Requirements for electrical energy storage

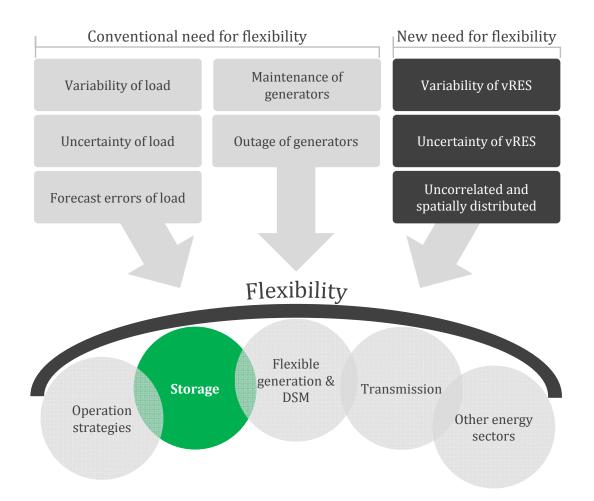
State of research and results from the energy system model REMix

2nd German-Japanese Workshop on Renewable Energies Stuttgart, 07/05/2017

Dipl. Wi.-Ing. Felix Cebulla German Aerospace Center (DLR)

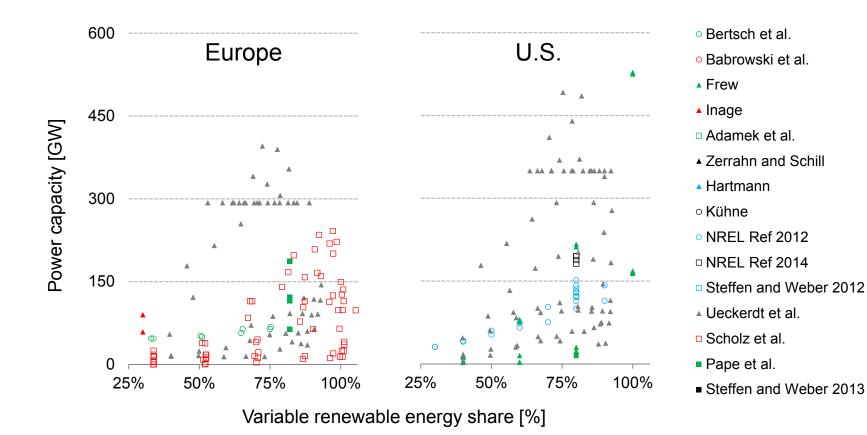
Systems Analysis and Technology Assessment

Knowledge for Tomorrow


Agenda

- I. The need for system flexibility
- II. Status quo: storage capacity requirements
- III. Storage demand in highly renewable European energy scenarios
- IV. Conclusions

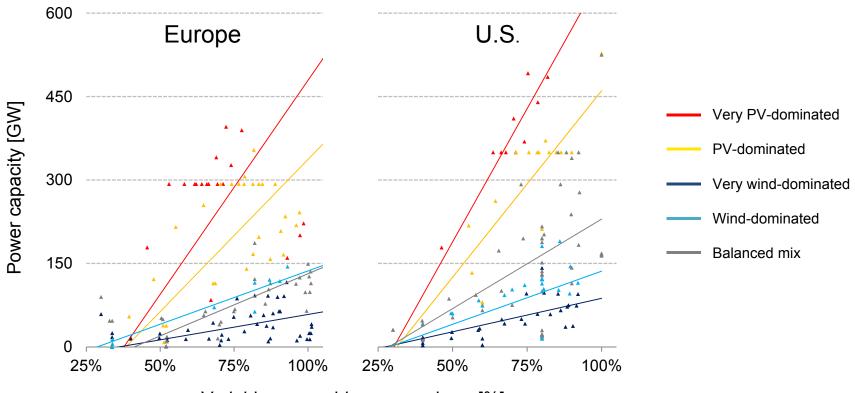
The need for flexibility*



* J. Haas, F. Cebulla, K. Cao, W. Nowak, R. Palma-Behnke, C. Rahmann, and P. Mancarella, "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," *Renewable and Sustainable Energy Reviews*, vol. 80, pp. 603–619, 2017.

Broad ranges of storage requirements* (I)

Review of model-based assessments



* F. Cebulla, J. Haas, J. Eichman, W. Nowak, and P. Mancarella, "How much energy storage do we need? A review and synthesis for the U.S., Europe, and Germany".

Broad ranges of storage requirements (II)

Review of model-based assessments

Variable renewable energy share [%]

. What other main drivers are there?

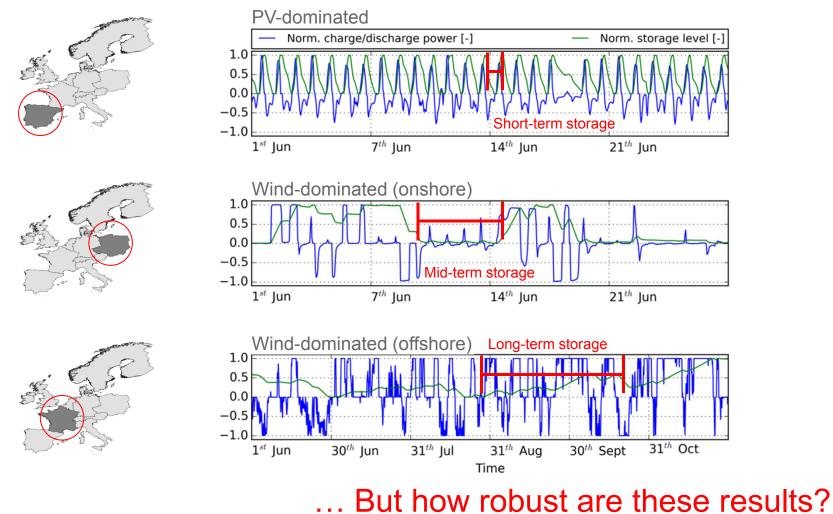
Energy system model REMix*

- Renewable Energy Mix
- Linear (mixed-integer) optimization model, written in GAMS, solved with CPLEX
- Minimize overall system costs
- Decision variables: capacity invest (single year, myopic, or path optimization) and hourly dispatch of all assets
- Sectors: power, heat, transportation, hydrogen infrastructure
- Renewables: wind (onshore, offshore), photovoltaic, hydro (pumped, run-of-river, reservoir), biomass, geothermal, concentrated solar power (CSP)
- Fossil and nuclear thermal power plants (incl. CHP)
- Flexibility options: electricity storage, transmission grid expansion (AC,DC), flexible CHP with thermal storage, demand response, controlled charging of BEV
- Typical constraints: renewable shares or ratios, CO₂ cap, minimum firm capacity, secondary or tertiary reserve, domestic generation shares

* H. C. Gils, Y. Scholz, T. Pregger, D. L. de Tena, and D. Heide, "Integrated modelling of variable renewable energy-based power supply in Europe," *Energy*, vol. 123, pp. 173–188, 2017.

Storage requirements in Europe (I)

Renewable and storage capacity


Storage Generation 240 GW @ 95% RE share (EU) 40 GW (4 TWh) 50 GW **-** 50 GW Muclear Lignite-fired Hard coal-fired CCGT Compressed air Gas turbine Geothermal Pumped hydro ////Hydro reservoir WW Hydro run-of-river 57 Lithium-ion PV Overall share of wind & PV [-] Onshore wind Hydrogen Offshore wind < 0.51 0.51 - 0.75 0.76 - 1.00 1.01 - 1.25 > 1.25

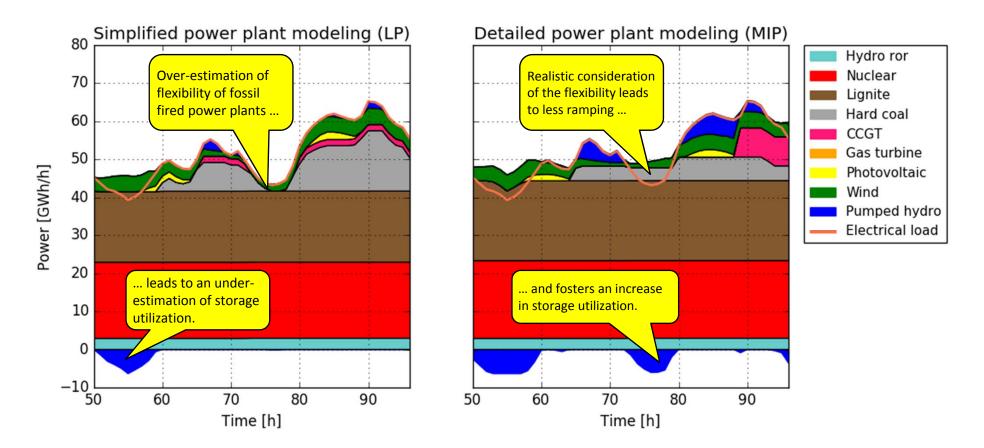
Storage requirements in Europe (II)

Storage utilization

Robustness of storage capacity requirements*

Influence of data assumptions and methodology

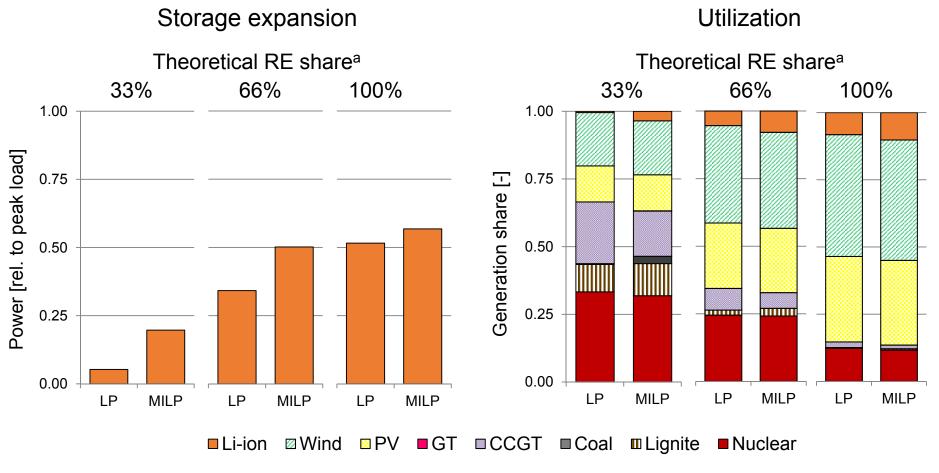
Data	Methodology
 Investment costs for renewables, 	 Detailed unit-commitment vs. simple LP
storage, and grid	power plant modeling
 Operational costs: fuel cost, CO₂ 	 Unlimited vs. restricted curtailments
certificates	 20 node model vs. single node
 Variations of weather year for PV and 	representation ("copper plate")
wind generation	 Influence of temporal resolution


Further possible drivers

- Modeling approach: optimizations vs. simulation
- Model-inherent foresight, e.g. for investment and dispatch decisions (myopic, path, or rolling horizon)
- Consideration of other technological details, e.g. DC approximation versus load-flow
- Multi criteria optimization (not solely system costs) and sector coupling

* F. Cebulla, "Storage demand in highly renewable energy scenarios for Europe: The influence of methodology and data assumptions in model-based assessments," University of Stuttgart, 2017, submitted.

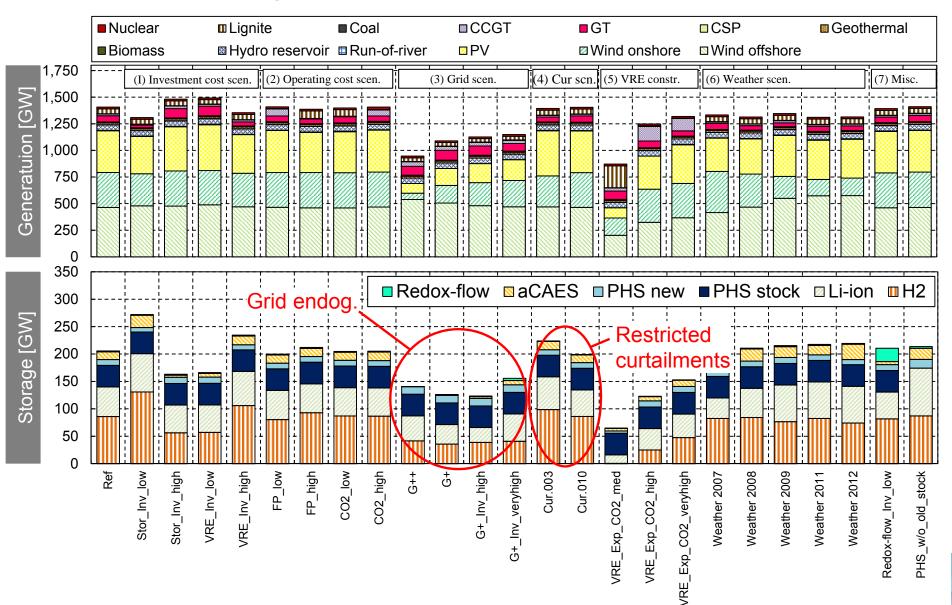
Influence of power plant modeling approach* (I) LP versus MIP



* F. Cebulla and T. Fichter, "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, vol. 105, pp. 117–132, 2017.

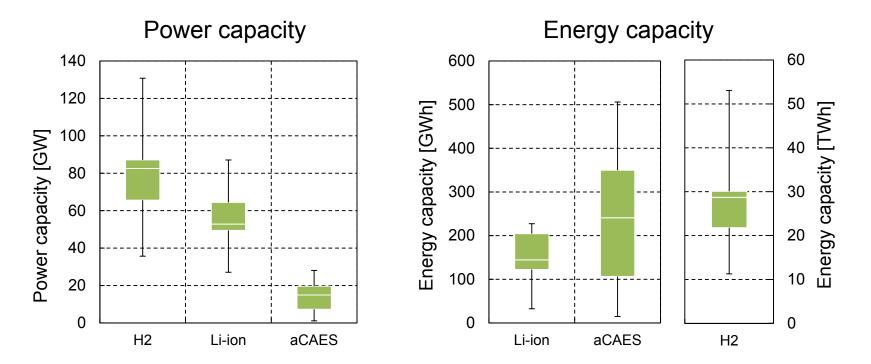
Influence of power plant modeling approach (II)

Effect on storage capacity expansion and utilization



^a Before curtailments, storage- and transmission losses

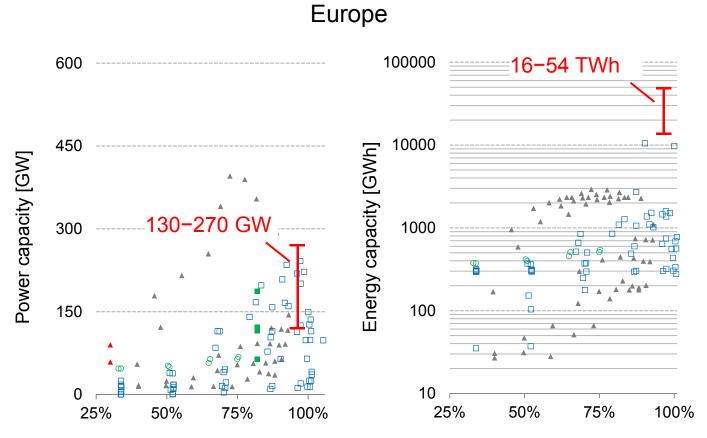
Influence of further assumptions (I)


Renewable and storage capacities

Influence of further assumptions (II)

Technology-specific ranges of storage capacity

- Spreads for EU scenarios with a RE share ≥ 90%^a
- 1st and 3rd quartile, median, min, and max
- Technology-specific capacities in large parts robust, however, some outliers exist



^a Pumped hydro & redox-flow excluded due to marginal bandwidths and insignificant capacities

Conclusions (I)

Can we narrow down the range of storage requirements?

Variable renewable energy share [%]

Conclusions (II)

State of research

- Current studies result in broad ranges for storage requirements
- PV-dominated scenarios tend to foster higher storage capacities, compared to winddominated or balanced mixes

Storage requirements in Europe

- Storage sensitive to scenario and methodological assumptions:
 - EU: 130–270 GW, 16–54TWh
- Power plant modeling affects storage requirements only in small systems with low shares of variable renewable energies
- Large parts of storage capacity can be substituted by transmission grid expansion
- However, grid and storage are complement options and temporal decoupling of load and supply is still necessary, even under perfect grid assumptions ("copper plate")
- Technology-diverse storage portfolio essential; each storage fills a certain niche
- Spatial storage capacity distribution mainly influenced by the shape of the net load

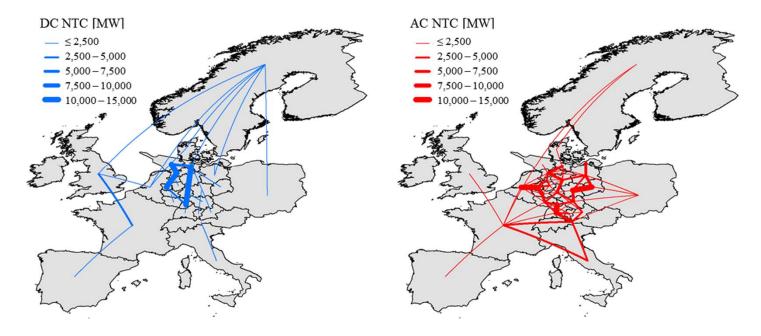
Thank you! Questions?

Dipl. Wi.-Ing. Felix Cebulla

German Aerospace Center

Systems Analysis and Technology Assessment

References


- [1] J. Haas, F. Cebulla, K. Cao, W. Nowak, R. Palma-Behnke, C. Rahmann, and P. Mancarella, Challenges and trends of energy storage expansion planning for flexibility provision in lowcarbon power systems – a review," *Renewable and Sustainable Energy Reviews*, vol. 80, pp. 603–619, 2017.
- [2] F. Cebulla, J. Haas, J. Eichman, W. Nowak, and P. Mancarella, "How much energy storage do we need? A review and synthesis for the U.S., Europe, and Germany".
- [3] H. C. Gils, Y. Scholz, T. Pregger, D. L. de Tena, and D. Heide, "Integrated modelling of variable renewable energy-based power supply in Europe," *Energy*, vol. 123, pp. 173–188, 2017.
- [4] F. Cebulla, T. Naegler, and M. Pohl, "Storage demand, spatial distribution, and storage dispatch in a European power supply system with 80% variable renewable energies," 2017.
- [5] F. Cebulla, "Storage demand in highly renewable energy scenarios for Europe: The influence of methodology and data assumptions in model-based assessments," University of Stuttgart, 2017, submitted.
- [6] F. Cebulla and T. Fichter, "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," *Renewable Energy*, vol. 105, pp. 117–132, 2017.

Backup

Transmission grid assumptions

Scenario	Technology	Invest land [k€km]	Invest sea [k€km]ª		Amor. time [a]	O&M _{fix}
G+	AC 380kV	1,000	1,000	0.06	40	0.003
G+	HVDC_2200_UC	913	1,815	0.06	40	0.010
G+	HVDC_3200	384	2,640	0.06	40	0.010

^a For the modeling of the AC transmission grid no differentiation between land and sea investment costs is considered. The values of invest land and invest sea are therefore identical and should not be understood additively.

Backup Cost assumptions

Technology	Invest [k€]	Unit	Life time [a]	O&M _{fix} [%/a]
AC 380 kV	1,000	Km	40	0.3
HVDC 2200	913ª 1,815 ^b	Km	40	1.0
HVDC 3200	384ª 2,640 ^b	Km	40	1.0
Photovoltaic	900	MW	20	1.0
Wind onshore	900	MW	18	4.0
Wind offshore	1,300	MW	18	5.5
Pumped hydro	450 10	MW MWh	20 60	1.0
Compressed air	570 47	MW MWh	20 40	1.0
Lithium-ion	50 150	MW MWh	25 25	0.5
Hydrogen	1,200 1	MW MWh	15 30	2.0
Redox-flow	630 100	MW MWh	20 20	3.2

^a Land-based

^b Sea-based

