

Supported by:



on the basis of a decision by the German Bundestag

# Methods to improve computing times in linear energy system optimization models

<u>Hans Christian Gils</u>, Karl-Kiên Cao, Manuel Wetzel, Felix Cebulla, Kai von Krbek, Benjamin Fuchs, Frieder Borggrefe

DLR – German Aerospace Center, Institute of Engineering Thermodynamics

IFORS Conference, Quebec City, 17 July 2017

#### A PROJECT BY



# Background: energy systems analysis





Ongoing transformation drastically increases complexity of the energy system

### REMix energy system model



Complexity is reflected by state-of-the-art energy system models



- Deterministic linear optimization model realized in GAMS
- Assessment of investment and hourly system dispatch during one year

Speeding up energy system models

### Motivation







Speeding up energy system models

# Project consortium





# Idea and scope of BEAM-ME



Reduction of solution times urgently needed to enable the reflection of energy system complexity in state-of-the-art models



- Evaluation of different approaches to reduce model solution times
  - Increased modelling efficiency
  - Higher computing power
- Implementation of selected approaches into REMix
- Assessment of the transferability to other models
- Definition of best-practice strategies

# Software related speed-up strategies





# Modification of the problem formulation





# Typical energy system model dimensions









# Heuristics: reduction and clustering (I)





# Spatial aggregation (I)



#### Idea and implementation

- 2 Reference models:
  - Germany 500 regions
  - Europe 50 regions
- Aggregation of regions using spectral clustering
- Criterion: Δ of marginal costs for power supply



#### **Impact on CPLEX time** (50 regions model)



Reference: Metzdorf, J.: "Development and implementation of a spatial clustering approach using a transmission grid energy system model", University Stuttgart, 2016 Brodbeck, S.: "Evaluierung konzeptioneller Beschleunigungsstrategien für optimierende Energiesystemmodelle", University Stuttgart, 2017

# Spatial aggregation (II)



#### Impact on solution (500 regions model)

| Number of clusters  | 1     | 18    | 30    | 75    | 100   | 499  |
|---------------------|-------|-------|-------|-------|-------|------|
| System costs [M€]   | 751   | 839   | 843   | 869   | 926   | 968  |
| Lignite power [TWh] | 13.12 | 10.69 | 10.44 | 10.29 | 9.23  | 8.88 |
| Coal power [TWh]    | 7.44  | 9.85  | 9.66  | 10.11 | 10.39 | 9.86 |



#### **Impact on CPLEX time** (500 regions model)



Reference: Metzdorf, J.: "Development and implementation of a spatial clustering approach using a transmission grid energy system model", University Stuttgart, 2016 Brodbeck, S.: "Evaluierung konzeptioneller Beschleunigungsstrategien für optimierende Energiesystemmodelle", University Stuttgart, 2017

# Heuristics: reduction and clustering (II)







# Rolling horizon dispatch



#### Idea and implementation

- Splitting of the optimisation time horizon into several *intervals*, using different *overlaps*
- Test influence of intervals and overlaps w.r.t. computing time and solutions accuracy (e.g. deviation in system costs, CO<sub>2</sub> emissions)
- time steps to be fixed after solving an interval







#### **Results** (medium-size ESMs)

Reduction of computing times up to 53%



Deviation of objective value usually <1%</li>

| 8        |     | 2    | 4    | 6    | 8    | 10   | 20   | 30   | 40   | 50   | 60   |
|----------|-----|------|------|------|------|------|------|------|------|------|------|
|          | 0   | 0.13 | 0.98 | 1.02 | 1.03 | 1.48 | 1.69 | 2.30 | 2.76 | 2.90 | 3.19 |
| size.    | 20  | 0.09 | 0.06 | 0.24 | 0.28 | 0.32 | 0.59 | 1.02 | 1.17 | 1.46 | 1.54 |
| Overdap- | 40  | 0.10 | 0.05 | 0.07 | 0.10 | 0.12 | 0.28 | 0.47 | 0.64 | 0.78 | 0.81 |
| Tie.     | 60  | 0.03 | 0.04 | 0.06 | 0.08 | 0.10 | 0.21 | 0.34 | 0.52 | 0.54 | 0.58 |
| Ó        | 80  | 0.02 | 0.04 | 0.05 | 0.07 | 0.09 | 0.19 | 0.30 | 0.38 | 0.56 | 0.61 |
|          | 100 | 0.02 | 0.03 | 0.05 | 0.06 | 0.07 | 0.18 | 0.28 | 0.30 | 0.48 | 0.54 |

Number of intervals

References:

Schreck, S: "Implementation and Analysis of a Rolling Horizon Approach for the Energy System Model REMix", University Stuttgart, 2016

Speeding up energy system models

# Categorization of speed-up approaches





### **Exact methods**





# Benders decomposition



# **Optimization of power plant capacities** based on expected future costs





# **Optimization of power plant dispatch** based on given power plant capacities



 $\min c \cdot x \\ A \cdot x \le b$ 

Actual costs of subproblems



Information about actual costs of the subproblems improves new estimation of future costs (optimality cuts)

### Stochastic optimization and Benders



Stochastic optimization leads to large LP structures (**deterministic equivalent**)



LP structure of stochastic optimization can be **decomposed** 



- Subproblems can be solved in parallel
- RAM limitations can be avoided (individual generation of subproblems)
- Convergence of masterproblem can be improved methodologically (trust-regions, asynchronous masterproblem, GUSS for GAMS-formulated models)

# Solver-related model speed-up





# Algorithms and solvers – Starting point



- Energy system models mostly use CPLEX or GUROBI
- For our use cases, interior point method is preferable compared to Simplex
- Cross-Over increases computing time dramatically, but is not always needed
- There are potentially effective implementations of interior point methods, which are suitable for parallelization, exploiting a certain block structure of the problem
- Aim: application of a parallelizable solver that is callable in GAMS
- Using the knowledge about the problem's structure for parallelization



# Enhancement and application of PIPS-IPM



- Extension of an existing solver instead of new development
- Enhancement of PIPS-IPM
  - Extension to handle LPs with both linking variables and constraints (ZIB/TU Berlin)
  - Development of a link between GAMS and PIPS-IPM (GAMS)
  - Consideration of requirements of high performance computers (ZIB/GAMS/HLRS/JRC)
- Annotation of REMix model to communicate block structure
  - Application of the *stage* functionality to assign variables and constraints to blocks (DLR/GAMS)

# Block structure required by PIPS-IPM



**Extension** of the general formulation of a linear program

$$\begin{array}{ccc}
\min & c^T x \\
\text{s.t.} & Ax = b
\end{array}$$



#### Matrix of non-zero entries of REMix LP



#### Permuted matrix revealing block structure



Linking variables Linking equations

Speeding up energy system models

### Transferability of speed-up strategies



- Project includes funding for 6 external partners
  - Selection made on a list of model criteria
  - Model modifications have to be implemented with our support
  - Evaluation of the transferability of speed-up strategies
- Selected institutes in first tender
  - Institute of Energy Economics at the University of Cologne
  - Danish Technical University, Management Engineering

### Summary and Conclusions



- Detailed evaluation of the impact of model aggregation has high value
  - → systematic benchmark of speed-capability and error estimation
- Text-book decomposition approaches not necessarily helpful
  - → decomposition requires very profound knowledge of the model
  - → new development required
- Application of high performance computing requires substantial preparation
  - → identification of block structures, linking variables, linking constraints...
  - → still work in progress within BEAM-ME
- Strategies promising for REMix will be tested in other models as well
- Results to be summarized in a best-practice guide for energy system models

17 July 2017

### Outlook



- Special session on BEAM-ME at the OR 2017 conference in Berlin:
   "Implementation of acceleration strategies from mathematics and computational sciences for optimizing energy system models"
- Focus on model annotation, PIPS-IPM extension and GAMS/PIPS-link
- Contributions:
  - M. Wetzel et al. "Getting linear optimising energy system models ready for High Performance Computing"
  - D. Rehfeldt et al. "Optimizing large-scale linear energy problems with block diagonal structure by using parallel interior-point methods"
  - F. Fiand et al. "High Performance Computing with GAMS "
  - T. Breuer et al. "High Performance Computing for Energy System Modelling"
- See you in Berlin (6-8 September 2017)!

#### **Contact:**

Hans-Christian.Gils@dlr.de

DLR – German Aerospace Center
Institute of Engineering Thermodynamics
Systems Analysis and Technology Assessment
Pfaffenwaldring 38-40
70569 Stuttgart
Germany

www.beam-me-projekt.de



#### A PROJECT BY

