
Helping a friend out
Guidelines for better software

Tobias Schlauch

German Aerospace Center (DLR)

Department Intelligent and Distributed Systems

Berlin / Braunschweig / Cologne

Research Software Engineering

Conference 2017

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 1

Approx. 8000 employees across

33 institutes and facilities at 20 sites.

Offices in Brussels, Paris,

Tokyo and Washington.

The three pillars of DLR

• Space agency

• Project management agency

• Research institution

German Aerospace Center (DLR)

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 2

• About 20% of DLR employees are involved in software development.

• Typical examples of developed software include simulation and modeling,

flight control, signal and data processing, and others.

• Software maturity ranges from small research software, to large long-term

maintained scientific frameworks, up to product-like software.

• A variety of programming languages is used including Python, R, Perl, C,

C++, Fortran, IDL, Matlab, LabView, Ada, Java, and others.

• Typical development team sizes range from one up to 20 persons. But

usually there is one main developer supported by students.

• Developers are mostly domain scientists without specific background in

software engineering.

Observations concerning software development at DLR

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 3

We started a Software Engineering Initiative at DLR because we believe that

our research results profit from better software.

Software engineering initiative of DLR

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 4

Network

Software Engineering Initiative of DLR

Guidelines

Knowledge

and

Experience

Exchange

Tools Trainings

Guidelines support research software developers to self-assess their

software concerning good development practices.

• Joint development with focus on good practices, tools, and essential

documentation

• 77 recommendations give advice in different fields of software engineering:

Software engineering guidelines

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 5

Requirements

Management

Design &

Implementation

Change

Management

Software

Architecture

Release

Management

Automation &

Dependencies

Software

Testing

Guidelines are tailored into three maturity level and are available as checklists

in different formats (e.g., Markdown, Wiki, Word) to ease practical usage.

Software engineering guidelines (cont.)

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 6

Checklists for different maturity levels Reasoning and further advice

Application class 1

• „small“, but other use it

Application class 2

• „medium – large“, other use it,

long-term support

Application class 3

• „products“, critical for success

 of department or institute

Application class 0

• Personal „use“

(intentionally left blank)

Tailoring scheme

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 7

Classification may

change over time!

An application class provides an initial

starting point. Recommendations can

be added and removed to fit the context.

Python script for calculation of characteristics of a set of sample values

• Software is a small tool and used by other internally.

Summary of the generic recommendations:

• Manage your code using a version control system

• Apply a basic coding style, strive for a modular design, avoid code

duplication and over-engineering

• Automate creation of an executable, usable version

• Provide essential documentation: software purpose, user and developer

information, constraints and central concepts, known problems and ideas

• Internal release: test your software and assign a proper release number

• Public release: check the open source guidelines

Example for application class 1

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 8

Recommendations have to be mapped into the concrete development context.

The software

fits well into the

application class 1.

Example for application class 1

Possible implementation

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 9

Git repository which

contains code,

examples, build script,

and documentation

• Code is broken into small functions

• PEP8 coding style

recommendations applied

• Examples provide reference input

values and results

• Build script for packaging and

installing

• Release numbers follow

semantic versioning approach

• CHANGES.md explains user-

understandably major changes

• Releases

correspond to tags

• Release package

download

Example for application class 1

Possible implementation (cont.)

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 10

• README.md:

main documentation

• CONTRIBUTING.md:

contributor information

• Explanation of the

software purpose

(what?, for whom?, why?)

• Overview of the main features

• Important usage constraints

and conditions

• Basic installation and

usage information

• Future plans and ideas

Current status:

• Initial version of the guidelines published in March 2016 at DLR

• Promotion activities on institute and DLR level

• Additional supporting material has been provided (e.g., checklist formats)

• Institutes begin applying guidelines as part of their quality policy

Initial feedback from interviews with domain scientist is good but for

certain topics more detailed solution approaches are demanded:

• Need for clearer indication and provision of solution approaches at DLR

level (e.g., central software forge)

• Need for domain-specific solution approaches (e.g., testing approaches for

real-time, embedded systems) which requires a stronger experience exchange

Summary and experiences

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 11

Factors that helped us so far:

• Establishment of a vital core community across the DLR institutes

• Joint development of practical guidelines

• Raising management awareness of the topic

• Upper management support

• Initiating group is part of DLR`s research institutes

Guidelines are important but not sufficient for better research software:

• All activates of the initiative are equally important and build on each other

• Guidelines require regular updates on the basis of feedback from domain

scientists

Summary and experiences (cont.)

> RSE Conference 2017 > Schlauch, Tobias • Helping a friend out - Guidelines for better software > 07.09.2017 DLR.de • Chart 12

