Institute of **Engineering Thermodynamics**

Highly Stable Carbon-Free Cathodes for Li-Air Batteries with Aqueous Alkaline Electrolyte: Electrochemical and Structural Investigations

Norbert Wagner¹, Dennis Wittmaier¹, Natalia Cañas¹, Indro Biswas¹, Alexander Kube¹, K.A. Friedrich^{1,2} ¹German Aerospace Center (DLR, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany ²Institute for Energy Storage, Pfaffenwaldring 31, University of Stuttgart, Germany Correspondence to norbert.wagner@dlr.de

Hydraulic Pressing

5 – 40 wt.-%

+ Silver (Ferro AG) or Nickel powder 50 - 85 wt.-%

+ PTFE 10 wt.-%

Cell Configuration:

Half-Cell with RHE Electrolyte 1 M LiOH(aq.)

> Ag oxides: Proof of Ag^IAg^{III}O₂ instead of Ag^{II}O at high potentials of OER

Ag₂O and Ag during cycling

AgIAgIIIO₂ decomposes

homogeneously to Ag₂O under ambient conditions

After 53 hours more than 50 % of $Ag^{II}Ag^{III}O_2$ is

decomposed to Ag₂O

Silver/Tricobalttetraoxid (Co₃O₄) - Electrodes

Gas Diffusion Electrode (GDE)

Silver

• X-Ray Diffraction (XRD)

particle size 10 – 30 µm; Ni: Crystalline structure, particle size 3 -9 µm Co₃O₄: Amorphous structure, particle size < 50 nm

Ag: Crystalline structure.

- Increasing intensity of Co_3O_4 peaks with higher Co₃O₄ content
- CV carried out in half-cell (potential range 0.3 1.8 V vs. RHE,1 M LiOH solution, 25 °C, platinum counter electrode).
- Surface area of bi-metal electrodes (Ag and Ni based) increasing with Co_3O_4 content
- High current density for ORR is due to high catalytic activity of Ag; Ni electrodes are less active for ORR
- Addition of Co_3O_4 has synergetic effect in ORR resulting in higher current densities compared to pure Ag or Ni electrodes.
- For OER addition of Co₃O₄ increases current density compared to pure Ag or Ni electrodes; Ag based electrodes show higher overall performance

Federal Ministry of Education

nd Research

Cyclability/SEM Ag/Co₃O₄ electrodes

Structural / Surface Characteristics

372 370 368

Decomposition Ag^IAg^{III}O₂

height

Net

luft lli

at $2\theta = 32.8^{\circ} (Ag_2O)$ at $2\theta = 37.2^{\circ} (Ag^{\overline{i}} Ag^{III}O,$ 0.4 cps/ peak 0.2 10 15 20 25 30 35 40 45 50 55 60 65 5 0

 N° of spectrum

Deutsches Zentrum für Luft- und Raumfahrt

We thank the Federal Ministry of Education and Research for funding this work. FKZ:03X4624C

HR-XPS shows shoulder of Aa-III-oxide AglAgIIIO2 is reduced back to