Transition Modeling Activities at AS-C²A²S²E (DLR)

Andreas Krumbein

German Aerospace Center (DLR)
Institute of Aerodynamics and Flow Technology (AS)
C²A²S²E - Center for Computer Applications in AeroSpace Science and Engineering

CFD Transition Modeling Discussion Group Meeting
7 June 2017, Denver (CO)
AIAA Aviation 2017
Transition Modeling Activities at C²A²S²E – Chart 2 • AIAA Aviation 2017 • A. Krumbein • 7 June 2017

Overview

- C²A²S²E – Numerical Methods Branch → CFD Code Development
 - **TAU code** – external aerodynamics, compressible
 → air vehicles
 - **THETA code** – internal/external flows, incompressible
 → combustion, wind turbines
 - **Flucs code** – external aerodynamics, compressible/incompressible
 → 2nd order FV branch + HO-DG-branch
 → massive hybrid parallelization
 → development currently ongoing
 → 1st release planned for 12/2019

- Main Customers
 - Internal: Transport Aircraft, Helicopters (incl. Wind Turbines), High-Speed Configurations, Spacecraft
 - External: Airbus Operations
Vision: The Digital Aircraft

Numerical Analysis of Full Flight Envelope

- **Today**, very reliable results for design point applications.
- **Tomorrow**, same reliability needed for complete flight envelope.
 - Strong non-linearities
 - Separated flow regions
 - Strong shocks
 - Shock/boundary-layer interaction
 - Unsteady flows
- In general, all **major physical phenomena** must be captured with sufficient accuracy.
 - Flow separation, BL representation, shock/BL interaction, …
 - Vortices, wakes, free shear layers, engine jets, …
- CFD capabilities growing: discretization schemes, HPC capacities, grid generation, higher resolution, geometrical complexity and details, …
 - **Turbulence** and **transition models** are becoming weakest link in simulation chain.
 - Reliable **models are a key technology** in CFD.

Grey gradient indicates level of confidence in CFD flow solutions
Fundamental Needs

Transition Prediction Capabilities in CFD Codes

- Applicable to **complex configurations**
- High level of **automation**, usable within simulation chains and multi-disciplinary simulation frameworks
 - No interference by code user
 - As little *a priori* knowledge as possible
 - Must be run in parallel on HPC clusters

- Transition mechanisms
 - **Crossflow, Tollmien-Schlichting, separation-induced, by-pass transition**

- **Accuracy** of simulation results
 - Point of transition onset, interaction with turbulence model
 - Impact on major flow quantities and properties: c_p, c_f, heat flux, separation/reattachment lines, size of separation, …

- **Stability** and **robustness** of implementation/procedure

- **User acceptance**

- **Large application range**
 - Steady RANS, unsteady RANS, rotating systems, SRS
Fundamental Needs

Transition Prediction Capabilities in CFD Codes

- More than one method necessary to satisfy the wide range of requirements.
 - **Streamline-based** approaches using a simplified *two-N-factor strategy* + by-pass criterion
 - Different ways of BL computation
 - Based on RANS solution and RANS grid
 - Laminar BL code
 - γ-Re_θ transport equation model + DLR *crossflow (CF) extension*
 - Complementary use of the different approaches for different applications, e.g.
 - Laminar flow design and analysis using *two-N-factor strategy*
 - Massively unsteady flows (e.g. with rotation) using γ-Re_θ-CF model
TAU Transition Prediction Module

Streamline-based approaches & two-N-factor strategy

耦合于TAU代码与过渡预测模块
TAU Transition Prediction Module

Streamline-based approaches & two-N-factor strategy

- Internal structure of transition prediction module

TAU Transition Prediction Module

- **Streamline-based approaches & two-N-factor strategy**
 - **Internal structure of transition prediction module**

 - **determination of BL-edge velocities**
 - **calculation of streamlines**
 - **BL profiles along streamlines**
 - **extraction of c_p along line-in-flight cuts**
 - **BL profiles**

 - **Calculation of BL profiles**
 - **c_p - distribution sweep angles flow conditions**

 - **BL code COCO**

 - **Conical laminar BL code**
 - **swept, tapered wings**

 - **Line-in-flight cuts** (strip theory)
 - Accurate results for swept tapered wings.
 - Two sides (upper/lower) per cut, divided by stagnation/attachment line point

 - **Inviscid streamlines**
 - Necessary for fuselages, nacelles etc.
 - Start at attachment line
 - Attachment line must be determined too.
 - Suggests separate treatment of upper and lower sides

 - **Execution of the stability code along these lines**
 - One single transition point per cutside/line.
 - Transition line is a polygonal line on the surface.

 - **Fully automated local, linear stability code**
 - Frequency + wave length estimators for automation

- **Internal structure of transition prediction module**

- **Line-in-flight cuts (strip theory)**
 - Accurate results for swept tapered wings.
 - Two sides (upper/lower) per cut, divided by stagnation/attachment line point

- **Inviscid streamlines**
 - Necessary for fuselages, nacelles etc.
 - Start at attachment line
 - Attachment line must be determined too.
 - Suggests separate treatment of upper and lower sides

- **Execution of the stability code along these lines**
 - One single transition point per cutside/line.
 - Transition line is a polygonal line on the surface.

- **Fully automated local, linear stability code**
 - Frequency + wave length estimators for automation
TAU Transition Prediction Module

Streamline-based approaches & two-N-factor strategy

- Technical feasibility
 - Wing-body configuration with 4-element high-lift wing
 - \(Re = 3.5 \times 10^6, \ Ma = 0.17, \alpha = 14.0^\circ \), only T-S considered
 - 138 cuts@slat 148 cuts@wing, 29/73 cuts@flap
 - 388 cuts overall, 536 transition points (\(\approx 50 \) cuts usually used for these type of configuration)

- 536 calls of BL code and stability code
- 96 processes
- Computations stable and reliable on HPC clusters
TAU Transition Prediction Module

Streamline-based approaches & two-N-factor strategy

- Validation
 - Inclined prolate 6:1 spheroid: Re = 6.5x10^6, Ma = 0.13, \(\alpha = 15.0^\circ \)
 - CF-dominated
TAU Transition Prediction Module

Streamline-based approaches & two-N-factor strategy

- Impact on CFD results
 - DLR A320 D-ATRA high-lift landing configuration
 - Re = 17x10^6, Ma = 0.2
 - Two different grids

\(\alpha = 10.0^\circ \)
TAU Transition Prediction Module

Streamline-based approaches & two-N-factor strategy

- Impact on CFD results
 - DLR A320 D-ATRA high-lift landing configuration
 - Re = 17×10^6, Ma = 0.2
 - Two different grids

\[\Delta C_L \text{ between computations: fully-turbulent vs. predicted transition} \]

Impact of transition on C_L in fully-turbulent design @ high lift
\(\gamma\)-Re\(_{\theta}\)-CF Model

Crossflow extension of \(\gamma\)-Re\(_{\theta}\) model

- Published 06/2016 in conjunction with Menter SST k-\(\omega \)
- Based on helicity Re number \(Re_{He} = \frac{y^2}{\nu He/||u||} \)
- \(Re_{\delta_2c}(H) \) and \(Re_{He}(H) \) qualitatively very similar
- Calibration of \(Re_{He, tr}(H) \) using ISW standard cases
- Find empirical fully-local correlation function for shape factor \(H \)
\(\gamma-\text{Re}_\theta-\text{CF Model} \)

Crossflow extension of \(\gamma-\text{Re}_\theta \) model

<table>
<thead>
<tr>
<th>(\alpha = 10^\circ)</th>
<th>(\alpha = 24^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = 0.13, \text{Re} = 6.5 \times 10^6)</td>
<td>(\text{Ma} = 0.136)</td>
</tr>
</tbody>
</table>

\(C_f \) vs. \(x/L \)

- \(\gamma-\text{Re}_\theta \) SST
- \(\gamma-\text{Re}_\theta \) SST-CF

Calibrate \(\text{Re}_{\text{He},\text{tr}}(H) \) using ISW standard cases
Find empirical local correlation function for shape factor

\(\text{Re}_{\text{He}} = \frac{y^2}{\nu} \)

\(\text{Re}_{\delta^2c(H)} \) and \(\text{Re}_{\text{He}}(H) \) qualitatively very similar

Compute test cases:
- Inclined prolate 6:1 spheroid
- Different \(M, \text{Re} \) and \(\alpha \)

\(\alpha = 10^\circ \): \(\text{Ma} = 0.136, \text{Re} = 6.5 \times 10^6 \)
Crossflow extension of γ-Re_θ model

Until now, direct application of C_1 in γ-Re_θ-CF model only for wing-like components. Development of a modified model variant

Use of helicity

$He = u \cdot (\nabla \times u)$

Definition of helicity Re number

$Re_{He} = \frac{y^2}{\nu}$

$He / ||u||$

$Re_{\delta_2c(H)}$ and $Re_{He(H)}$ qualitatively very similar

Calibrate $Re_{He,tr(H)}$ using ISW standard cases

Find empirical local correlation function for shape factor H

Compute test cases:

Inclined prolate 6:1 spheroid

Different M, $Re = 6.5 \times 10^6$

$\alpha = 24^\circ$

Still room for improvement.
γ-\(\text{Re}_\theta \)-CF Model

Sickle-shaped wing (Petzold and Radespiel, 2015)
- Well documented, pressure distributions & transition locations
- Surface roughness and turbulence intensity given
- \(\text{Re}_c = 2.75 \times 10^6, \alpha = -2.6, M = 0.16 \)
♫-Re$_\theta$-CF Model

Sickle-shaped wing

Upper side

Lower side
γ-\(\text{Re}_\theta\)-CF Model

Coupling to SSG/LRR-\(\omega\) DRSM → PhD thesis just finalized

- \(\gamma\)-\(\text{Re}_\theta\) + \(\gamma\)-\(\text{Re}_\theta\)-CF models: model functions newly calibrated
- 2 publications underway
- MBB VA-2 airfoil: \(M = 0.2, \text{Re} = 2.0 \times 10^6, \alpha = 3.5^\circ \text{ and } 7.5^\circ\)

Improvement: Good results for the two angles of attack for \(\gamma\)-\(\text{Re}_\theta\)-RSM using consistent setting of FSTI (identical values) in contrast to \(\gamma\)-\(\text{Re}_\theta\)-SST (different values necessary)
Open Issues & Future Plans

Streamline-based approaches & two-N-factor strategy

- Intermittency function to be implemented
 - Currently only ‘point-transition‘ at point of transition onset
 - Probably, for every turbulence model an individual calibration necessary
- Linear PSE + compressible analysis + curvature: ???
 - Instead of, currently, incompressible analysis using LST
 - Is it possible/reasonable/reliable for more than infinite swept wing?
 - Currently under discussion
- Programming of a ‘new’ python-based version of the transition module
 - Currently available for TAU and THETA, via library
 - Coupling of the new module the multi-disciplinary simulation environment FlowSimulator
 - Couples new transition module to TAU, THETA, Flucs (and potentially other CFD codes)
 - Couples CFD to CSM and Flight Mechanics
 - This will be a major effort!
Open Issues & Future Plans

γ-Re_θ-CF Model

- Improvement of CF extension
- Rotor applications \rightarrow modifications for rotating systems
- Galilei invariance \rightarrow focus on helicity-based CF extension
- Improvement of the stream-wise criterion for high Reynolds numbers

both approaches

- Extension for Hybrid-laminar Flow Control (HLFC)
 - Started for streamline-based approaches \rightarrow validation of suction BCs
 - For γ-Re_θ-CF: fully open!
- Incorporation of surface roughness, steps and gaps, waviness
- Coupling, verification, validation, application with scale-resolving simulation methods (HRLM, SAS)
- ...

Transition Modeling Activities at C²A²S²E • Chart 19 • AIAA Aviation 2017 • A. Krumbein • 7 June 2017
CFD Transition Modeling Discussion Group Meeting

Some thoughts

- Verification of implemented models/approaches necessary

- For transport equation approaches: concept could be adopted as is
 - γ-Re_θ(-CF), AFT, γ(-CF), laminar kinetic energy, ...
 - Documentation of approaches would be necessary.

- For approaches using a point of transition onset:
 - Numerical treatment of laminar and transitional points in the computational grid must be verified
 - Fixed/prescribed transition
 - e^N methods, empirical criteria, ...
 - Point transition vs. intermittency functions
 - ...
Some thoughts

Before all this: Verification of the turbulence model used in conjunction with any transition model MUST be verified!

Test Cases

Need for cases with sufficient and reliable measurement data relevant for transition

- Point of transition, transition region, end of transition region
- \(c_{-} \)-distribution
- Wind tunnel turbulence intensities including variations in test section
- Measurement uncertainties, error bars
- Definition of the ‘transition point’
- ...

More 3D cases

- JAXA JSM
- HL-CRM
- NLF-CRM
- ...

CFD Transition Modeling Discussion Group Meeting