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Abstract— Increasing the number and functionality of control
surfaces provides great potential to improve aircraft perfor-
mance. This, however, complicates the design of the control
allocation system commonly used for flight control. A novel
method for linear control allocation is presented which allows
considering an arbitrary number of frequency dependent con-
trol objectives. The method systematically identifies principal
control input directions for predefined performance channels
by means of a balancing state space transformation. The
effectiveness of the method is proven by designing a gust load
alleviation system for a flexible aircraft with distributed trailing
edge flaps.

I. INTRODUCTION

In order to allow for a more economic and environmentally
friendly operation of transport aircraft, it is inevitable to
actively control, for instance, aerodynamic drag, structural
loads or noise emissions [1]. Certainly, the efficiency of each
individual control function strongly depends on available
control surfaces. Hence, increasing the number of control
surfaces and using them for multiple purposes offers great
potential to improve aircraft performance [2]. This leads,
however, to new challenges in flight control design due to
the increased number of control inputs.

In [3], the concept of a variable camber continous trailing
edge flap (VCCTEF) is presented. It introduces a large
amount of control variables allowing adapting the wing shape
according to the current flight conditions. In order to form
a smooth trailing edge, virtual control variables based on
Fourier series are introduced in [4]. Other approaches are
presented in [5] and [6], where Chebyshev and Bernstein
polynomials are used respectively for control allocation.
Furthermore, the individual segments of each flap allow
for active camber control, but are primarily allocated based
on simple geometric functions. All in all, for controlling
the VCCTEF, linear control allocation using polynomials is
generally applied, with the drawback of being independent
of any control objective.

On the contrary, common linear control allocation meth-
ods, as summarized for example in [7], [8], [9], [10], directly
consider the intended control objective. To that end, a so
called control effector matrix has to be determined first. In
flight control, this matrix typically maps the control surface
deflections to the three rotational degrees of freedom of a
rigid aircraft. Methods based on inversion or optimization
can then be used to determine an appropriate allocation
matrix. For controlling the dynamic response of a flexible
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aircraft, however, a control effector matrix is needed which
captures the whole frequency range of interest.

In this paper, a novel linear control allocation method is
presented that allows accounting for frequency dependent
control objectives. To that end, principal control input direc-
tions are identified using balanced truncation. The necessary
preliminaries and the proposed procedure for control alloca-
tion are described in Section II and Section III, respectively.
The effectiveness of the proposed method is then demon-
strated with an example of a gust load alleviation (GLA)
controller design in Section IV.

II. PRELIMINARIES

A. Linear Time-Invariant Systems

In this paper, the focus is put on allocation of inputs for
linear time-invariant (LTI) systems. As described for example
in [11], an LTI system

G :

[
ẋ(t)
w(t)

]
=

[
A B
C D

] [
x(t)
r(t)

]
(1)

with the states x : R+ → Rnx maps the input signal r :
R+ → Rnr to the output signal w : R+ → Rnw . The system
G is defined by the constant matrices A ∈ Rnx×nx , B ∈
Rnx×nr , C ∈ Rnw×nx , D ∈ Rnw×nr . Furthermore, it is
called stable if all eigenvalues of A have negative real part.
Note that, for ease of notation, the time argument of signals
is commonly dropped.

B. Balanced Order Reduction

In order to obtain a balanced realization of a stable
LTI system G, a state transformation x̃ = Tx can be
found leading to identical controllability and observability
Gramians

Wc = Wo = diag (σH,1, ..., σH,nx
) , (2)

where σH,1 ≥ ... ≥ σH,nx are the Hankel singular values
(HSVs), see [12],[13]. The balanced system

G̃ :

[
˙̃x
w

]
=

[
TAT−1 TB
CT−1 D

] [
x̃
r

]
(3)

has the same input-output behavior as G, which is dominated
by the states x̃i associated with the largest HSVs σH,i.
Hence, the balanced state space realization is widely used
for model order reduction. A common method for order
reduction is to truncate the states with the smallest HSVs
by partitioning the state space matrices of G̃ into

Ã =

[
Ã11 Ã12

Ã21 Ã11

]
, B̃ =

[
B̃1

B̃2

]
, C̃ =

[
C̃1 C̃2

]
, (4)
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resulting in a reduced order system

G̃1 :

[
˙̃x1

w

]
=

[
Ã11 B̃1

C̃1 D

] [
x̃1

r

]
. (5)

An alternative method would be to residualize the states with
the smallest HSVs, which allows retaining the steady state
behavior of the system. Furthermore, a certain frequency
or time interval may be emphasized for a balanced order
reduction as described in [14].

C. H∞ Control Design

In this paper, the H∞-framework [15] is used for control
design. To that end, the generalized plant

P :

ẋe
y

 =

A Bd Bu

Ce Ded Deu

Cy Dyd Dyu

xd
u

 (6)

is defined, which maps the performance and control inputs
d and u to the performance and measurement outputs e and
y. A stabilizing controller K is then derived that minimizes
an upper bound γ on the H∞-norm

‖Fl (P,K) ‖∞ = sup
d∈L2\{0}

‖e‖2
‖d‖2

< γ (7)

of the closed-loop interconnection given by the lower frac-
tional transformation Fl (P,K) depicted Figure 1. In order
to achieve the desired closed-loop performance, weighting
filters are typically added to the performance channels d
and e, introducing some additional degrees of freedom for
controller tuning.

𝑲 

𝑷 
𝒅 𝒆 

𝒖 𝒚 

Fig. 1. Closed-loop interconnection Fl (P,K).

III. LINEAR ALLOCATION

In order to shorten notations, only the allocation of inputs,
generally known as control allocation, is treated here. How-
ever, the allocation of outputs, also called sensor allocation,
may be derived in a similar way.

A. Linear Control Allocation Problem

In this section, the linear control allocation problem in
terms of input directions is discussed. Generally, linear
control allocation is described by

u = Tuvv, (8)

where Tuv ∈ Rnu×nv with nv < nu is the allocation matrix
mapping the virtual control inputs v ∈ Rnv , to the actual
control inputs u ∈ Rnu . The allocation matrix

Tuv =
[
k1 ṽ1 ... knv

ṽnv

]
(9)

contains nv linear independent control input directions ṽi

with |ṽi | = 1 for i = 1, ..., nv , which are scaled by a constant
factor ki ∈ R \ {0}. Obviously, control allocation can lead
to a degradation of controllability as certain control input
directions may lie within the null space of Tuv . Hence, it is of
major interest that the control allocation matrix contains the
principal input directions in order to achieve a certain control
objective. The linear control allocation problem considered
here is thus partitioned into

1) finding a minimum number of linear independent con-
trol input directions ṽi which have high impact on the
predefined control objective, and

2) finding appropriate scaling factors ki for each control
input direction.

Note that, the determination of the scaling factors may be
neglected at this point as it can also be seen as a part
of the subsequent controller design. For numerical stability,
however, it makes sense to scale each virtual input so the
corresponding time signals are of comparable magnitude.

B. Linear Control Allocation using Balanced Truncation

In this section, a novel method for designing a linear
control allocation matrix Tuv is proposed. The procedure
starts with the generalized plant P from Equation (6), which
is assumed to be fully controllable by u and fully observable
by y. In a first step, an auxiliary balanced truncation is
performed on the open-loop performance subsystem

Pd→e :

[
ẋ
e

]
=

[
A Bd

Ce Ded

] [
x
d

]
(10)

of P using the balancing state transformation x̃ = Tx. The
reduced performance subsystem has the states x̃1 ∈ Rnx̃1

associated to the largest HSVs σH,i > σH,min of Pd→e .
Obviously, a desired order nx̃1 of the reduced performance
subsystem is determined by adjusting the threshold σH,min.
Note that, balanced truncation does not necessarily preserve
pole locations, which may lead to an undesired transfor-
mation of system dynamics. However, for systems with
weak natural damping (e.g. lightweight structures), a good
matching is typically achieved, see [16], [17]. Hence, special
care has to be taken in case the performance subsystem
is dominated by poles with high natural damping in the
frequency range of interest.

Secondly, the control input matrix Bu of the generalized
plant P is transformed to

B̃u = TBu =

[
B̃u,1

B̃u,2

]
. (11)

In Equation (11), the submatrix B̃u,1 ∈ Rnx̃1×nu is associ-
ated to the dominating states x̃1 of Pd→e . Hence, the input
directions of B̃u,1 are considered as best suited for control
allocation.

Thirdly, the input directions of B̃u,1 are orthogonalized
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using singular value decomposition (SVD). This leads to

B̃u,1 = ŨΣ̃Ṽ T

=
[
Ũ1 Ũ2

] [Σ̃1 0

0 Σ̃2

] [
Ṽ T
1 Ṽ T

2

]T
, (12)

where Ũ ∈ Rnx̃1
×nx̃1 and Ṽ T ∈ Rnu×nu are unitary

matrices. Besides, the rectangular diagonal matrix Σ̃ ∈
Rnx̃1×nu lists the singular values σ̃i ≥ 0 for i = 1, ..., nσ̃ ,
nσ̃ = min (nx̃1

, nu) on its diagonal. Now, the columns of
matrix Ṽ T

1 =
[
ṽ1 ... ṽnv

]
associated to the singular

values σ̃i > σ̃min ≥ 0 are considered as the principal control
input directions. Thus, the vectors ṽi , i = 1, .., nv are directly
used to define the virtual control inputs v. In general, a
minimum number of virtual control inputs is desired which
still allows sufficient controllability in the frequency range
of interest. To that end, the computed HSVs and singular
values can be used to appropriately balance complexity (in
terms of control inputs) and controllability.

In a fourth and final step, the principal control input
directions ṽi are scaled by the inverse of the corresponding
singular values. This leads to the control allocation matrix

Tuv = Ṽ T
1 Σ̃−11 =

[
1
σ̃1

ṽ1 ... 1
σ̃nv

ṽnv

]
, (13)

where Σ̃1 is a square matrix, see also Equation (12).
Furthermore, it may be advantageous to scale the allocation
matrix Tuv by its induced 1-norm ‖Tuv‖i1 to guarantee a
bounded control input ‖u‖∞ ≤ 1 for a bounded virtual input
‖v‖∞ ≤ 1.

Summing up, the four steps required to design the control
allocation matrix are

1) balanced truncation of Pd→e with σH,min → T
2) transformation and truncation of Bu → B̃u,1

3) SVD of B̃u,1 with σ̃min → Ṽ T
1

4) scaling of Ṽ T
1 → Tuv .

In the proposed procedure, the thresholds σH,min and σ̃min can
be used as tuning knobs for designing the control allocation
matrix Tuv . In addition to that, an initial scaling of inputs and
outputs of the generalized plant P also affects the resulting
control allocation matrix and may be used to balance certain
performance specifications.

IV. EXAMPLE: GUST LOAD ALLEVIATION

For the evaluation of the effectiveness of the proposed
allocation method, a GLA system is designed for a flexible
aircraft with distributed flaps. To that end, the distributed
flap inputs are first allocated using the method proposed
in Section III-B. Subsequently, an H∞ output feedback
controller is designed to alleviate structural loads during
gust encounter. As a performance measure, the reduction of
the peaks of the wing root bending and torsional moment
is considered. The achieved performance is then compared
with the performance of a GLA system using Chebyshev
polynomials for control allocation and a GLA system without
any allocation.

A. Modeling Flexible Aircraft

The flexible aircraft used for simulations is based on the
Digital-X project [18] and modeled according to [19]. The
aeroservoelastic model interconnects a finite element model
of the airframe with an unsteady aerodynamics model. The
aerodynamics model is computed in frequency domain by
means of the doublet lattice method [20] and transformed to
time domain using Roger’s rational function approximation
[21]. For the gust input, the aircraft is divided into 25 zones
in the direction of flight and a Padé approximation is used to
model the time delay for each zone. As control surfaces, a
pair of elevators and 9 equally distributed trailing edge flaps
on each wing are modeled (see also Figure 2). The actuators
for each control surface are approximated by a first order low
pass filter with a bandwidth of ωc = 20 rad/s. Eventually,
the resulting structural loads are then recovered by the force
summation method [22]. More details on aeroservoelastic
modeling can be found in [23], [20], [19].

For evaluation of the proposed control allocation method,
one single flight point at Ma = 0.86 and h = 9108m
is considered. Furthermore, only symmetric excitations are
taken into account, meaning that gust encounter as well as
control surface deflections are assumed to be equal on the left
and right hand side of the aircraft. Hence, the model order
can be reduced by discarding all non-symmetric modes and
by combining the actuator models on both sides.

The nonlinear aircraft model is linearized around steady
horizontal flight. In addition to that, the order of the lin-
earized aircraft is further reduced to a number of 44 states by
truncation in modal and balanced coordinates. The resulting
reduced order LTI system has 1 vertical gust and 10 control
surface inputs. As outputs, acceleration sensors at the wing
tip and the center of gravity as well as the wing root
bending and torsional moment are taken into account. Due
to the symmetric excitations, the outputs also are assumed
to be equal on both sides of the aircraft and hence are not
determined twice.

u9u8u7u6u5u4u3u2u1

Fig. 2. Distributed trailing edge flaps on the wing used for GLA.

B. Allocation of Distributed Flaps

Before designing the actual GLA system, the distributed
trailing edge flaps are allocated according to the method
proposed in Section III-B.

In a first step, the open-loop performance subsystem Pd→e

from the gust input to the loads outputs is selected and
a balancing state space transformation is computed. The
resulting states are ordered according to their HSVs, see also
Figure 3.
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For the second step, the threshold σH,min is chosen so that
only the four most dominant states remain after truncation.
In Figure 4, the frequency responses of the performance
subsystem with full and reduced order are compared. It can
be seen that the main dynamics from the gust input to the
loads outputs are captured well.
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Fig. 3. Largest HSVs of Pd→e with the HSVs remaining after truncation
marked in dark.
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Fig. 4. Frequency response magnitude of Pd→e with full and reduced
order.

In the third step, an SVD is carried out on the remaining
control input matrix B̃u,1 . The resulting singular values are
plotted in Figure 5 (left), where two of the singular values
are considerably smaller than the others. Hence, they are
truncated by adjusting the threshold σ̃min. The remaining

u9u8u7u6u5u4u3u2u1

σ̃4

σ̃3

σ̃2
σ̃1

0

0.5

10−2

10−1

100

Fig. 5. Singular values σ̃i and principal input directions ṽi of B̃u,1 ,
where σ̃3 and σ̃4 are truncated.

singular values correspond to the selected principal control
input directions plotted in Figure 5 (right). A physical inter-
pretation of these two directions is difficult due to numerous

interfering aeroelastic effects. On the one hand, the span-
and chordwise distance of the respective flaps to the wing
root plays an important role. On the other hand, natural
coupling of bending and torsion as well as reversal effects of
flap deflections for a swept flexible wing may influence the
results. Nevertheless, ṽ1 seems to be well suited to control
the wing bending as it causes larger deflections at the outer
wing. On the contrary, the control surface deflections caused
by ṽ2 are larger at the inner part of the wing, where an
increased chord length allows a better control of the wing
root torsional moment.

In the fourth and final step, the selected principal control
input directions are scaled with the inverse of the correspond-
ing singular values. This results in the control allocation
matrix Tuv , which allocates the trailing edge flaps according
to the predefined control objective. However, by deflecting
the flaps on the wing for the purpose of GLA, some pitching
moment is induced, which is typically compensated using
the elevators. Hence, an additional column is added to the
control allocation matrix which allows directly controlling
elevator deflections. The resulting augmented control alloca-
tion matrix T̃uv is then used to design an GLA controller as
described in the next section.

C. Gust Load Alleviation Controller Design

For evaluation of the proposed control allocation method,
a GLA controller is designed according to the H∞ control
methodology described in Section II-C. To that end, the
flexible aircraft model from Section IV-A is augmented by
weighted inputs and outputs enforcing the required perfor-
mance specifications. Additionally, the augmented control
allocation matrix T̃uv is added, resulting in the generalized
plant P marked with a dashed line in Figure 6.

𝒆𝑦 

𝑲 

𝑮 
𝒖 𝒚 

𝑾𝑑𝑢 𝑾𝑣 

𝒅𝑢 𝒆𝑣 

𝑾𝑧 

𝒛 

𝑾𝑦 

𝒆𝑧 

𝑾𝑑𝑦 𝒅𝑦 

𝑻 𝑢𝑣 𝒗 

𝑑gust 

Fig. 6. Closed-loop interconnection for GLA controller design, where the
generalized plant P is encircled with a dashed line.

As it can be seen, the outputs of the plant G are di-
vided into measurable outputs y and non-measurable outputs
z. Certainly, the two acceleration measurements described
above are collected in y, whereas z consists of the non-
measurable wing root bending and torsional moments. Both
vector signals are weighted, yielding the performance out-
puts ez and ey . For the measurement outputs, a constant
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weighting matrix Wy = 0.1Iny
is employed. For the loads

outputs, the bandpass weighting filters

Wzi (s) = czi
0.001s2 + 56.55s+ 0.3948

s2 + 56.55s+ 394.8
(14)

for i = 1, ..., nz are chosen, where the gains cz =[
cz1 ... cznz

]T
are subject to be tuned. In order to limit

the control effort, the virtual control inputs are weighted by
the bandstop filters

Wvi (s) = cvi
s2 + 56.55s+ 394.8

0.001s2 + 56.55s+ 0.3948
(15)

with i = 1, .., nv and the tuning parameters
cv =

[
cv1 ... cvnv

]T
. The weighting filters Wz =

diag
(
Wz1 , ...,Wznz

)
and Wv = diag

(
Wv1 , ...,Wvnv

)
thus restrict control activity and performance requirements
to the frequency range of interest between 1Hz and 10Hz.
Each weighting filter adds two additional states to the
generalized plant and introduces a degree of freedom for
controller tuning. Hence, the number of states as well as
the number of tuning parameters can be reduced efficiently
by weighting the virtual control inputs v instead of the real
control inputs u.

As performance inputs, the symmetric gust input dgust, the
control input disturbance du and the measurement noise dy

are collected in d =
[
dgust dTu dTy

]T
. The corresponding

input weights Wdu and Wdy are set to a constant gain of
0.1 for each signal.

The H∞ optimal controller K is then synthesized by
solving two Riccati equations using the Robust Control
Toolbox of Matlab [24]. The actual GLA controller

KGLA = T̃uvK (16)

is finally obtained by multiplying the virtual control outputs
of K with the augmented control allocation matrix T̃uv .

D. Tuning Setup

In order to obtain a highly performant GLA system, it
needs to be tuned. To that end, closed-loop time domain
simulations are performed for a “1-cos” gust excitation with a
gust gradient distance of 350 ft, see also [25]. The increments
of the resulting loads and control surface deflections are then
optimized by adjusting the weighting filter gains cz and cv .
After all, the optimization setup is defined as

minimize
cv,cz

max
(
M bending,M torsion

)
(17)

subject to |ui| ≤ 25◦, i = 1, ..., 10, (18)

where M bending and M torsion are the normalized wing root
bending respectively torsional moment increments. Eventu-
ally, the optimization is performed in MOPS [26] using an
extended version of the pattern search algorithm proposed in
[27].

E. Results

To assess the performance of the proposed allocation
method, three different control approaches for GLA are
compared. In the first approach (“Chebyshev”), the trailing
edge flaps are allocated using Chebyshev polynomials of the
first kind. Using two virtual control inputs v1 and v2 , a single
flap deflection is then described by

ui = v1 +
nflap − i
nflap − 1

v2 , i = 1, ..., nflap, (19)

where the number of trailing edge flaps nflap = 9. Note that
the control input of the elevators is handled separately here
as well (see Section IV-B). In the second control approach
(“Balanced”) the control allocation matrix determined in
Section IV-B is used, which is based on an auxiliary balanced
truncation. And for the third approach (“All Flaps”), the
allocation matrix T̃uv = Inu

, meaning that all flaps are
directly controlled and no allocation is applied.

The resulting GLA performance, quantified by the
achieved reduction of the peak loads, is good for all three
control approaches as it is shown in Figure 7. Furthermore,

19.9%19.1%
16.5%

Chebyshev
Balanced

All Flaps

Fig. 7. Comparison of achieved load reduction performance.

it can be seen that the “Balanced” approach outperforms the
“Chebyshev” approach by 2.6 percentage points. This means
that the proposed allocation method allows a considerably
increased GLA performance by directly taking into account
the control objectives. In addition to that, the loads reduction
is only marginally better using the controller designed with-
out any control allocation. As this approach (“All Flaps”)
is considered as an upper bound on the achievable GLA
performance, the “Balanced” approach is already close to
this upper bound, but requires a clearly lower flap deflections
as depicted in Figure 8.

From a practical point of view, also numerical stability
plays an important role for controller design. For many
synthesis methods, numerical issues arise when the size
of the control problem is too big. Hence, it is usually of
advantage to keep the number of states, inputs and outputs
at a minimum in order to be able to find appropriate solutions
for controller candidates and tune them accordingly. For
the example given here, this can also be seen in Table I,
where an increased number of virtual control inputs nv
leads to an increased computational effort for controller
synthesis and tuning. The reason for this is that weighting
filters are assigned to each virtual control input, adding
additional states and tuning parameters to the generalized
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Fig. 8. Comparison of minimum and maximum trailing edge flap
deflections.

plant. Note that the given computation times have to be seen
as relative measures as controller design takes place under
simplified assumptions here. Nevertheless, the size of the
control problem does not only affect computational effort
but also convergence of the optimization. Thus, a control
allocation system which reduces the number of control inputs
and keeps performance losses at a minimum offers great
practical benefits.

Chebyshev Balanced All Flaps
nv (incl. elevators) 3 3 10
order of P 54 54 68
synthesis time / ms 53.8 56.4 80.9
tuning time / min 10.2 9.9 35.5

TABLE I
COMPARISON OF CONTROL PROBLEM SIZE AND COMPUTATION TIMES

V. CONCLUSIONS
A novel method for linear control allocation is pre-

sented that allows to consider frequency dependent control
objectives. To that end, principal control input directions
are identified using HSVs as well as singular values. The
proposed allocation method can be applied to systems with
a large number of control inputs and may also be used for
sensor allocation. The effectiveness of the proposed method
is evaluated by designing a GLA system for a flexible
aircraft with distributed flaps. The achieved load reduction
is considerably higher than using Chebyshev polynomi-
als for control allocation. Furthermore, a GLA controller
which is designed without any control allocation performs
only marginally better while requiring larger control surface
deflections. Hence, the proposed allocation method shows
high potential by greatly simplifying controller design and
tuning while allowing to achieve a comparable closed-loop
performance.
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