
A Conversational User Interface for
Software Visualization

(preprint)

Stefan Bieliauskas
Intelligent and Distributed Systems
German Aerospace Center (DLR)

Bremen, Germany
Email: stefan.bieliauskas@dlr.de

Andreas Schreiber
Intelligent and Distributed Systems
German Aerospace Center (DLR)

Köln, Germany
Email: andreas.schreiber@dlr.de

Abstract—Software visualizations provide many different com-
plex views with different filters and metrics. But often users have
a specific question to which they want to have an answer or they
need to find the best visualization by themselves and are not
aware of other metrics and possibilities of the visualization tool.
We propose an interaction with software visualizations based
on a conversational interface. The developed tool extracts meta
information from natural language sentences and displays the
best fitting software visualization by adjusting metrics and filter
settings.

Index Terms—software visualization, conversational interface,
interactive visualization, chatbot, human computer interaction

I. INTRODUCTION

In modern software development processes, projects tend to
grow in complexity over time. One challenge is to preserve an
overview over the software architecture and the internal struc-
ture of the application. A method to understand and explore the
architecture is to generate dynamic visualizations based on the
source code of the application. These visualizations provide
different views based on the current question and role of the
observers. A potential problem is that these views are often
too complex and the user is not sure how to reduce complex
visualizations to the current relevant subset of information.

To interact more easily with the user, we developed an
interactive visualization to display an abstract representation
of an component-based software architecture using a conver-
sational user interface [1]. The conversational user interface
understands natural language sentences and adjusts metrics
and filters based on the content of that sentences. It provides
a potential solution to address the problem that the user has
a concrete question and wishes to reduce the visualization to
the best fitting subset of information. Furthermore, such an
user interface can be integrated into existing infrastructure for
communication in software development teams, such as Slack.

To have a specific tool for testing and evaluating a conver-
sational user interface for software visualization, we used a
previously developed visualization of OSGi-based projects [2].
OSGi (Open Service Gateway initiative) [3] is a specification
that defines a Java-based component system. OSGi defines
two structures: Bundles (a set of packages) and services (a
shared instance between bundles). For example, one of the

visualization illustrates the dependencies of OSGi bundles
(Figure 1).

Fig. 1. Two dimensional visualization of relations between OSGi bundles [2].
The color of the edges defines the relation between the bundles. The export
of functionality is orange and the usage of a bundle is marked in blue.

We describe the particular contributions of this approach in
the remaining paper as follows:

• A summary of conversational interfaces, such as assistant
systems and chatbots (Section II).

• Our system architecture based on micro-services (Sec-
tion IV).

• Description of the conversational interface using a chatbot
(Section V).

II. CONVERSATIONAL-BASED INTERFACES

During the last decades, software engineers developed dif-
ferent kinds of interfaces to interact with various kinds of
computer systems. We saw the development of new interaction
methods like touch gestures and voice commands [4].

A conversational-based interface is an approach that pro-
vides a more natural way to interact with computer systems



compared to a classic graphical user interface. Conversational
interfaces support the ability to interact with a computer
system like humans interact with each other. The computer
system tries to understand the natural language sentence and
do actions based on the user input [5]. There are different
kinds of conversational based interfaces: Assistant systems and
Chatbots.

A. Assistant Systems

Assistant systems are software agents that are more general
than a chatbot. They try to direct the questions to the right sub-
system instead of solve the problem themselves.1 They often
provide a platform to integrate third-party functions into the
assistant. For example, Google’s Assistant Platform provide a
programming interface to integrate custom applications into
the assistant.2. Assistant systems became popular with the
rise of virtual private assistants [1], such as Apple’s Siri,
Microsoft’s Cortana, or Amazon’s Alexa.

B. Chatbots

With the rise of chat platforms such as Slack or Skype and
the ability to integrate third-party software components via
API’s, we see many attempts to interact with the user inside
these platforms [6].

A chatbot acts in many ways like a human in a chat conver-
sation. Chatbots respond to natural language sentences and try
to do actions based on the user input [7]. Normally, a chatbot
is designed for a more specific task than an assistant system
(e.g., “The weather information bot”). During a conversation,
the chatbot keeps track of the context to do more complex
actions [5]. For example, a weather bot uses information from
previous requests for a new request without asking the user
for the location again (Figure 2).

Fig. 2. Schematic representation of the context information extraction process
of a chatbot agent [8]. The chatbot agent ask the user for the required
information.

1https://chatbotsmagazine.com/intelligent-assistants-i-a-85c21f9d3b8e
2https://developers.google.com/actions/

III. USE CASES

The field of application for our interaction with the software
visualization was defined by the following use cases:

1) Simple access to visualizations. For example, a project
manager would like to access information about the
structure of the software, within the daily used commu-
nication platform. In this case a visual representation of
the software could be integrated easily into a conversa-
tion with other developers or stakeholders of the project.
Also the project manager could find first insights that
an architecture decision has been implemented (e.g., the
decision to split a bundle into two separate bundles).

2) Find information as a new team member. New team
members of a software project need to learn about the
architecture and structure of the project. Based on this
conversation with a chatbot agent a new team member
could get first indications where to look for a specific
function in the code base and get an impression of
the dependencies between software components. This
interaction could also led to the insight that a problem
with a feature of the project (e.g., a bug within the
login function) would probably come from one of the
highlighted bundles. The alternative to access these kind
of information is often to ask the college that developed
these function or read documentation about the intended
architecture and dependencies.
Also a new team member can ask other team members
and discuss questions about the architecture directly with
the support of a visual representation of the conversation.

3) Distributed team communication. A distributed team,
for example in an open source project, needs to com-
municate about issues and features. To discuss a specific
issue all team members of the conversation need to be at
the same information level. A visualization of the current
conversation addresses this problem.

IV. SYSTEM ARCHITECTURE

The system architecture is based on several components
(micro-services) that interact with each other (Figure 3). The
components and fundamental interactions are as follows:

• Chat Software: The Open Source software
ROCKET.CHAT3 provide chat functions for this
prototype. ROCKET.CHAT is a modern messenger
software with the ability to display custom applications
inside a chat room (Figure 4). The software embeds the
visualization component and sends all messages of a
conversation to the chatbot component. The Visualization
and the Chatbot component are independent software
products that are running independently.

• Chatbot: The chatbot handles the incoming messages
from the chat software and tries to extract metadata by
scanning for particular keywords and regular expressions.
If the chatbot detects such metadata it performs actions
based on the information. For example, the chatbot

3https://rocket.chat



queries data from the API or send an event to the
visualization to display a bundle.
To extract metadata, we use regular expressions to iden-
tify the interesting parts of an incoming sentence. For
example, the OSGi bundle names are identified by two
different approaches:

– Search for the possible bundle direct before the key-
word bundle: “show me all about the gui bundles”.

– Find all bundles based on a naming convention. This
convention corresponds to the java package name
pattern: “find com.gui”.

If the chatbot identifies a bundle name, the agent config-
ures the search parameter for the visualization by sending
a filter event with the bundle name via the full-duplex
Websocket protocol [9].
At the current state of the prototype the metrics for the
visualization are set to the number of packages as the
scale of a node (Figure 1) and the import and export
relations for the edges between the nodes.

• Visualization: The visualization display bundles as a
graph. The graph can be adjusted by a filter for bundle
names and also change some metrics (e.g., lines of code
or number of packages as metric for the size of each
node). This visualization receives events from the chatbot
to filter and adjust the visualization based on the event.

• OSGi-API: The OSGi API provides an interface to get
data about the structure of the project. For example get
all methods, classes, packages and bundles of the project.

Fig. 3. Overview of the system architecture and communication between the
different software artifacts.

We implemented the proposed software architecture in
JAVASCRIPT. The prototype implementation4 [10] integrates
the 2D visualization of OSGi-based applications (Figure 1)
and provide the ability to modify the view based on the user
input.

V. CONVERSATIONAL INTERFACE

We show the general interface of the software (Figure 4).
In the left area, the user interacts with the open source chat
software ROCKET.CHAT to write messages and discuss topics
with other people. On the right side, the visualization shows

4https://github.com/DLR-SC/conversational-software-visualization

Fig. 4. Mookup of the user interface. The left side is based on the third
party software ROCKET.CHAT. On the right side we integrated the interactive
software visualization for OSGi projects [2].

up and displays the best fitting result based on the user input.
To get the best fitting result the chatbot adjust the metrics and
filters of the visualization:

• selection of bundles,
• filter for bundle names, and
• metrics such as lines of code or number of packages.

A. Direct Question

To interact with the chatbot, the user can mention the bot
in the question. In this case, the user prepends the question
with the name (“Sofia”) of the chatbot:

@Sofia show me all io bundles

For this kind of direct questions, there are two scenarios:
• If the user already knows what kind of module (bundle

or class) to show, she can ask a very specific question
such as “Show me all about the gui bundles”. In this
case, the user provides context information about the type
(bundle) and the search term (gui). This kind of question
translates directly into a visualization. The visualization
shows the view of bundle relations reduced by the search
term “com.gui” and highlights all bundles that contain
“com.gui” in the bundle name. The relations between
two highlighted bundles are more visible than others
(Figure 6).

• The second scenario demonstrates a more general kind
of questions such as “Show me information about the
Login function”. For this kind of question the context in-
formation of the type is missing and only the search term
(“Login”) is specified. To get the missing information,
the bot searches for all bundles that contain the search
term and also collect all bundles that contain classes,
which contain the search term in the class name. Figure 7
illustrates the result of the conversation about a certain
function and the best fitting visualization.



Fig. 5. An example of a conversation with the other developer about a ticket. The chatbot agent reacts on the message from Stefan and extracts the login
function as an interesting subject. For this subject, the agent adjusts the visualization to highlight the bundles which contain classes with login in their name.

Fig. 6. The representation of the search request for a specific bundle via a
conversation with the chatbot agent. The visualization highlights all bundles
which contains “core.gui” in their name.

If the chatbot agent is directly asked (Figure 7) and does
not understand the input message, the chatbot responds with
a fall back sentence to give the user feedback and the option
to rephrase the question.

B. Passive Visualization

Passive visualization means that users do not interact with
the chatbot directly. The chatbot observes the conversation
and provides context information in form of a visualization.
During a group conversation between users, all chat messages
are constantly observed and the software tries to extract meta
information from each sentence (Figure 2). Instead of the

Fig. 7. An example of the conversational user interface that searches for the
login function in a software project. The conversation on the left side produced
the filtered output of the visualization and the chatbot agent responds with a
proper answer.

direct conversation with the chatbot (Figure 7), in this case,
the software offers a visualization for all group conversation
attendees. The difference to the direct communication is that
the chatbot does not ask the users for more context information
or respond to the user (Figure 7).

Figure 5 illustrate a possible visualization about a bug. In
this szenario, the bot marked a bundle to illustrate that the
conversations are now about this part of the software. Also
the required and imported bundles are highlighted to show
more about the structure of the software.



VI. RELATED WORK

There are several different approaches to control a visu-
alization via a conversational interface [11], [12], [13]. For
example, Lange et al. [12] proposes a system to control a vir-
tual reality environment in the field of air traffic management.
They describe a method to control the environment via voice
commands (e.g., “focus on flight S K 23 1”). During their
tests, 95% of the voice command resulted in a direct action.
However, for more complex interactions within the VR scene,
they used a controller input.

Lyons et al. [14] demonstrated that a conversational based
interface is more effective to modify the view of a software
interface rather than the manual input. For this wizard of oz
test, they used a mobile calendar application to test whether
the manual input is more effective than a speech based input.
The test implies that the conversational based speech input is
slightly slower than the manual input. But the test participants
used two navigation steps less to archive there goals; where
a navigation step is a user interface interaction inside the
application (e.g., change to week view).

VII. CONCLUSIONS AND FUTURE WORK

We presented a tool to interact with software visualizations
based on a conversation with a bot. The different use cases
presented the possible benefits of such an interaction. Among
others, the interaction within a group shows the ability to
support a discussion between two developers with a specific
visualization (Figure 5). On a direct conversation with the
chatbot agent, the prototype showed that a new member of
the team can access visualizations and information by asking
natural language questions. Even with this restricted set of
questions and answers, the chatbot shows some potential to
access software visualizations in a more natural way and get
the best fitting information at the right time. Nevertheless, an
user study to support these claims is still to be conducted.

There are topics for the future development. For example
extending the chatbot with a more complex set of questions or
the ability to send the project manager push messages if the
software found some abnormalities. Another interesting field
of future development is the integration of voice control to
control a virtual reality (VR) software visualization.

REFERENCES

[1] L. C. Klopfenstein, S. Delpriori, S. Malatini, and A. Bogliolo, “The rise
of bots: A survey of conversational interfaces, patterns, and paradigms,”
in Proceedings of the 2017 Conference on Designing Interactive
Systems, ser. DIS ’17. New York, NY, USA: ACM, 2017, pp. 555–
565. [Online]. Available: http://doi.acm.org/10.1145/3064663.3064672

[2] D. Seider, A. Schreiber, T. Marquardt, and M. Brüggemann, “Visualizing
modules and dependencies of OSGi-based applications,” in 2016 IEEE
Working Conference on Software Visualization (VISSOFT), Oct 2016,
pp. 96–100.

[3] A. L. Tavares and M. T. Valente, “A gentle introduction to OSGi,”
SIGSOFT Softw. Eng. Notes, vol. 33, no. 5, pp. 8:1–8:5, Aug. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1402521.1402526

[4] B. A. Myers, “A brief history of human-computer interaction
technology,” interactions, vol. 5, no. 2, pp. 44–54, Mar. 1998. [Online].
Available: http://doi.acm.org/10.1145/274430.274436

[5] V. W. Zue and J. R. Glass, “Conversational interfaces: Advances and
challenges,” Proceedings of the IEEE, vol. 88, no. 8, pp. 1166–1180,
2000.

[6] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one
bot at a time,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 928–931. [Online].
Available: http://doi.acm.org/10.1145/2950290.2983989

[7] A. Følstad and P. B. Brandtzæg, “Chatbots and the new world of HCI,”
interactions, vol. 24, no. 4, pp. 38–42, Jun. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3085558

[8] K. Branting, J. Lester, and B. Mott, “Dialogue management for conver-
sational case-based reasoning,” Advances in Case-Based Reasoning, pp.
77–90, 2004.

[9] A. M. I. Fette, Google Inc and I. Ltd., “The WebSocket Protocol,”
Internet Requests for Comments, Internet Engineering Task Force
(IETF), RFC 7936, December 2011. [Online]. Available: https:
//tools.ietf.org/html/rfc6455

[10] S. Bieliauskas, “conversational-software-visualization-0.6,” Aug. 2017.
[Online]. Available: https://doi.org/10.5281/zenodo.838681

[11] H. Lieberman, “Integrating user interface agents with conventional
applications,” Knowledge-Based Systems, vol. 11, no. 1, pp. 15–23,
1998.

[12] M. Lange, J. Hjalmarsson, M. Cooper, A. Ynnerman, and V. Duong, “3d
visualization and 3d and voice interaction in air traffic management,” in
The Annual SIGRAD Conference. Special Theme-Real-Time Simulations.
Conference Proceedings from SIGRAD2003, no. 010. Linköping
University Electronic Press, 2003, pp. 17–22.

[13] S. Kopp, L. Gesellensetter, N. C. Krämer, and I. Wachsmuth, “A
conversational agent as museum guide–design and evaluation of a real-
world application,” in International Workshop on Intelligent Virtual
Agents. Springer, 2005, pp. 329–343.

[14] K. Lyons, C. Skeels, and T. Starner, “Providing support for mobile
calendaring conversations: A wizard of oz evaluation of dual–purpose
speech,” in Proceedings of the 7th International Conference on Human
Computer Interaction with Mobile Devices & Services, ser. MobileHCI
’05. New York, NY, USA: ACM, 2005, pp. 243–246. [Online].
Available: http://doi.acm.org/10.1145/1085777.1085821


