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* J. Haas, F. Cebulla, K. Cao, W. Nowak, R. Palma-Behnke, C. Rahmann, and P. Mancarella, “Challenges and trends of energy storage expansion
planning for flexibility provision in low-carbon power systems – a review,” Renewable and Sustainable Energy Reviews, vol. 80, pp. 603–619, 2017.
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* F. Cebulla, J. Haas, J. Eichman, W. Nowak, and P. Mancarella, “How much energy storage do we need? A review and
synthesis for the U.S., Europe, and Germany”.
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Broad ranges of storage requirements* (I)
Review of model-based assessments
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Broad ranges of storage requirements (II)
Review of model-based assessments
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… What other main drivers are there?



Energy system model REMix*

* H. C. Gils, Y. Scholz, T. Pregger, D. L. de Tena, and D. Heide, “Integrated modelling of variable renewable energy-based power
supply in Europe,” Energy, vol. 123, pp. 173–188, 2017.

 Renewable Energy Mix
 Linear (mixed-integer) optimization model, written in GAMS, solved with CPLEX
 Minimize overall system costs
 Decision variables: capacity invest (single year, myopic, or path optimization) and 

hourly dispatch of all assets

 Sectors: power, heat, transportation, hydrogen infrastructure
 Renewables: wind (onshore, offshore), photovoltaic, hydro (pumped, run-of-river, 

reservoir), biomass, geothermal, concentrated solar power (CSP)
 Fossil and nuclear thermal power plants (incl. CHP)
 Flexibility options: electricity storage, transmission grid expansion (AC,DC), 

flexible CHP with thermal storage, demand response, controlled charging of BEV

 Typical constraints: renewable shares or ratios, CO2 cap, minimum firm capacity, 
secondary or tertiary reserve, domestic generation shares
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Storage requirements in Europe (I)
Renewable and storage capacity

Generation Storage
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Short-term storage

Storage requirements in Europe (II)
Storage utilization
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… But how robust are these results?



Robustness of storage capacity requirements*
Influence of data assumptions and methodology
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* F. Cebulla, “Storage demand in highly renewable energy scenarios for Europe: The influence of methodology and data
assumptions in model-based assessments,” University of Stuttgart, 2017, submitted.

Data Methodology

 Investment costs for renewables, 
storage, and grid

 Operational costs: fuel cost, CO2

certificates
 Variations of weather year for PV and 

wind generation

 Detailed unit-commitment vs. simple LP 
power plant modeling

 Unlimited vs. restricted curtailments
 20 node model vs. single node 

representation (“copper plate”)
 Influence of temporal resolution

Further possible drivers
 Modeling approach: optimizations vs. simulation
 Model-inherent foresight, e.g. for investment and dispatch decisions (myopic, path, or 

rolling horizon)
 Consideration of other technological details, e.g. DC approximation versus load-flow
 Multi criteria optimization (not solely system costs) and sector coupling



Influence of power plant modeling approach* (I)
LP versus MIP
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* F. Cebulla and T. Fichter, “Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in
energy system models?,” Renewable Energy, vol. 105, pp. 117–132, 2017.

Over‐estimation of 
flexibility of fossil 
fired power plants … 

… leads to an under‐
estimation of storage 
utilization.

Realistic consideration 
of the flexibility leads 
to less ramping …

… and fosters an increase 
in storage utilization.



66%

Influence of power plant modeling approach (II)
Effect on storage capacity expansion and utilization
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Influence of further assumptions (I)
Renewable and storage capacities
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Influence of further assumptions (II)
Technology-specific ranges of storage capacity
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Conclusions (I)
Can we narrow down the range of storage requirements?
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Conclusions (II)
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State of research
 Current studies result in broad ranges for storage requirements
 PV-dominated scenarios tend to foster higher storage capacities, compared to wind-

dominated or balanced mixes

Storage requirements in Europe
 Storage sensitive to scenario and methodological assumptions:

 EU: 130–270 GW, 16–54TWh
 Power plant modeling affects storage requirements only in small systems with low shares 

of variable renewable energies
 Large parts of storage capacity can be substituted by transmission grid expansion
 However, grid and storage are complement options and temporal decoupling of load and 

supply is still necessary, even under perfect grid assumptions („copper plate”)
 Technology-diverse storage portfolio essential; each storage fills a certain niche
 Spatial storage capacity distribution mainly influenced by the shape of the net load



Dipl. Wi.-Ing. Felix Cebulla

German Aerospace Center
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Thank you!
Questions?
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Backup 
Transmission grid assumptions
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Scenario Technology Invest land 
[k€/km] 

Invest sea 
[k€/km]a 

Interest 
rate [-] 

Amor. 
time [a] O&Mfix

G+ AC 380kV 1,000 1,000 0.06 40 0.003
G+ HVDC_2200_UC 913 1,815 0.06 40 0.010
G+ HVDC_3200 384 2,640 0.06 40 0.010
a  For the modeling of the AC transmission grid no differentiation between land and 
 sea investment costs is considered. The values of invest land and invest sea are 
 therefore identical and should not be understood additively. 

 



Backup
Cost assumptions
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Technology Invest [k€] Unit Life time [a] O&Mfix [%/a]

AC 380 kV 1,000 Km 40 0.3

HVDC 2200 913a

1,815b Km 40 1.0

HVDC 3200 384a

2,640b Km 40 1.0

Photovoltaic 900 MW 20 1.0
Wind onshore 900 MW 18 4.0
Wind offshore 1,300 MW 18 5.5

Pumped hydro 450
10

MW
MWh

20
60 1.0

Compressed air 570
47

MW
MWh

20
40 1.0

Lithium-ion 50
150

MW
MWh

25
25 0.5

Hydrogen 1,200
1

MW
MWh

15
30 2.0

Redox-flow 630
100

MW
MWh

20
20 3.2

a Land-based
b Sea-based


