the maximum magnitude of mu is 42.5 dB,
while the other terms have maximum peaks of 42.2 dB, 36.3 dB, 35.2 dB and 15.6 dB.

Analyzing the short period maneuver identifiability range, it can be seen that the
mu term has a maximum magnitude of -6.09 dB, while the other terms exhibit maximum
values of 36.3 dB, 34.9 dB, 32.5 dB and -22.8 dB.

From this analysis it can be concluded that the term mu is best identified using the
throttle doublet maneuver since its relative maximum magnitude compared to the other
terms is greater than the ones exhibited in the ranges of the other two inputs. Besides that
the term can be considered identifiable in the phugoid range and not identifiable within
the short period bandwidth.

Furthermore, it can be noticed that the terms related to the parameters present in
the B matrix from the state-space model represent straight lines in the Bode diagrams. This
occurs due to the fact that these terms are static. It can be also noticed from Equation 3.2
that the variables that multiply these parameters are canceled out.

Table 5 – Identifiability of derivatives.

Derivative Phugoid Short period Throttle doublet
xu Best. Not identifiable. Identifiable.
xw Identifiable. Best. Not identifiable.
xq Identifiable. Best. Identifiable.
xθ Identifiable. Identifiable. Best.
xω Identifiable. Not identifiable. Best.
xδe Not identifiable. Not identifiable. Not identifiable.
zu Identifiable. Identifiable. Best.
zw Identifiable. Best. Not identifiable.
zq Identifiable. Best. Identifiable.
zθ Best. Not identifiable. Identifiable.
zδe Identifiable. Best. Not identifiable.
mu Identifiable. Not identifiable. Best.
mw Identifiable. Best. Not identifiable.
mq Identifiable. Identifiable. Best.
mω Best. Not identifiable. Identifiable.
mδe Identifiable. Best. Not identifiable.
ku Best. Identifiable. Identifiable.
kw Identifiable. Best. Identifiable.
− 1
Tω

Identifiable. Best. Identifiable.
kω
Tω

Not identifiable. Not identifiable. Best.
Source: The author.

According to the examination of the magnitude of the terms, all parameters except
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xδe can be identified using the flight data. It can be also concluded that the use of all
kinds of maneuvers would possibly yield better results since the largest relative magnitude
of the terms are distributed over the three ranges. In addition, the use of different inputs is
also beneficial for the robustness of the parameter estimation, avoiding a possible limited
operating range of the model.

From the available flight test data, three maneuvers of each kind have been chosen
for the identification procedure. Since an autopilot has been used, all inputs have been
adequately performed in terms of amplitude and time step; however in a few of them,
enough time for the aircraft to oscillate has not been given. Those maneuvers have been
discarded.

From the set of nine maneuvers considered useful, one of each class has been ran-
domly chosen to compose the validation set, which has not been used during identification.
Therefore, a total of six maneuvers have been used for identification and three maneuvers
have been adopted for the validation procedure. Figures 12 and 13 display the inputs of
the identification and validation sets, respectively. The vertical black lines delimit the
maneuvers.

Figure 12 – Inputs used in identification.

Source: The author.
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Figure 13 – Inputs used in validation.

Source: The author.

3.2 System identification results

3.2.1 Results of the a priori model

The states generated by the application of the validation maneuvers to the a priori
state-space model, presented in Section 2.1, are shown in Figure 14. The states simulated
with the a priori model are plotted in red. The measured states are shown in blue.

Tables 6 and 7 present Goodness of Fit and Theil’s inequality coefficients, which
compare the simulation results and the measurements of the states from the identification
and validation sets, respectively.

Table 6 – Statistical measures of the states simulated using the a priori model – identifi-
cation set.

Measure u w q θ ω
GOF -88.6034 -1.1008 -13.4752 -50.4809 -6.5016
TIC 0.7384 0.7517 0.7793 0.8340 0.1149

Source: The author.
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Figure 14 – States simulated with the a priori model and measured states.

Source: The author.

Table 7 – Statistical measures of the states simulated using the a priori model – validation
set.

Measure u w q θ ω
GOF -49.6545 -0.6371 -12.0559 -34.1344 -4.8069
TIC 0.7466 0.6332 0.7864 0.8222 0.1309

Source: The author.

By analyzing Figure 14 and Tables 6 and 7 it can be concluded that the a priori
model does not sufficiently simulate the aircraft behavior. Due to that, an effort to identify
a new model by applying the Output Error and Two Step methods has been found
necessary.

3.2.2 Results of the Output Error Method

The application of the Output Error Method resulted in the state-space model
shown in Equation 3.4. The state and measurement bias vectors are shown in Equation 3.5.
Figure 15 presents a comparison between the time series of the measured and simulated



Chapter 3. RESULTS AND DISCUSSION 37

states. The latter are shown in red. These were generated through the integration of the
left-hand side of the state equation (Eq. 3.1), with the validation set of maneuvers (Fig. 13)
as inputs. The measured states are plotted in blue.
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The GOF and TIC measures for both identification and validation sets are shown
in Tables 8 and 9, respectively.

Table 8 – Statistical measures of the states resulting from the Output Error Method –
identification set.

Measure u w q θ ω
GOF 0.6604 0.3876 0.7225 0.7669 0.9363
TIC 0.0347 0.2737 0.2861 0.2222 0.0102

Source: The author.

Table 9 – Statistical measures of the states resulting from the Output Error Method –
validation set.

Measure u w q θ ω
GOF 0.7366 -0.4452 0.6843 0.5399 0.9156
TIC 0.0424 0.3514 0.3080 0.2879 0.0152

Source: The author.

The GOF values of w suggest poor matching between measurements and estimates
in both, identification and validation. The negative value in the latter suggests that a
straight line would fit flight data better than the model prediction. However, the TIC
measure indicates that the match for this state, in validation, is reasonably close to the
0.3 threshold, mentioned in Section 2.5, although being above it. A probable cause for
that is a possible inaccuracy of the GPS to acquire altitude variations.
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Figure 15 – States simulated with the model resulting from the Output Error Method and
measured states.

Source: The author.

In the validation set of θ, the TIC measure exhibits a value of 0.3080. This value is
slightly higher than the limit of reasonable agreement between the data. Nevertheless, this
deviation may not constrain control design.

The model prediction capacity for the other states is satisfactory, with ω exhibiting
the best fit. This may have occurred due to the fact that no scaling or normalization is
present in the error covariance matrix, R, presented in Equation 2.8 or in the cost function,
shown in Equation 2.9. This induces the optimization algorithm to minimize variables
that exhibit higher values to the detriment of those with lower magnitudes, as long as the
cost function is reduced.

An overall worse match in the throttle doublet maneuver for all states, except ω,
may also indicate that adding the state ω to the state-space model, in order to account
for the engine dynamics, does not exclude the necessity of having a proper throttle-thrust
mapping if a closer fit is desired.

The identified state-space system has the following poles
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Phugoid: -0.07331 +− 0.4256j
Short period: -3.2166 +− 3.4474j
Engine dynamics: -2.5354

Compared to the a priori model, the identified long and short period modes present
lower oscillation frequency. The former exhibits higher and the latter, lower damping. The
identified engine dynamics time constant is slightly higher than the one previously found.

3.2.3 Results of the Two Step Method

This section is divided in two parts, which concern the presentation of the results
of flight path reconstruction and the parameter estimation procedures, respectively.

3.2.3.1 Flight path reconstruction results

The first part of the Two Step Method yields an estimation of the biases present in
the linear acceleration and angular rate measurements. As described in Section 2.4.1, the
variables recorded in flight are used as inputs to the rigid-body 6DOF kinematic equations,
shown in Equation 2.10. Then, an estimation of the bias values is carried out in order to
minimize the errors between the time series of the measured states and the ones resulting
from the integration of the 6DOF kinematic equations with biases included.

The predicted states from the validation set with biases resulting from maximum
likelihood estimation are plotted in Figure 16 together with the measurements. The values
of the estimated biases for each maneuver are presented in Table 10.

Table 10 – Estimated measurement biases for each maneuver.

Bias Phugoid Short period Throttle doublet
∆ax −9.409× 10−2 3.318× 10−2 2.650× 10−1

∆ay −1.511× 10−1 −3.422× 10−1 −2.666× 10−2

∆az −3.447× 10−3 −7.690× 10−2 −2.797× 10−2

∆p −3.233× 10−4 −3.070× 10−3 −8.556× 10−4

∆q −3.025× 10−4 3.437× 10−3 −4.018× 10−4

∆r 8.466× 10−3 5.642× 10−3 3.134× 10−3

Source: The author.

It can be noted that biases of the same nature presented different dimensions and
even different signs, which justifies the adoption of distinct estimates for each maneuver.

Table 11 shows the statistical measures of the conducted flight path reconstruction.

The overall procedure yielded satisfactory bias estimates. The match between
measured and simulated vertical velocity, w, was again the poorest one; however, with a
TIC of 0.20823, the agreement between the data is still considered reasonable, according
to the criterion presented in Section 2.5.
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Figure 16 – Measured longitudinal and lateral states and states generated from the inte-
gration of the 6DOF equations of motion with estimated biases added.

Source: The author.

Table 11 – Statistical measures of the reconstructed states – validation set.

Measure u v w φ θ ψ h
GOF 0.99879 0.93625 0.6556 0.8488 0.96966 0.99974 0.98777
TIC 0.002799 0.11376 0.20823 0.18542 0.08097 0.007471 0.002550

Source: The author.

3.2.3.2 Results of force and moment components identification

Once acceptable values for biases had been found, an estimate of the actual forces
and moments acting in the aircraft during flight could be obtained and a linear regression
to find their composing terms has been performed.

The force and moment components, from the right-hand-side of Equation 2.11,
estimated through this procedure are shown in Table 12. In Figure 17 the reconstructed
forces and moments, as well as the ones resulting from the linear regression are shown.
Tables 13 and 14 present the values of the statistical measures for the identification and
validation sets, respectively.
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Table 12 – Linear regression terms and respective values.

Term Value Term Value Term Value
X0 24.8912 Z0 -60.0449 M0 -1.6648
Xu -1.9521 Zu -4.2001 Mu 0.06910
Xw 1.9181 Zw -10.8758 Mw -0.4797
Xq -1.5002 Zq -170.2218 Mq -7.4845
Xδe -22.0493 Zδe 28.5036 Mδe -55.9172
Xδt 44.7413

Source: The author.

Table 13 – Statistical measures of the Two Step Method estimated forces and moments –
identification set.

Measure X Z M
R2 0.7609 0.6232 0.4831

RMSE 4.5079 20.3579 0.9393
NRMSE 0.08668 0.06067 0.04044

Source: The author.

Table 14 – Statistical measures of the Two Step Method estimated forces and moments –
validation set.

Measure X Z M
R2 0.7524 0.6593 0.03696

RMSE 4.6814 22.2496 1.2930
NRMSE 0.09414 0.06072 0.05926

Source: The author.

The linear regression plots and statistics indicate that the procedure has yielded
acceptable fits, which means that, for this application, forces and moments can be satisfac-
torily described by a linear combination of longitudinal states, presented in Equation 2.11.

Tables 15 and 16 present the statistical measures of the forces and moments
obtained by Lee (2017). As mentioned in Section 2.4, Lee has also performed Two Step
system identification for Penguin BE. Nonetheless, that author has performed flight path
reconstruction using an stochastic approach, based on an Extended Kalman Filter. In the
second step, this work and Lee (2017) have followed the same procedure.

Table 15 – Statistical measures of the Two Step Method forces and moments obtained by
Lee (2017) – identification set.

Measure X Z M
R2 0.868 0.616 0.422

RMSE 3.109 19.779 1.0899
NRMSE 0.071 0.067 0.045

Source: Lee (2017).
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Figure 17 – Reconstructed forces and moments, and forces and moments from linear-
regression – validation set.

Source: The author.

Table 16 – Statistical measures of the Two Step Method forces and moments obtained by
Lee (2017) – validation set.

Measure X Z M
R2 0.848 0.665 0.1359

RMSE 4.10 20.63 1.239
NRMSE 0.078 0.067 0.053

Source: Lee (2017).

The statistical measures suggest comparable estimates of Z and M with the ones
obtained by Lee (2017). Nevertheless, the estimation of X carried out by Lee (2017) seem
to have yielded more reliable results.

The longitudinal states have been generated through the application of the estimated
forces and moments in the longitudinal 6DOF dynamic equations, with measurements
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of the lateral states and the lateral angular rates corrected with the estimated biases
included, as shown in Equation 2.12.

The longitudinal states generated from the integration of the 6DOF dynamic
equations, along with the measurements are plotted in Figure 18. The GOF and TIC
statistical indicators of performance for the identification and validation sets are shown in
Tables 17 and 18, respectively.

Figure 18 – Measured and Two Step Method simulated states.

Source: The author.

Table 17 – Statistical measures of the states resulting from the Two Step Method – identi-
fication set.

Measure u w q θ
GOF 0.3680 0.1027 0.5069 0.3745
TIC 0.04729 0.3101 0.3423 0.3437

Source: The author.

The states w, q, and θ, generated by the integration of the 6DOF dynamic equations,
present GOF measures below 0.5 in the validation set, which is possibly due to a frequency
mismatch in the data from the throttle doublet maneuver. The TIC indicators for the
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Table 18 – Statistical measures of the states resulting from the Two Step Method – valida-
tion set.

Measure u w q θ
GOF 0.5330 -1.0559 0.4331 0.3207
TIC 0.05612 0.3979 0.3833 0.3688

Source: The author.

same variables are above 0.3 for both identification and validation, which suggest deficient
agreement between the data. Regarding the linear velocity u, TIC and GOF seem to
indicate satisfactory estimation. Despite the latter not being much close to one, the former
is well below 0.3. The difference between the measurements and estimates of this state in
the first seconds may be due to a mismatch on the estimate of the aircraft axial force, X,
within the same range.

Except by w, which has presented overall insufficient estimates in this technique,
the other states seem to match the measured data appropriately for the phugoid and
short period maneuvers. The frequency mismatch and phase shift exhibited in the throttle
doublet maneuver may possibly have occurred due to the fact that engine dynamics have
not been taken into account in the Two Step Method. A possible solution would be adding
the state ω to the linear expressions of the forces and moments, similarly to what has
been performed in the state equations in the Output Error Method. Another possibility
would be estimating the aerodynamic forces and moments apart from the propulsion ones.

Tables 19 and 20 present the GOF and TIC measures for the states obtained by
Lee (2017). Identification and validation sets are shown.

Table 19 – Statistical measures of the Two Step Method states obtained by Lee (2017) –
identification set.

Measure u w q θ
GOF 0.3680 0.1027 0.5069 0.3745
TIC 0.04729 0.3101 0.3423 0.3437

Source: The author.

Table 20 – Statistical measures of the Two Step Method states obtained by Lee (2017) –
validation set.

Measure u w q θ
GOF 0.5330 -1.0559 0.4331 0.3207
TIC 0.05612 0.3979 0.3833 0.3688

Source: The author.

Except by the TIC values of q in the identification set and w in the validation set
all other statistical measures suggest that the stochastic approach performed by Lee (2017)
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has yielded better results than the deterministic one adopted in this work for the Two
Step Method.

3.2.4 Comparison between identification methods

Figure 19 shows measurements (in blue) and states resulting from the Output
Error (in red) and Two Step (in green) methods from the validation set of maneuvers. It
is possible to note that estimates of w from the Output Error approach seem to match
the flight data more closely than the the ones provided by the Two Step Method. The
other states have reasonably similar results in the first two maneuvers, with OEM yielding
slightly more accurate results in the third one.

Figure 19 – Measured States and states resulting from the Output Error and Two Step
identified models.

Source: The author.

The statistical indicators suggest that the system identification performed using
the Output Error Method has yielded overall better results than the Two Step Method. A
possible cause is the inclusion of the engine dynamics on the state-space model identified
by the former. As mentioned in Section 3.2.3.2, adding the motor angular velocity, ω, to
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the linear expressions of the forces and moments or identifying separate aerodynamic and
propulsion equations could possibly yield more adequate results for the Two Step Method.

The lack of a proper throttle-thrust mapping and the consequent adoption of the
throttle command as an input to the model has proven to be a jeopardizing factor for the
achievement of better results. When engine dynamics are not included an instantaneous
relationship between throttle command and state variation is usually assumed. This causes
the effects of thrust variations in the model to instantly happen when the throttle command
is perturbed, which, on the actual aircraft, goes through a phase lag before it can be
noticed by the sensors. The use of motor angular velocity ω seem to have slightly improved
the match between the model and the real aircraft dynamics and can be considered as
a solution in the absence of such mapping. Another possible reason to the mismatch,
mentioned by Lee (2017), is that the fact that the states in the Output Error Method and
the forces and moments in the Two Step approach have only linear first order terms may
have caused inaccurate estimates, especially in the throttle doublet maneuver.

Besides that, it is possible to note that the throttle doublet maneuver has generated
oscillations with larger amplitudes in θ. This may have caused the system to move out of
the region of linearity. The maximum amplitude of the maneuvers that keep the system
inside that region has not been taken into account in the optimal input design process.
However, in future experiments throttle doublets with lower amplitudes will be tested.

Furthermore, the non inclusion of elevator dynamics also appear to have caused
some phase shift and could be corrected by the addition of a mapping relating pilot
command and actual surface deflection. Moreover, the estimates of w are not satisfactorily
accurate, which may be due to possible GPS inaccuracies in measuring this state.

Adding to that, the fact that the Output Error Method has yielded an adequate
linear model, in contrast with the nonlinear results of the Two Step method from both, this
work and Lee (2017), makes it a more attractive choice for control design. Linear equations
to represent the aircraft dynamics could also be generated by linearizing the models
resulting from the Two Step Method. Nevertheless, no adequate linear representation could
be found by applying such procedure. In fact, it seems to be a more reasonable choice to
identify the parameters of a linear model directly, instead of performing identification of
a nonlinear one and then linearizing it. The inaccuracies present in the nonlinear model
seem to be aggravated when the linearization procedure is carried out.

Although multiple techniques have been developed within aircraft nonlinear control
field, like Backstepping (HARKEGARD; GLAD, 2007), those are mostly applied in case a
linear model of the vehicle does not present adequate results. In this case, however, the
linear model identified using the Output Error Method will be utilized.
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3.3 Results of Parameter Space Control Design
The application of a step input to the system formed by the in-flight-tuned controller

and the identified model exhibited the following characteristics.

Table 21 – Performance indicators of the actual control system.

Overshoot Settling time Rise time
1.69 % 9.87 s 0.97 s

Source: The author.

Figure 20 presents the results of the parameter space analysis of multiple control
designs around the currently utilized gains, presented in Section 2.6. The figures show
scatter plots of the values of the gains in combinations of two elements. In the left-
side figures, the circles of different sizes and colors refer to the predefined stability and
performance specifications, namely stable system (yellow), overshoot less than 5% (blue),
settling time (5% criterion) less than 10 seconds (green), and rise time less than 1 second
(red). In these figures, a circle plotted at a pair of gains means that the system fulfills
the specification represented by its color for those two gains and some value of the third
gain, which is not included in the plot. In the figures on the right, black circles are plotted
where the set of gains fulfilled all the requirements at the same time.

The divergence between the intersections of all colors on the left and the black
areas on the right-hand-side plots are due to the fact that, on the left plots, if circles of
more than one color are present at a point, it is possible that the requirements have been
fulfilled for different values of the third gain that is not plotted. For instance, the overshoot
requirement may have been fulfilled for Kθ = 1, Kiθ = 0.2 seconds−1, and Kq = 0.3
seconds, and the settling time specification may have been met for Kθ = 1, Kiθ = 0.2
seconds−1, and Kq = 0.1 seconds. In this situation, although the two requirements have
been fulfilled for different values of Kq, a blue circle and a green one will be plotted at the
point [1; 0.2] in the plot of Kθ ×Kiθ since it does not take the value of Kq into account.
On the other hand, only the points where all the specifications have been met at the same
time are marked with a circle in the figures on the right.

The gains that are currently in use in flight experiments are represented on the
left and right-hand-side plots by black and green circles, respectively. Figure 21 is a three-
dimensional plot of the region where all specifications are satisfied. It can be interpreted
as a combination of the three figures on the right-hand side of Figure 20.

All sets of gains tested keep the system stable, although yellow circles cannot be
clearly seem in some regions of the figures on the left.

It is possible to note that the gains currently used in the aircraft’s current autopilot
fall inside the region formed by the specifications, which is a possible indicator that the



Chapter 3. RESULTS AND DISCUSSION 48

model is suitable for control design. Assuming that the identified plant perfectly matches
the real one, any set of gains that fall inside the black regions could be chosen in order to
meet the requirements.

The parameter space analysis also gives an insight of which characteristics are
improved or worsened, if the gains are increased or decreased. In the left-side figures in
Figure 20, it can be noted that decreasing Kiθ would increase the settling time. On the
other hand, if the same gain is increased, the percentage of overshoot starts to get larger.
From the same examination, one may conclude that excessively increasing Kq makes the
system’s rise time exceed the maximum value specified. Small Kθ may also worsen settling
time for some values of Kiθ. Nevertheless, actuator saturations that may occur for large
values of that gain should also be accounted for. In this case, however, since the range of
Kθ adopted is relatively small, saturation effects have not been taken into account.

From this analysis, other sets of gains with better performance could be chosen,
in case the actual ones are unsatisfactory. An example would be Kθ = 1, Kiθ = 0.12
seconds−1, and Kq = 0.18 seconds, which, when applied to the identified plant, exhibits
the following characteristics: overshoot of 0.88%, settling time of 1.37 seconds, and rise
time of 0.97 seconds.
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Figure 20 – System performance in the parameter space. All specification regions on the
left. Intersection of specifications on the right. Left-hand-side plots: yellow –
stable system; blue – overshoot less than 5%; green – settling time less than
10 seconds; red – rise time less than 1 second; black – gains currently in use.
Right-hand-side plots: black – gains where all specifications are met at the
same time; green – gains currently in use.

Source: The author.
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Figure 21 – Intersection of specifications in the three-dimensional parameter space. Black
spheres – gains where all specifications are met at the same time; green sphere
– gains currently in use

Source: The author.
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4 CONCLUSION AND OUTLOOK

A reliable flight dynamics model for the Penguin BE aircraft used in cooperative
landing tests has been developed, with some inaccuracies in vertical velocity, w. An analysis
of the pitch attitude control design that is currently in use has been performed, which
indicated similar performance of the control system applied to the actual system and its
identified model. Furthermore, alternative control gains within the predefined specifications
have been suggested.

In order to test the suitability of the identified model, additional validation experi-
ments shall be defined and executed in the near future. If those are successful, new control
laws shall be designed using the identified model. Once the techniques applied in this
work have proven to yield adequate estimations, a lateral model shall also be identified. In
addition, an engine model shall be obtained in order to reduce the mentioned inaccura-
cies, especially in throttle variation maneuvers. Ultimately, a global system identification
procedure shall be carried out. This would account for the aircraft dynamics within the
entire flight envelope. Once all the techniques needed to obtain a high-fidelity model of
the Penguin BE UAV are mastered, the first attempts to model flexible HALE aircraft for
stratospheric missions shall be performed.
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APPENDIX A – CONCISE
LONGITUDINAL AERODYNAMIC

DERIVATIVES AND ENGINE DYNAMICS

Table 22 shows the definition of the concise derivatives (COOK, 2012).

Table 22 – Definition of the concise derivatives.

Concise derivative Definition
xu Concise axial force derivative with respect to velocity along the x-axis
xw Concise axial force derivative with respect to velocity along the z-axis
xq Concise axial force derivative with respect to pitch rate
xθ Concise axial force derivative with respect to pitch angle
xω Concise axial force derivative with respect to motor angular velocity
xδe Concise axial force derivative with respect to elevator command
zu Concise normal force derivative with respect to velocity along the x-axis
zw Concise normal force derivative with respect to velocity along the z-axis
zq Concise normal force derivative with respect to pitch rate
zθ Concise normal force derivative with respect to pitch angle
zδe Concise normal force derivative with respect to elevator command
mu Concise pitching moment derivative with respect to velocity along the x-axis
mw Concise pitching moment derivative with respect to velocity along the z-axis
mq Concise pitching moment derivative with respect to pitch rate
mω Concise pitching moment derivative with respect to motor angular velocity
mδe Concise pitching moment derivative with respect to elevator command

Source: The author.

Engine dynamics is assumed to follow Equation A.1.

ω(s) = ku
u(s)
s

+ kw
w(s)
s

+ kω
1 + Tωs

δt(s) (A.1)

where argument (s) indicates that variables are in frequency domain. ku, kw, and kω are
gains, and Tω is the time constant of the system whose input is δt and output is ω.

This equation has been obtained by performing the Laplace transform of the fifth
line of the a priori model, presented in Section 2.1.
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