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Abstract Five years of atmospheric temperature data, collected with an Fe Boltzmann lidar by the
University of Colorado group from 2011 to 2015 at Arrival Heights, are used to characterize the vertical
wavelengths, periods, vertical phase speeds, frequency spectra, and vertical wave number spectra of
stratospheric gravity waves from 30 to 50 km altitudes. Over 1000 dominant gravity wave events are
identified from the data. The seasonal spectral distributions of vertical wavelengths, periods, and vertical
phase speeds in summer, winter, and spring/fall are found obeying a lognormal distribution. Both the
downward and upward phase progression gravity waves are observed by the lidar, and the fractions of
gravity waves with downward phase progression increase from summer ~59% to winter ~70%. The seasonal
and monthly mean vertical wavelengths and periods exhibit clear seasonal cycles with vertical wavelength
growing from summer ~5.5 km to winter ~8.5 km, and period increasing from summer ~4.5 h to winter ~6 h.
Statistically significant linear correlations are found between the monthly mean vertical wavelengths/periods
and the mean zonal wind velocities from 30 to 50 km. Assuming horizontal phase speeds independent of
month, the monthly mean horizontal wavelengths, intrinsic periods, and group velocities are estimated for
stratospheric gravity waves. The slopes of wave frequency spectra change from �1.9 at 30–60 km to �1.45
around 60–65 km. The vertical wave number spectra show the power spectral density at vertical wavelengths
of 5–20 km decreasing from winter maximum to summer minimum. Several aforementioned features are
observed for the first time in Antarctica.

Plain Language Summary Generated by buoyancy force, gravity waves are one of the most
ubiquitous and important atmospheric waves. They transport momentum and energy over the globe,
affect the atmospheric circulation and chemical reactions, generate turbulence, and mix the air. The missing
gravity wave drag especially in the Antarctic stratosphere is regarded as one possible mechanism for the
long-lasting “cold-pole” problem in most climate models, and the challenge came from the sparsity of polar
gravity wave observations. Five years of Fe Boltzmann lidar observations at McMurdo, Antarctica, provide a
unique opportunity to meet this challenge and reveal numerous gravity wave properties for the first time
in Antarctica. From these observational facts, the science points in the paper lead to a better understanding
of the potential wave sources and provide information for gravity wave parameterization, a key point for
atmospheric models to be right. In addition, a new method is rigorously developed to infer the intrinsic
period, horizontal phase speed, and wavelength from the nearly linear relation of gravity wave
parameters with the mean background winds. Overall, a complete picture of gravity waves in the polar
stratosphere resolvable from lidar starts to emerge and would greatly impact the whole
atmosphere community.

1. Introduction

Internal gravity waves are known to play essential roles in influencing the atmospheric circulation, thermal
structures, composition, and variability through transporting momentum and energy among stratified
layers from the troposphere to the thermosphere [e.g., Lindzen, 1981; Holton, 1982; Hitchman et al., 1989;
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Fritts and Alexander, 2003]. A general picture of gravity wave propagation was depicted by C. Hines in 1960s
for waves generated at lower levels of the atmosphere with a range of spectra. The effects of amplification,
reflection, intermodulation, and dissipation act to change the wave spectra continuously with increasing
altitude and result in different dominant modes at different altitudes [Hines, 1960, 1964, 1974]. There are
a variety of gravity wave sources such as wind flow over topography, deep convection, wind shears, jet
streams, geostrophic adjustment, body forces created by wave dissipation, and wave-wave interactions
[e.g., Zhu and Holton, 1987; Alexander and Pfister, 1995; Vadas et al., 2003; Fritts et al., 2006; Alexander and
Holton, 2004; Sato and Yoshiki, 2008; Vadas et al., 2009; Liu et al., 2014; Mzé et al., 2014; Eckermann et al.,
2016; Smith et al., 2016]. Related research in characterizing gravity wave features, tracing the wave source
and propagation, evaluating their impacts, etc., has been ongoing over many decades, yet large uncertain-
ties and discrepancies still exist. Poor gravity wave parameterizations in numerical weather prediction and
climate research models still present a major issue in these models [e.g., Kim et al., 2003; McLandress et al.,
2006; Alexander et al., 2010; Richter et al., 2010; Garcia et al., 2014; Mzé et al., 2014]. For example, most of the
General Circulation Models (GCMs) and Chemistry Climate Models (CCMs) have the cold pole problem; i.e.,
the simulated winter polar temperatures in the stratosphere are much colder than observed [e.g., Hamilton
et al., 1999; McLandress et al., 2012]. Numerical simulations have indicated missing gravity wave drag in the
southern stratosphere as a possible cause [McLandress et al., 2012; Tan, 2012; Alexander and Grimsdell, 2013].
Polar stratospheric gravity waves are also expected to have strong impacts on the composition and chem-
istry in this region because the temperature perturbations induced by these waves can potentially alter the
rates of chemical reactions and, therefore, the concentrations of important atmospheric constituents such
as ozone [Lee et al., 2014] and the formation of polar stratospheric clouds [Steele et al., 1983; McDonald et al.,
2009]. It is crucial to characterize gravity waves in the stratosphere from a variety of observations, especially
in the polar regions. Such observations will help improve our understanding of gravity wave characteristics
and place parameterizations on a physical basis, which help improve the diagnostic and predictive capabil-
ities of the current numerical models of the stratosphere and above.

The stratosphere above 30 km at McMurdo (77.8°S, 166.7°E), Antarctica, was regarded as a gap region for
gravity wave studies before the McMurdo lidar campaign was started in late 2010 [Chu et al., 2011a]. Most
observations of gravity waves over Antarctica, made with multiple instruments such as lidar, radar, balloon
radiosonde, airglow imager, and GPS radio occultation, focused in regions either below 30 km or above
80 km [e.g., Collins et al., 1994, 1996; Collins and Gardner, 1995; Moffat-Griffin et al., 2011, 2013; Espy et al.,
2004, 2006; Hibbins et al., 2007; Tsuda et al., 2000; Baumgaertner and McDonald, 2007; Yoshiki and Sato,
2000]. A large amount of recent activity in the atmospheric gravity wave community has been focused on
studies over the Antarctic. Two superpressure balloon campaigns, VORCORE and CONCOREDIASI, were
designed to detect the lower stratospheric gravity waves around or below 20 km [Hertzog et al., 2007;
Rabier et al., 2012]. Momentum fluxes were derived from these balloon radiosonde measurements with lower
(1 h or greater) and higher (12 min) resolutions for these two campaigns, respectively [Hertzog et al., 2008;
Walterscheid et al., 2016]. The peak flux over the Antarctica Peninsula is averaged to be ~ �375 mPa during
CONCOREDIASI campaign, which is ~10 times the campaign-averaged zonal flux for the VORCORE campaign
[Walterscheid et al., 2016]. Satellite AIRS (Atmospheric Infrared Sounder) observations provide extensive data
sets for global studies of stratospheric gravity waves. Alexander and Barnet [2007] discussed how satellite
observations like AIRS could be used to constrain parameterizations of gravity waves in global models. A
statistical study based on AIRS data for the region near the Patagonian Andes of South America and north-
ernmost Antarctic Peninsula during September 2003 reveals that horizontal wavelengths range from ~30
to 500 km with a peak of ~100 km, while wave propagation angles from the background horizontal wind
range from ~90 to 270° with a peak of ~190° [Alexander and Barnet, 2007]. Hoffmann and Alexander [2009]
developed a data retrieval scheme for AIRS that made it feasible to study small-scale gravity waves with
vertical wavelengths as short as 20 km. Gong et al. [2012] studied climatology of the gravity-wave-induced
temperature variance at pressure levels from 2 to 100 hPa (~16–41 km) with AIRS measurements and demon-
strated AIRS capable of detecting gravity waves with short vertical wavelengths (~12 km). Efforts were also
spent on forming a global view of stratospheric gravity wave hotspots and discriminating gravity waves
between orographic and nonorographic sources [Hoffmann et al., 2013, 2016]. However, the difficulty in
interpreting satellite observations of gravity wave activity and their coarse vertical resolutions mean that
to examine the region between 30 and 80 km requires detailed measurements by ground-based
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instruments. Lidar observations have characterized the stratospheric gravity waves above 30 km at the South
Pole and Rothera (67.5°S) [Yamashita et al., 2009; Chu et al., 2009] and at Davis (69°S) [Alexander et al., 2011;
Kaifler et al., 2015], but there was a big latitudinal gap between the South Pole and Antarctic Circle. Lidar
observations at McMurdo were chosen to fill in this important observational gap, which is the subject of
the present study.

Ever since the McMurdo lidar campaign was initiated by the University of Colorado, many scientific findings
have resulted from this unique observational data set with gravity waves playing important roles among all.
For example, Chu et al. [2011b] discovered the thermospheric Fe layer events in the altitudes of 100–200 km,
in which gravity waves were found to play an important role in the formation of suchmetal layers at McMurdo
[Chu et al., 2011b; Chu and Yu, 2017]. Persistent, dominant and large-amplitude gravity waves with periods of
3–10 h and vertical wavelengths of ~20–30 km are discovered in the mesosphere and lower thermosphere
(MLT) region from Fe lidar temperature measurements by Chen et al. [2013, 2016]. The sources of these
inertia-gravity waves are still unknown. The obvious downward phase progression of these persistent waves
indicates that the sources possibly lie in the lower atmosphere such as the stratosphere. Chen et al. [2016] ana-
lyzed the frequency spectra of the discovered inertia-gravity waves in the MLT in order to find a clue of the
source region. The steeper slopes in the lower MLT compared to the fully damped theoretical slopes in the
upper MLT suggest a likely wave source in the stratosphere or the lower mesosphere. All the above discov-
eries urge the need for characterizing the stratospheric gravity waves at McMurdo. Furthermore, Lu et al.
[2015a] studied the vertical evolution of gravity wave potential energy densities and vertical wave number
spectra from the stratosphere to the lower thermosphere at McMurdo but only for Antarctic winter months.
It is therefore necessary to characterize stratospheric gravity waves through the entire year at McMurdo and
compare with previous observations at the South Pole and Antarctic Circle. This kind of investigationmay pro-
vide the possible link between the waves in the stratosphere and those in the thermosphere and to provide
observational basis for future attempts of identifying the exact wave sources.

The present study is divided into two parts for the convenience of readers. In Part 1, we characterize the
distributions of basic wave parameters along with the frequency spectra and vertical wave number spectra
and also investigate how the seasonal variations of vertical wavelengths and periods are related to the
background stratospheric winds. In Part 2, we characterize the gravity wave potential energy densities over
five consecutive years and investigate the causes for their seasonal and interannual variations.

2. Methodology
2.1. Lidar Observational Campaign at Arrival Heights

The University of Colorado lidar group deployed an Fe Boltzmann temperature lidar [Chu et al., 2002; Wang
et al., 2012] to Arrival Heights observatory near McMurdo in late 2010 [Chu et al., 2011a]. Ever since, the obser-
vational campaign has been ongoing for over 5 years, recordingmultiple parameters of the atmosphere from
~15 km to nearly 200 km, whenever weather permits [Chu et al., 2011a, 2011b, 2016]. Benefited from this
long-lasting campaign, invaluable data sets were recorded for unraveling mysteries in the Antarctic atmo-
sphere. Lidar temperature data from the pure Rayleigh scattering region (~30–70 km) are used in this study.
This analysis covers a 5 year time period from 1 January 2011 to 31 December 2015.

Over the past 5 years, around 5000 h of data were accumulated owing to the hard work from our dedi-
cated winter-over lidar students. Only 4084 h of data are chosen in this study as documented in Table 1
where the individual monthly observational lengths in hours are listed over the 60 months of studies.
The total observational hours for each individual month vary from 14 to 160 h. Yearly and monthly

Table 1. Statistics on Observational Lengths (in Hours) for Individual Month From 2011 to 2015

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

2011 82 85 36 40 59 72 54 67 14 38 148 160 855
2012 108 95 19 26 53 72 21 26 49 98 96 49 712
2013 90 19 49 99 45 71 83 63 47 53 91 145 855
2014 137 41 54 30 126 104 79 34 31 82 50 130 898
2015 61 51 57 52 66 121 104 42 67 48 14 81 764
Total 478 291 215 247 349 440 341 232 208 319 399 565 4084
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totals are also shown in this table. The data screening that results in such data statistics is largely based on
the following criteria:

1. Only data sets with observational length equal to or longer than 6 h are chosen.
2. Data with large temporal gaps (4 h or above) are excluded in this study.
3. Data with low signal-to-noise ratios (SNRs) are excluded. Low SNRs usually occur during thin cloud

coverage or high solar background in summer.

The raw photon counts were collected in the temporal and spatial resolutions of 1 min and 48m, respectively.
During the data retrieval process that converts the raw photon counts to real temperature, different resolu-
tions and altitude ranges are used for the purposes of investigating the different gravity wave parameters.
Achieving sufficient SNRs while keeping resolutions as high as possible is themajor driver behind these selec-
tions. In sections 3 and 4, temperature data were retrieved with a temporal integration window of 2 h and an
altitudinal window of 0.96 km to retain range information in order to investigate the vertical wavelength,
period, etc., when summer data with low SNRs were included. The display resolutions were set to 1 h and
0.96 km. In section 5, resolutions of 0.5 h by 0.96 km were used for the frequency spectrum studies with
June data (high-quality, nearly zero solar background in Antarctic winter) in order to compare with the work
of Chen et al. [2016], while the wave number spectrum studies through the entire year adhered to the resolu-
tions of 2 h by 0.96 km. Similarly, the selection of different altitude ranges was also based on the needed SNR
for specific topics. For the studies of vertical wavelength, period, phase speed, and vertical wave number
spectrum covering the entire year, we chose the altitude range of 30–50 km in order to achieve sufficiently
high SNRs in summer. Altitude range from 30 to 65 km was chosen for the studies of frequency spectra using
the winter data in June only. As a matter of fact, during the wintertime, owing to the high SNRs, this lidar has
the capability of probing atmospheric temperatures to as high as 70 km using Rayleigh integration technique
[Chu et al., 2011b; Fong et al., 2014; Chen et al., 2016].

2.2. Analysis Methods to Derive Gravity Wave-Induced Perturbations

Five years of temperature data are used to analyze the gravity wave activities in the stratosphere and lower
mesosphere over McMurdo. Among the significant amount of data accumulated from 2011 through 2015,
there are long-lasting data sets with various durations (up to ~65 h). For this study we choose only data sets
lasting or longer than 6 h as elaborated above. Except for the frequency and vertical wave number spectra in
section 5, for the studies in sections 3 and 4, all the data sets longer than 12 h are divided into 12 h observa-
tional segments without overlaps in order to ensure reasonable statistics on gravity wave parameters while
including gravity wave spectra as much as possible. As the inertial period at McMurdo is 12.24 h and gravity
waves with periods of 3–10 h are persistently observed in the MLT region [Chen et al., 2016], 12 h segments
are the best choice of window size in our case. In this process of division, if the remaining segment at the end
has observational length less than 6 h, then this observational segment is abandoned. Hence, all the obser-
vational segments used in this study have data length equal to or longer than 6 h but equal to or shorter than
12 h. Owing to this division process, the total observational hours actually used in sections 3 and 4 are
reduced to 3784 h as enumerated in Table 3. Note that the frequency spectra (f-spectra) are derived with zero
padding to the longest data set (~65 h), while the vertical wave number spectra (m-spectra) are derived from
individual altitude profiles at a temporal display resolution of 1 h. As a result, the screened data are used
without division of segments in the f- and m-spectra.

The following procedure is implemented to estimate the gravity wave perturbations. As the inertia-gravity
waves (IGWs) with periods of 3–10 h are persistent and dominant in the McMurdo MLT region [Chen et al.,
2013, 2016; Chen and Chu, 2017] while the planetary waves (PWs) are clearly seen in the stratosphere [Lu
et al., 2013; Chen et al., 2016], this procedure aims to keep the IGW spectra as full as possible but significantly
filter out PWs and tides.

1. Temperature perturbations ΔT(z, t) are calculated through subtracting the temporal mean T0(z) of the 12 h
segment at each altitude first and then subtracting the altitudinal mean at each time grid for every obser-
vational segment. Such altitudinal mean subtraction is to remove the nearly vertical stripes found in some
segments of the Rayleigh temperature data, equivalently removing waves with long vertical wavelengths.
Dividing the absolute temperature perturbations by the temporal mean gives the raw relative tempera-
ture perturbations before filtering.
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2. At each individual altitude, a high-pass filter in time domain is applied to the temperature perturbations
obtained above to derive temporally filtered temperature perturbations. The high-pass filter is designed
to remove waves with periods longer than 11 h, and it is implemented as the following. First, a one-
dimensional fast Fourier transform (1DFFT) is applied to a time series to attain its frequency spectrum.
Then a sixth-order Butterworth filter window is multiplied with the obtained frequency spectrum to
remove frequency components outside the desired frequency range. Finally, an inverse 1DFFT is applied
to this multiplied frequency spectrum to attain a new time series with only the selected frequency
components.

3. At each individual time grid, by applying a high-pass filter in the altitudinal domain to the temporally
filtered temperature perturbations, the final temperature perturbations T

0
(z, t) are obtained. This filter

and its implementation are identical to the high-pass filter used in Step (2) except it is designed to filter
out waves with vertical wavelengths longer than 30 km.

4. The temporal mean T0(z) in Step (1) is considered as the temperature background, and the filtered relative
temperature perturbations of every observational segment are calculated as

T
0
Rel z; tð Þ ¼ T

0
z; tð Þ=T0 zð Þ (1)

Figure 1 is an illustration of data processing procedures using the data set of 28–30 June 2014. Clear down-
ward phase progression can be identified in both the absolute (Figure 1b) and raw relative (Figure 1c) tem-
perature perturbations without high-pass filtering, which usually indicates upward energy propagation.
Note that due to the lack of background wind information, the inferred upward or downward energy propa-
gation heremay have ambiguities. Strong wave signatures can be easily identified in these plots. As planetary
wave components with periods over 1 day are dominant in the stratosphere [Lu et al., 2013] and visible in the
raw relative perturbations (Figure 1c), it is necessary to filter out waves with long periods and long vertical
wavelengths as elaborated above in Steps (2) and (3) in order to derive pure gravity wave perturbations
andminimize the contamination from planetary waves. An example result is shown in Figure 2a where gravity
wave signatures show up clearly. The filtered relative temperature perturbations derived above represent the
perturbations induced by gravity waves within certain ranges of frequency and vertical wave number spectra.
Further analyses are performed on these perturbations in order to characterize theMcMurdo gravity waves on
various aspects. These data analysis methods are introduced before the results are presented in sections 3–5.

3. Characterization of Vertical Wavelength, Period, and Phase Speed

Characterizing gravity wave parameters, such as wavelength, period, phase speed, frequency spectra, vertical
wave number spectra, and phase progression direction, for McMurdo has the potential to shed light on the

Figure 1. An illustration of data processing procedures before the high-pass filtering based on the observation on 28–30
June 2014. (a) Raw lidar temperatures (K) versus UT (h) and altitude (km). (b) Absolute (in unit of K) and (c) relative
temperature perturbations are perturbations without high-pass filtering.
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understanding of polar wave dynamics, e.g., in which specific way gravity waves are transporting momentum
and energy, and how gravity wave properties change with the time of year. To derive the basic wave
parameters, a two-dimensional fast Fourier transform (2DFFT) is first applied to the relative perturbations
of segments to obtain the power spectral density (PSD). These PSD plots are then scaled by their
corresponding temporal length and altitudinal range so that their magnitudes do not depend on the
observational window lengths. The scaling is done through dividing the original PSD value on every grid
point by the total temporal length and the total altitudinal range. We further convert these scaled PSD
plots to area-preserving form through multiplying PSDs by their corresponding wave numbers and
frequencies following the approaches in Yamashita et al. [2009] and Tsuda et al. [2000]. The spectral noise
floor of the area-preserving PSD, induced by the lidar measurement errors, is estimated using the Monte
Carlo method described below. First, 1000 Gaussian white noise simulation data are constructed at each
grid point of the measurement (time versus altitude) with a standard deviation equal to the measurement
error at that grid point. Then, we run each of the above constructed 1000 sets of 2-D simulation data
through the same filtering and 2DFFT processes to obtain their corresponding area-preserving PSD. Finally,
the spectral noise floor is estimated by taking the mean of these 1000 simulated noise spectra. The
spectral noise floor obtained above is then subtracted from the measured 2DFFT power spectrum. The
number of 1000 is chosen with the consideration of computational expenses. In fact, the noise floor barely
varies once this number exceeds 500. Figure 2 shows an example of the filtered relative perturbations and
its area-preserving PSD plot on 28–30 June 2014 with the spectral noise floor subtracted already. Note that
as an example of illustrating the procedures to derive relative perturbations and PSD, we did not divide
this observation into 12 h segments in Figures 1 and 2. However, this observation is actually divided into
12 h segments for the study below as is done for all the other observations.

2DFFT spectral analysis is capable of distinguishing the gravity wave vertical phase progression directions
(upward or downward) [e.g., Yamashita et al., 2009; Lu et al., 2015b, 2016]. Our 2DFFT formalism leads to
the fact that the spectral peaks with positive frequencies correspond to downward phase progression waves,
while the peaks with negative frequencies represent upward phase progression, with the vertical wave num-
bers being positive. Using Figure 2b as an example, there are several downward phase progression waves
with the strongest peak locating at a positive frequency of ~0.13 h�1 and a vertical wave number of
~0.10 km�1. In comparison, the upward phase progression waves with negative frequencies have much
lower power spectral densities in this particular example. In this study, the first three dominant waves (among
both upward and downward phase progression wave fields) above the spectral noise floor are picked in
every one of these area-preserving PSD plots in order to identify the signatures of dominant gravity waves.
The choice of three waves is to align in accordance with the statistical studies performed by Yamashita
et al. [2009] for the South Pole and Rothera. Table 2 summarizes the total number of waves identified from
all the qualified 12 h segments through 5 years from 2011 to 2015, which amount to 1062 waves. The
corresponding numbers of ground-relative downward and upward phase progression waves in the

Figure 2. (a) High-pass filtered relative perturbations versus UT (h) and altitude (km). (b) Power spectral density versus frequency (1/h) and vertical wave number
(1/km). The unit of the PSD is arbitrary. Both Figures 2a and 2b are based on the observation on 28–30 June 2014.
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seasons of summer, winter, and “spring + fall” are also given in Table 2. The seasons are defined as summer
from November through February, winter from May through August, fall for March and April, and spring for
September and October. The fractions of downward phase progression waves out of the total waves in the
individual seasons, range from ~59% in summer to ~70% in winter, with an overall average of ~64%. The
trend of increasing fraction of downward phase progression waves from summer to winter is consistent
with the observations at Rothera by Yamashita et al. [2009]. Note that the ground-relative (not intrinsic)
frequency is inferred from the lidar data only.

The statistical studies are conducted on the spectra of the 1062 dominant gravity waves identified above,
including both downward and upward phase progression waves. Histograms in Figure 3 illustrate the seaso-
nal distributions of vertical wavelengths λz, ground-relative periods τ, and vertical phase speeds cz. For the
convenience of presentation, parameters (λz, τ, and cz) of downward phase progression waves are plotted
as positive values in Figure 3, while the negative values are for upward phase progression waves. The vertical
wavelengths of dominant gravity waves distribute from a few to less than 20 km, while the dominant wave
periods (ground-relative) range from ~3 to ~10 h. The vertical phase speeds vary from ~0.1 to ~1 m/s. The
means, standard errors, and standard deviations of all individual distributions are summarized in Table 3,
in which all numbers are presented in positive values of their magnitudes. The medians are also provided in
Table 3. It is obvious from Table 3 that the vertical wavelengths and periods increase in winter as shown by
the mean and the median values; i.e., λz grows from ~5.5 km in summer to ~8 km in winter while τ increases
from ~4.5 h in summer to ~5.7 h in winter. Such seasonal variations can be seen for both the downward and
upward phase progression waves. There are slight increases in the vertical phase speeds in winter, but not as
obvious as λz and τ. The seasonal variations of λz and τ will be further investigated in section 4. Comparing our
results to those by Yamashita et al. [2009], both the vertical wavelengths (~7.1 km) and periods (~5.3 h) at

Table 2. Gravity Wave Propagation Direction in the 30–50 km at McMurdo

Total Number
of Waves

Downward Phase
Progression

Upward Phase
Progression

Downward Phase to
Total Wave Ratio

Summer 462 273 189 59.1%
Winter 348 245 103 70.4%
Spring + Fall 252 160 92 63.5%
Total 1062 678 384 63.8%

Figure 3. Seasonal distributions of (top row) vertical wavelength (km), (middle row) period (h), and (bottom row) vertical
phase speed (m/s). For each panel, y axis shows number of waves. Positive values denote waves with downward phase
progression whereas negative values denote waves with upward phase progression.
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McMurdo are generally longer than those at the South Pole (~4.1 km and ~1.7 h) and Rothera (~4.4 km and
~1.8 h) while the vertical phase speeds (~0.4 m/s) at McMurdo are slower than those at the South Pole and
Rothera (~0.7 m/s). Such differences are likely due to the fact that different spectra of gravity waves are
selected in these two studies. Gravity waves with periods of ~1–6 h and vertical wavelength of 2–30 km
are included in Yamashita et al. [2009], whereas here we focus on waves with periods of ~2–11 h and vertical
wavelength of ~2–30 km. The differences could also be due to different excitation mechanisms that generate
gravity waves with different spectral characteristics.

The individual distributions in Figure 3 obviously deviate from normal distributions. To quantify such features,
we calculate the skewness and kurtosis for each distribution via equations (2) and (3). Skewness is the third
moment—a measure of asymmetry of a probability distribution around its mean, and Kurtosis is the fourth
moment—a measure of the peakedness or flatness relative to a normal distribution [Press et al., 1986; Chu
et al., 2006].

Skewness x1; …; xi; …; xNð Þ ¼ 1
N

XN
i¼1

xi � x
std

� �3

(2)

Kurtosis x1; …; xi; …; xNð Þ ¼ 1
N

XN
i¼1

xi � x
std

� �4

� 3 (3)

where x
�
is the mean of values x1 , … , xi , … , xN, std is the standard deviation of the distribution, and

N is the number of data points. The standard errors of the skewness and kurtosis for a normal distribution
are approximately

ffiffiffiffiffiffiffiffi
6=N

p
and

ffiffiffiffiffiffiffiffiffiffiffi
24=N

p
, respectively. Taking the winter downward phase progression cz as an

example of the skewness and kurtosis in Table 3, with 68% confidence level, we have skewness
1.35 ± 0.16, and kurtosis 2.65 ± 0.31; with 95% confidence level, we have skewness 1.35 ± 0.32, and
kurtosis 2.65 ± 0.62. The statistics in Table 3 reveal that the distributions in Figure 3 clearly deviate from
normal distributions.

Given that previous observations have shown lognormal distributions of gravity wave momentum flux and
potential energy density [Alexander et al., 2008; Hertzog et al., 2012; Baumgaertner and McDonald, 2007;
Murphy et al., 2014], we test if the histograms in Figure 3 are also lognormally distributed. The lognormal
distribution defined by equation (4)

Table 3. Statistics on Seasonal Distributions of Vertical Wavelength, Period, and Vertical Phase Speeda

Summer Winter Spring + Fall Mean/Totalc

λz (km) mean ± Std. error (Std. deviation) Downwardb 5.97 ± 0.17 (2.86) 8.07 ± 0.18 (2.88) 7.14 ± 0.25 (3.18) 7.06
Upward 5.85 ± 0.24 (3.26) 8.35 ± 0.29 (2.94) 7.12 ± 0.32 (3.10) 7.11

Median Downward 5.26 7.68 6.60 6.51
Upward 4.84 7.93 6.09 6.29

Skewness, kurtosis Downward 0.98, �0.09 0.48, �0.52 0.95, 0.39
Upward 1.87, 4.87 0.99, 1.13 1.15, 1.41

τ (h) mean ± Std. error (Std. deviation) Downward 4.86 ± 0.09 (1.53) 5.72 ± 0.11 (1.73) 5.44 ± 0.14 (1.72) 5.34
Upward 4.50 ± 0.10 (1.32) 5.78 ± 0.18 (1.83) 5.21 ± 0.19 (1.79) 5.16

Median Downward 4.57 5.57 5.33 5.16
Upward 4.13 5.57 5.02 4.91

Skewness, kurtosis Downward 0.43, �0.68 0.58, 0.14 0.48, 0.03
Upward 0.82, 0.27 0.27, �0.53 0.47, �0.48

Cz (m/s) mean ± Std. Error (Std. Deviation) Downward 0.37 ± 0.01 (0.21) 0.43 ± 0.01 (0.21) 0.39 ± 0.02 (0.21) 0.40
Upward 0.39 ± 0.02 (0.24) 0.44 ± 0.02 (0.20) 0.42 ± 0.02 (0.22) 0.42

Median Downward 0.32 0.39 0.34 0.35
Upward 0.32 0.39 0.36 0.36

Skewness, kurtosis Downward 1.44, 2.32 1.35, 2.65 1.59, 2.92
Upward 1.97, 5.37 1.09, 0.98 1.26, 1.55

Observation hours 1633 1261 890 3784

aλz, τ, and Cz represent vertical wavelength, ground-relative period, and vertical phase speed. Shown as mean ± standard error (Std. error), standard deviation
(Std. deviation), median, skewness, and kurtosis.

bThe downward and upward represent downward and upward phase progressions of gravity waves, respectively.
cRegarding the mean/total column, mean is for rows of λz, τ, and Cz, and total is for the row of observation hours.
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h xð Þ ¼ Affiffiffiffiffiffi
2π

p
σ
exp � lnx � μð Þ2

2σ2

" #
(4)

is fitted as the red lines in Figure 3. The fitting parameters μ, σ, and A are summarized in Table 4. The correla-
tion coefficients for these lognormal fittings are very high, ranging from 90% to 100% at 95% confidence
level. It is therefore unequivocal that the observed λz, τ, and cz are lognormally distributed at McMurdo.
Under the definition of lognormal distribution in equation (4), the most probable value (MPV) is given by
xMPV = eμ, which is summarized in Table 4. The trends of vertical wavelengths and ground-relative periods
increasing from the summer minima to the winter maxima also clearly show up in the most probable values.
Comparing Table 4 with Table 3, we find that the MPV, median, and mean values have the following relation:
xMPV< xmedian< xmean. This fact is consistent with the lognormal distributions that are highly skewed toward
lower values as we have characterized from the lidar observations.

4. Vertical Wavelengths and Periods Versus Background Stratospheric Winds

To further investigate the seasonal variations of λz and τ, themonthlymeans and standard errors of wave para-
meters averaged over the 5 year analysis period are plotted in Figure 4. The monthly means are calculated by
taking the means of certain wave parameters from all the individual gravity waves in a particular month
through all 5 years. Blue (red) lines in these plots correspond to downward (upward) phase progressionwaves.
Figure 4a shows clearly that the vertical wavelength increases when approaching winter and decreases as
returning to summer. Vertical wavelength reaches its peak of 8.8 ± 0.69 km in June for upward phase progres-
sion waves and of 8.6 ± 0.51 km in August for downward phase progression waves. The dominant periods
follow a similar annual cycle with the winter peak values of nearly 6 h while the summer values in
December and January are of ~4.5 h as shown in Figure 4b. As the case for dominant vertical phase speeds,
they roughly remain constant (~0.4 m/s) throughout the year. Because sufficient numbers of gravity waves
were recorded for each month over the 5 years of lidar observations, the errors associated with the derived
wave parameters are small enough that the observed seasonal variations of λz and τ are statistically significant.

Next we investigate whether the seasonal variations of λz and τ are related to the mean background winds in
the stratosphere [Whiteway et al., 1997; Alexander et al., 2011]. For this purpose, the European Centre for

Table 4. Parameters of the Lognormal Fittingsa to Histograms in Figure 3

μc σ A Correlationd MPVe

λz (km)b Summer Downf 1.40 ± 0.05g 0.43 ± 0.04 58 94% 4.1
Up 1.39 ± 0.07 0.32 ± 0.05 38 96% 4.0

Winter Down 1.88 ± 0.04 0.41 ± 0.04 36 97% 6.5
Up 1.91 ± 0.06 0.36 ± 0.04 14 98% 6.8

Spring Down 1.65 ± 0.07 0.45 ± 0.04 28 94% 5.2
+ Fall Up 1.67 ± 0.08 0.42 ± 0.05 16 90% 5.3

τ (h) Summer Down 1.39 ± 0.04 0.37 ± 0.03 65 98% 4.0
Up 1.36 ± 0.04 0.29 ± 0.03 46 99% 3.9

Winter Down 1.62 ± 0.04 0.33 ± 0.02 47 98% 5.0
Up 1.62 ± 0.06 0.37 ± 0.04 20 98% 5.0

Spring Down 1.53 ± 0.05 0.38 ± 0.03 34 96% 4.6
+ Fall Up 1.44 ± 0.08 0.41 ± 0.05 21 94% 4.2

Cz (m/s) Summer Down �1.46 ± 0.06 0.54 ± 0.04 101 99% 0.23
Up �1.46 ± 0.07 0.49 ± 0.05 68 98% 0.23

Winter Down �1.18 ± 0.06 0.50 ± 0.04 72 100% 0.31
Up �1.17 ± 0.08 0.49 ± 0.05 30 99% 0.31

Spring Down �1.36 ± 0.08 0.51 ± 0.05 55 99% 0.26
+ Fall Up �1.32 ± 0.10 0.53 ± 0.07 30 98% 0.27

aThe lognormal fitting function is h xð Þ ¼ Affiffiffiffi
2π

p
σ
exp � ln xð Þ�μð Þ2

2σ2

h i
.

bλz, τ, and Cz represent the vertical wavelength, ground-relative period, and vertical phase speed, respectively.
cA, μ, and σ represent the amplitude, mean, and standard deviation of the variable’s natural logarithm, respectively.
dCorrelation denotes the correlation coefficient of the lognormal fitting.
eMPV denotes the most probable value of the lognormal distribution.
fDown and up represent downward and upward phase progressions of gravity waves.
gThe lognormal fittings and correlations are done at 95% confidence level.
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Medium-Range Weather Forecasts (ECMWF) model [Dee et al., 2011] is invoked to provide wind information.
The ECMWF model outputs four wind profiles per day near McMurdo station, so there are ~120 wind profiles
per month. Figure 5 is an illustration of monthly mean zonal and meridional wind profiles from ECMWF at
McMurdo averaged over 5 years from 2011 through 2015. We group λz observations with their
corresponding total horizontal wind speeds (daily averages of the observational segments) at 40 km from
ECMWF. Figures 6a and 6b shows the probability density functions and cumulative distribution functions
of λz grouped by wind speed larger than 40 m/s and smaller than 20 m/s. The results can be summarized
as that with higher stratospheric winds, waves tend to have longer vertical wavelengths.

We further look into the correlation coefficients between the monthly mean vertical wavelengths (shown in
Figure 4) and the monthly mean zonal and meridional wind velocities in the stratosphere, respectively. The
monthly mean wind velocities are obtained by averaging the zonal and meridional winds, respectively, from
30 to 50 km in the monthly mean profiles of Figure 5. The vertical wavelengths λz are plotted against the
mean zonal winds in Figures 6c and 6d, and against the mean meridional winds in Figures 6e and 6f, where
the green lines represent the linear regressions with both x and y axis errors considered using the York Curve
fittingmethod [York et al., 2004]. Fitting parameters are summarized in Table 5. For downward phase progres-
sion waves, the vertical wavelength and the mean zonal wind velocity correlate at 0.88 at 95% confidence
level. The linear fitting curve has a slope of 39.8 ± 5.1 m/(m/s) and an intercept of 6.22 ± 0.15 km at zero zonal
wind. For upward phase progression waves, they correlate at 0.83 at 95% confidence level. The linear fitting
curve has a slope of 45.6 ± 7.0 m/(m/s) and an intercept of 6.11 ± 0.20 km at zero zonal wind. In the case of λz

Figure 4. Monthly mean (a) vertical wavelengths, (b) periods, and (c) vertical phase speeds for gravity waves with down-
ward (blue) and upward (red) phase progression. The error bars represent the standard errors, which are equal to the
standard deviations divided by the square root of the numbers of independent samples.

Figure 5. Monthly (top row) mean zonal and (bottom row) meridional wind profiles averaged over 5 years from 2011
through 2015 using ECMWF data at McMurdo, Antarctica.
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versus the mean meridional winds, the linear regressions lead to the λz intercepts of 6.14 ± 1.28 and
6.03 ± 1.37 km for downward and upward phase progression waves, respectively. However, the correlation
coefficients are low, less than 35% (see Table 5), which are likely caused by the meridional winds (except
September data points) being much smaller than the corresponding zonal winds, while the variances
associated with the meridional winds are large over 5 years at McMurdo. Such large wind variances make

Figure 6. (a) Probability density functions (PDF) and (b) cumulative distribution functions (CDF) for vertical wavelength
distribution under different wind conditions at 40 km. (c and d) The correlations of the monthly mean vertical wavelengths
with themonthly mean zonal wind velocities in the stratosphere (30–50 km) for downward and upward phase progression
waves. (e and f) The correlations of vertical wavelengths with themonthly meanmeridional winds. The green lines show
the linear regressions with both x and y axis errors considered. The numbers in Figures 6c–6f denote themonth of each
individual data point. Note that the September data points are excluded in the linear regressions in Figures 6e and 6f.

Table 5. Parameters Inferred From Figures 6 and 7a

Zonal Wind Meridional Windb

Downward Upward Downward Upward

Sλz (m/(m/s)) 39.8 ± 5.1 45.6 ± 7.0 �1178 ± 613 �1419 ± 643
Intercept (km) 6.22 ± 0.15 6.11 ± 0.20 6.14 ± 1.28 6.03 ± 1.37
Correlation for λz 88.3% 83.2% �25.8%b �33.6%b

Sτ (s/(m/s)) 67.7 ± 10.1 84.6 ± 13.0 �5280 ± 3728 �2746 ± 1380
Intercept (h) 4.94 ± 0.08 4.67 ± 0.09 4.57 ± 1.28 4.51 ± 1.16
Correlation for τ 87.8% 80.7% �24.5%b �30.8%b

ch (m/s) 21.2 20.8
cos(θ) �0.14 �0.16

aIn the calculation, N = 2.14 × 10�2 rad/s and H = 7 km.
bLinear fittings for meridional winds exclude the September data points.
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it hard to show any definite relationship with the small meridonal wind velocities. Nevertheless, the zero-
wind points in the mean zonal and meridional winds correspond to intercepted λz of ~6.1–6.2 km, compar-
able with each other. Such a result will be used in section 6 to estimate intrinsic properties.

Similar analyses are done to the ground-relative period τ versus the mean zonal and meridional wind velo-
cities, respectively. Shown in Figures 7a and 7b are the probability density functions and cumulative distri-
bution functions of periods grouped by total wind speed larger than 40 m/s and smaller than 20 m/s. Similar
to the results for λz, waves tend to have longer periods under higher winds in the stratosphere. The 12
monthly mean periods are plotted against the mean zonal winds in Figures 7c and 7d, and against the mean
meridional winds in Figures 7e and 7f. A similar linear regression (with both the x and y axis errors consid-
ered using the York Curve fitting method) is applied and shown as the green straight lines in Figures 7c–7f.
Fitting parameters are summarized in Table 5. For downward phase progression waves, the period and the
mean zonal wind velocity correlate at 0.88 at 95% confidence level. The linear fitting curve has a slope of
67.7 ± 10.1 s/(m/s) and an intercept of 4.94 ± 0.08 h at zero zonal wind. For upward phase progression
waves, they correlate at 0.81 at 95% confidence level. The linear fitting curve has a slope of
84.6 ± 13.0 s/(m/s) and an intercept of 4.67 ± 0.09 h at zero zonal wind. Similar to the λz case, the
meridional wind plots (Figures 7e and 7f) give low linear correlation coefficients, likely due to the small wind
velocities but large variances. The zero-wind points in the mean zonal and meridional winds correspond to
intercepted τ of ~4.5–4.9 h.

The 12months of January through December are marked as the numbers from 1 to 12 in Figures 6c–6f as well
as in Figures 7c–7f. It is clear from these figures that the six data points from April through September are
“clustered” in the right upper corner of zonal wind plots, the four data points from summer months
(December through February) are “clustered” toward the left-lower corner, and March and October are near
the middle during transitions. Such summer to winter transition and vice versa are also seen in the ECMWF

Figure 7. Same as Figure 6 except for the ground-relative periods.
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monthly mean wind profiles in Figure 5. Both the vertical wavelengths and ground-relative periods of both
downward and upward phase progression waves show statistically significant linear correlations with the
mean zonal winds. Such linear correlations will be further investigated in section 6. Overall, such linear
correlations are stronger for the downward phase progression waves than for the upward phase
progression waves, likely because more data points in the downward phase progression waves give better
statistics than the upward phase progression case.

5. Frequency and Vertical Wave Number Spectra

We perform a frequency spectral study in the upper stratosphere at McMurdo, Antarctica, in order to
compare with the observational results of wave frequency spectra in the MLT region reported by Chen
et al. [2016]. For this comparison purpose, we take the following procedure identical to that used by
Chen et al. [2016] but somewhat different from the one described in section 2. June data over the 5 years
of 2011–2015 are chosen with the resolutions of 0.5 h by 0.96 km from 30 to 65 km. For this part of the
study, we do not divide the observations into 12 h segments but leave them with their original observa-
tional time lengths as we wish to have long time series for frequency spectral analysis. For each observa-
tion, the temporal means are derived over the observation length at individual altitudes, and we
calculate the relative temperature perturbations by subtracting the temporal means from the raw data
and then dividing by the temporal means. The obtained relative perturbations are prewhitened with a
fourth-order autoregressive model developed by Chen et al. [2016]. As the longest data set is 65 h, we zero
pad the shorter data to 65 h before applying a 1DFFT to the prewhitened perturbations at individual
altitudes. We then smooth the resulted raw PSDs using a Hamming window with the full width at half
maximum (FWHM) of 0.1 h�1 to reduce the variability in the spectral slope estimation. Such smoothed
PSDs are postcolored to obtain the real PSDs following Chen et al. [2016]. The real PSDs at individual
altitudes are then vertically averaged over 5 km interval to reduce the variance in the spectra. Finally,
the results for individual observations are weighted by their observational time lengths to obtain
weighted-average frequency spectra. The mean smoothed frequency spectra are plotted at increments
of 5 km from 32.5 to 62.5 km in Figure 8a. The error bars are calculated as the standard errors in the process
of weighted averaging.

The dashed black lines in Figure 8a are the least-squares fittings of the PSDs in the frequency range from the
characteristic frequency to 1 h�1 using a linear equation log10(y) = a+ b× log10(x). Here the characteristic
frequency is the transition frequency between the regions of positive and negative slopes in the PSD

Figure 8. (a) Stratospheric gravity wave frequency spectra for different altitudes in June. Different colors represent different
altitudes. The dashed black lines are linear fittings with their slopes given in the legends. (b) Power spectral density for
vertical wave number spectra over different seasons (represented by different colors). The error bars are obtained as
standard errors.
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spectra for altitudes above 40 km. As it is difficult to judge where the characteristic frequency is from 32.5 to
37.5 km, the fitting frequency range is set to 0.2–1 h�1 for these lower altitudes. The fitted spectral slopes, as
indicated in the legends of Figure 8a, are about �1.9 from 30 to 60 km, which is close to the value of �1.8
obtained by Hostetler and Gardner [1994] for the upper stratosphere (25–40 km) at Kahalui, Maui. The fre-
quency spectral slopes becomemuch shallower (about�1.45) when the altitudes reach 60–65 km. We notice
that the slopes in the stratosphere are generally shallower than those in the MLT, which range from �2.6 to
�1.6 for 85–110 km [Chen et al., 2016]. The slopes in Chen et al. [2016] are derived with a uniform fitting range
from 0.1 to 1 h�1. According to Fritts and Alexander [2003], frequency spectra of horizontal wind and tempera-
ture typically vary as PSD(ω) ~ω�p (where ω is the wave frequency) with p varying from 1 to 2 between the
inertial and buoyancy frequencies, and most p ≈ �5/3. Our results in the stratosphere are within the 1–2
range but most of the slopes in the MLT fall outside this range [Chen et al., 2016].

Lu et al. [2015a] have studied PSDs in the vertical wave number domain for winters from 2011 to 2013 at
McMurdo. We expand the study to four seasons from 2011 to 2015. The vertical wave number spectra over

different seasons are plotted in Figure 8b. T ’Rel is used to calculate the vertical wave number spectra (data
resolutions of 2 h by 0.96 km from 30 to 50 km over 5 years). We follow the procedures from Dewan and
Grossbard [2000] and Lu et al. [2015a]. The power spectral density is derived using Discrete Fourier
Transform (DFT) as

F mkð Þ ¼ Δz f mkð Þj j2
Nz

¼ Δz
Nz

XNz

n¼1

x znð Þe�
2π n�1ð Þ k�1ð Þ

Nz
i

�����
�����
2

(5)

wheremk is the kth wave number and f(mk) denotes its DFT value, Δz is the vertical interval of the data, and Nz

is the total points of a single vertical profile. The parameter x(zn) is the relative temperature perturbation at
altitude zn, which is T ’Rel in our case. With current data resolutions, there are no apparent white noise floors
at the high wave number end of the spectra. Therefore, noise floors were not subtracted from the obtained
spectra, similar to the practice by Gardner et al. [1989], Senft and Gardner [1991], and Lu et al. [2015a]. We
group the calculated PSDs into four seasons and average them within each season. The average is weighted
by observational time length, and the error bars are calculated as the standard errors.

The characteristic vertical wave number m*, which is the turning point of the slopes of the spectra, is
~0.08 km�1 in winter, fall, and spring, corresponding to a characteristic vertical wavelength of 12.5 km.
There is no apparent characteristic vertical wave number in summer. For the short vertical wavelength spec-
trum, the PSDs remain almost the same over different seasons. The seasonal variations of PSDs show up sub-
stantially in the long vertical wavelength portion with a lowest level in summer, a highest level in winter, and
medium levels in spring and fall. Since there exists an enhancement of PSDs in long vertical wavelength por-
tion in winter, we would have more chances to observe gravity waves with longer vertical wavelengths,
which is the case as elaborated in section 4. The dashed black line in Figure 8b is an indication of slope
�3. The slopes of PSDs in all four seasons are close to�3 in the shorter vertical wavelength range. This result
is similar to the studies done by Allen and Vincent [1995] and Lu et al. [2015a].

6. Discussion

We explore the linear correlations of λz and τ of gravity waves with the mean stratospheric winds in Figures 6
and 7 and attempt to infer the horizontal wavelengths and intrinsic periods of dominant gravity waves in the
stratosphere. Our purpose is to use the information obtained to help judge if the dominant gravity waves in
the stratosphere are the same persistent waves as observed in the MLT [Chen et al., 2016; Chen and Chu, 2017]
and to infer the dominant wave propagation directions. A Doppler frequency shift exists between the intrin-
sic frequency ω̂ and the ground-relative frequency ω:

ω̂ ¼ ω� k
!� u!≅ω� k

!
h� u!h ¼ ω� khuh cosθ ¼ ω 1� uh cosθ

ch

� �
; (6)

where k
!

is the total wave vector, u
!

is the total mean background wind, k
!

h and u
!

h are the horizontal wave
and wind vectors, respectively. Considering the vertical mean background wind wj j is much smaller than
the horizontal mean background wind uhj j, the vertical wind term is neglected in the second equality. θ is
the angle between the wave propagation direction and the background wind, and ch=ω/kh= λh/τ is the
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horizontal phase speed of the gravity wave. Here τ = 2π/ω is the ground-relative period, and λh= 2π/kh is the
horizontal wavelength. As the intrinsic period τ̂ is given by

τ̂ ¼ 2π
ω̂

¼ 2π
ω� khuh cosθ

¼ τ

1� uh cosθ
ch

; (7)

the ground-relative period τ can be expressed precisely as

τ ¼ τ̂ 1� uh cosθ
ch

� �
¼ τ̂ 1� khuh cosθ

ω

� �
: (8)

Equation (8) gives roughly a linear relationship between the ground-relative period and the mean back-
ground wind uh , if τ̂ , cosθ, and ch do not change much, explaining the observations shown in Figures 7c
and 7d. However, because the intrinsic period τ̂ can vary quite a bit under different background winds, devia-

tions from the linear correlation are fairly visible in these two plots. Consequently, the slopes Sτ ¼ � τ̂
ch

cosθ

¼ � 2πkh cosθ
ω̂�ω in Figures 7c and 7d are subject to bias caused by the variations of τ̂.

According to the dispersion relation of inertial gravity waves including the Coriolis force but neglecting the

term
1

4H2ð Þ (where H is the density scale height) [e.g., Marks and Eckermann, 1995; Vadas, 2013], the intrinsic

angular frequency ω̂ obeys

ω̂2 ¼ kh
2N2

m2
þ f 2; (9)

where N is the Brunt-Väisälä frequency in the unit of rad/s, kh and m are the horizontal and vertical wave
numbers, and λh= 2π/kh and λz= 2π/m are respectively the horizontal and vertical wavelengths. The inertial
frequency is f= 2ΩsinΘ, where Ω is Earth’s rotation rate and Θ is latitude. For McMurdo, the inertial period is
2π/f= 12.24 h. Combining equations (6) and (9), we express the vertical wavelength as

λz ¼ 2π
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ch � uh cosθð Þ2 � f=khð Þ2

q
: (10)

Equation (10) indicates that the relationship between λz and the mean background wind is rather compli-
cated; however, we will demonstrate below that for the observed periods of 4–6 h in Figure 7, the Coriolis
terms in equations (9) and (10) can be neglected, leading to a linear correlation between λz and the back-
ground wind. For this purpose, we define

ω̂0 ¼ N
kh
m

���� ���� ¼ N
λz
λh

���� ���� and τ̂0 ¼ 2π
ω̂0

(11)

as the intrinsic angular frequency and intrinsic period, respectively, when the Coriolis term in equation (9) is
omitted. Hence, the full intrinsic period can be written as

τ̂ ¼ 2π
ω̂

¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̂0

2 þ f 2
p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=τ̂0ð Þ2 þ f=2πð Þ2
q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=τ̂0ð Þ2 þ 1=12:24 hð Þ2
q : (12)

Equation (12) demonstrates that ω̂ > ω̂0 and τ̂ < τ̂0, but the corrections are quite small within the observed
range in Figure 7. For example, for τ̂0 ¼ 4 h, τ̂ ¼ 3:80 h so the correction is ~5%; for τ̂0 ¼ 6 h, τ̂ ¼ 5:39 h and
the correction is ~10%. Such small corrections for wave periods no more than 6 h are due to the square rela-
tion in equation (9), as the correction is approximately proportional to half of the square of period ratio:

Δω̂
ω̂0

¼ ω̂� ω̂0

ω̂0
e 12 τ̂0

12:24 h

� �2

: (13)

Consequently, it is reasonable to neglect the Coriolis term in equations (9) and (10) for the waves with periods
of ≤6 h, so we obtain a linear relationship between λz and the background wind

λz≈
2π
N

ch � uh cosθð Þ: (14)

Equation (14) helps explain the observed linear correlation in Figures 6c and 6d. The slopes Sλz ¼ �2π cosθ
N in

Figures 6c and 6d depend on N and cosθ.
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To estimate the horizontal wavelengths and intrinsic periods of the stratospheric gravity waves, we use the
following equations

λh ¼ ch�τ≈ch uh cosθ ¼ 0ð Þ�τ (15)

τ̂ ¼ 2π
ω̂0

¼ 2π
λz
τ
N
ch

� �≈
2π
N

ch uh cosθ ¼ 0ð Þ
λz=τ

: (16)

An assumption made in equations (15) and (16) is that the horizontal phase speed ch does not change much
for various background winds, so it is approximated as a constant at the point where the wind projection

along the wave vector k
!

h is zero (uh cosθ ¼ 0). This assumption is reasonable considering the vertical phase
speed cz remains nearly constant through the year in Figure 4c. Under this assumption, ch can be derived
from equation (14) as

ch uh cosθ ¼ 0ð Þ ¼ N�λz uh cosθ ¼ 0ð Þ
2π

: (17)

Therefore, the final equations to derive the horizontal wavelengths and intrinsic periods are

λh≈
N�λz uh cosθ ¼ 0ð Þ�τ

2π
(18)

τ̂≈
λz uh cosθ ¼ 0ð Þ

λz=τ
: (19)

The cosθ in equation (14) can be estimated from the fitted slopes in Figures 6c and 6d

cosθ ¼ � Sλz �N
2π

: (20)

The horizontal and vertical group velocities relative to the ground can be estimated using the intrinsic prop-
erties and background winds as [Fritts and Alexander, 2003; Chen et al., 2013]

cgh ¼ ∂ω
∂kh

¼ kh N2 � ω̂2
� 	

ω̂ k2h þm2 þ 1= 4H2
� 	� 	þ uh cosθ (21)

cgz ¼ ∂ω
∂m

¼ � m ω̂2 � f 2
� 	

ω̂ k2h þm2 þ 1= 4H2
� 	� 	þ w; (22)

where uh and w are respectively the horizontal and vertical background winds, H= 7 km is the scale height
of atmospheric density, and the vertical wave number m has negative and positive signs for the
downward and upward phase progression waves, respectively. That is, when the background wind w is
negligible, the energy propagation direction is opposite to the phase progression direction.

It is worth clarifying the convention usage on kh,uh, and cosθ in the above derivations. Our convention is that

kh is the (positive) magnitude of horizontal wave vector k
!

h, the background wind uh contains the sign infor-
mation (not the absolute value), while cosθ does not have the sign change and θ is defined as the angle from

the positive wind direction to the wave vector k
!

h direction, regardless of the wind sign. In principle u
!

in
equation (6) is the total wind. Considering the vertical winds provided by ECMWF are at least 2–3 orders of
magnitude smaller than the horizontal winds in the stratosphere, the vertical winds are neglected in all equa-
tions except equation (22). Also, because the meridional winds provided by ECMWF are in general much
smaller than the zonal winds, we choose to use the zonal winds to represent the stratospheric horizontal
winds. Defining the eastward as the positive zonal wind direction, the zonal winds plotted in Figures 6 and
7 have both positive and negative signs. Under such a convention, θ in above equations is defined as the
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angle from the eastward to the wave vector k
!

h, while uh in equation (21) is the zonal wind with positive and
negative signs, but not the magnitude only.

With equations (18)–(22) and the convention stated above, we estimate the intrinsic properties of gravity
waves via plugging in actual numbers. As the intercepts in the zonal and meridional winds are comparable in
Table 5 but the meridional cases have much larger uncertainties than the zonal cases, we infer λz
uh cosθ ¼ 0ð Þ only from the zonal wind plots. The vertical wavelengths at the zero wind points are inferred
to be λz uh cosθ ¼ 0ð Þ ¼ 6:22 km and λz uh cosθ ¼ 0ð Þ ¼ 6:11 km for downward and upward phase progres-
sion waves, respectively. Taking the mean value of N= 2.14 × 10�2 rad/s derived from the lidar temperature
data, we calculate the horizontal phase speeds to be ch uh cosθ ¼ 0ð Þ ¼ 21:2 m=s and ch uh cosθ ¼ 0ð Þ ¼ 20:8
m=s for the downward and upward phase progression waves, respectively. Substituting the monthly mean
vertical wavelengths and ground-relative periods (as shown in Figures 4a and 4b) along with λz uh cosθ ¼ 0ð Þ
and N= 2.14 × 10�2 rad/s into equations (18) and (19), we estimate the horizontal wavelengths and intrinsic
periods for all 12 months. The results are plotted in Figures 9a and 9b. The horizontal wavelengths are around
350–460 km, while the intrinsic periods are about 4–5 h. Using the slopes Sλz derived from the zonal wind
plots (see Table 5), cosθ derived from equation (20) are �0.14 and �0.16 for downward and upward phase
progression waves, respectively. The horizontal and vertical group velocities are then estimated from equa-
tions (21) and (22) using the intrinsic properties and background winds, and the results are plotted in
Figures 9c and 9d. The elevation angles of the energy propagation of the gravity waves calculated from
the ratio of vertical to horizontal group velocities are about 1.1°, comparable to the case studies by Chen
et al. [2013] in the MLT. Note that for downward (upward) phase progression waves, this elevation is for
upward (downward) energy propagation.

The derived intrinsic periods are shorter than the corresponding ground-relative periods in most of the
12 months except the summer 4 months (November through February). When the zonal winds are eastward
(positive) from March through October, negative cosθ indicates that in the nonsummer months most gravity
waves that survive at a given altitude (i.e., are not filtered out by the background wind) propagate against the
background winds, leading to higher intrinsic frequencies. Consequently, the intrinsic periods are shorter
than the ground-relative periods outside the summer months. During December, January, and February,
the zonal winds are westward (negative). Negative cosθ indicates that the dominant waves propagate along
the background winds in summer, leading to lower intrinsic frequencies thus longer intrinsic periods than the

Figure 9. Inferred (a) horizontal wavelength, (b) intrinsic period, (c) ground-relative horizontal group velocity, and (d) the
absolute value of vertical group velocity of the stratospheric gravity waves through 12 months of a year at McMurdo.
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ground-relative counterparts. Because the horizontal winds in the winter stratosphere at McMurdo are domi-
nated by the zonal winds, the small absolute values of cosθ (0.14–0.16) indicate that the stratospheric gravity
waves have their predominant propagating directions nearly along the north–south (meridional) directions.

In this section, the Doppler shift between the intrinsic and ground-relative frequencies as well as the disper-
sion relationship neglecting the Coriolis term help explain the linear correlations observed between the
monthly mean vertical wavelengths/ground-relative periods and the monthly mean zonal wind velocities
in the stratosphere. The linear relationships may reflect the critical level filtering effects; e.g., the orographic
waves may be largely filtered out during summer months when the winds cross the zero point, while the
strong eastward winds in winter may allow the orographic waves to propagate upward. Another factor is
the extra wave generation in the stratosphere by the strong-wind-induced jet streams or unbalanced flow.
Besides such speculations, the search of wave sources is beyond the scope of this study.

The derived horizontal wavelengths in the stratosphere are typically shorter than 500 km, which are signifi-
cantly shorter than the dominant horizontal wavelengths in theMLT that are typically over 1000 km and up to
several thousands of kilometers [Chen et al., 2013, 2016; Chen and Chu, 2017]. If we regard the horizontal
wavelength of a gravity wave not changing much as the wave propagates upward in altitude, it is likely that
the persistent gravity waves in the MLT region are not directly coming from the stratospheric dominant
waves with the horizontal wavelengths of less than 500 km. Of course, we cannot rule out the possibility that
some gravity waves in the tail of the lognormal distribution can penetrate to reach the MLT region. Another
possibility is that some of the gravity waves propagating upward in the stratosphere dissipate between 40
and 65 km, which overlap with part of the gap region between the currently studied altitudes and the MLT
altitudes studied by Chen et al. [2016]. Such dissipation results in horizontal body forces that generate upward
and downward propagating secondary gravity waves [Vadas et al., 2003; E. Becker and S. L. Vadas, Northwest
Research Associates, private communication, 2017]. These secondary waves usually have a wide spectral
range, and, once propagating into the MLT, they become the important sources for the persistent and domi-
nant 3–10 h waves discovered by lidar in the MLT region [Chen et al., 2016; Chen and Chu, 2017]. This spec-
ulation of possible wave sources in the lower to middle mesosphere may help explain the observations
that the frequency spectral slopes in the lower mesosphere are much shallower than those in the MLT.
This is because the upward propagating waves originated from the lower to middle mesosphere still carry
some source spectra and have not dissipated sufficiently, thus contributing to the steeper slopes from 85
to 100 km (not far from the source) [Chen et al., 2016]; while the downward propagating waves originated
from this source overlap with the upward propagating waves (from the lower atmosphere) around 60–
65 km (right below the source region) with sufficient amplitudes, which may contribute to the shallower
slopes as observed in this study. More observations are needed, especially in the gap region of 65–82 km,
to investigate such possibilities.

7. Conclusions

Five years of atmospheric temperature data, measured with an Fe Boltzmann lidar by the University of
Colorado group from 2011 to 2015 at Arrival Heights near McMurdo, Antarctica, are used to characterize
the vertical wavelengths, periods, vertical phase speeds, frequency spectra, and vertical wave number spec-
tra of stratospheric gravity waves from 30 to 50 km altitudes. A total of 1062 dominant gravity waves are iden-
tified from the data, allowing us to quantify the distributions of basic wave parameters. The seasonal
distributions of vertical wavelengths, periods, and vertical phase speeds in summer, winter, and spring/fall
are found obeying a lognormal distribution. The lognormal probability density function fittings to these
distributions have nearly 100% correlation coefficients, making it unequivocal that the observed vertical
wavelengths, periods, and vertical phase speeds are lognormally distributed at McMurdo. Both the down-
ward and upward phase progression gravity waves are observed by the lidar, and the fractions of gravity
waves with downward phase progression increase from summer ~59% to winter ~70%, similar to the lidar
results for the South Pole and Rothera by Yamashita et al. [2009].

The seasonal and monthly mean vertical wavelengths and periods exhibit clear seasonal cycles with vertical
wavelength growing from summer ~5.5 km to winter ~8.5 km, and period increasing from summer ~4.5 h to
winter ~6 h. By analyzing the ECMWF wind data from 2011 through 2015, we discover statistically significant
linear correlations between the monthly mean vertical wavelengths/periods and the mean zonal wind
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velocities in the stratosphere. With larger stratospheric winds, gravity waves tend to have longer vertical
wavelengths and longer ground-relative periods. Such linear correlations may be explained through the
Doppler frequency shift of intrinsic frequency and dispersion relationship when neglecting the Coriolis term.
This approximation of neglecting the Coriolis term introduces ~10% or less errors for gravity waves with
periods not longer than 6 h, thus suitable for the McMurdo investigation.

By taking the vertical wavelengths at zero zonal wind points to estimate the horizontal phase speeds of
~21 m/s and assuming nearly constant horizontal phase speeds throughout the year, the monthly mean
horizontal wavelengths, intrinsic periods, and horizontal and vertical group velocities are estimated for the
stratospheric gravity waves through 12 months. The gravity waves reaching the McMurdo stratosphere
(30–50 km) tend to have vertical wavelengths of ~6–8 km, horizontal wavelengths of ~350–460 km, intrinsic
periods of ~4–5 h, and group velocities of ~22 m/s and ~0.45 m/s for the horizontal and vertical directions,
respectively. Two interesting results further inferred are that the stratospheric gravity waves at McMurdo
propagate along nearly the north-south direction with |cosθ| ~ 0.14, and the wave energy propagates at a
very shallow elevation of ~1.1°.

Gravity wave frequency spectra show that the slopes between the characteristic frequency and 1 h�1 change
from about �1.9 at 30–60 km to �1.45 around 60–65 km. The vertical wave number spectra exhibit that the
power spectral densities at vertical wavelengths of ~5–20 km decrease from the winter maximum to the sum-
mer minimum. Because the typical horizontal wavelengths of dominant gravity waves in the stratosphere are
substantially shorter than those of the dominant and persistent waves in the MLT region, we conclude that
the typical dominant waves with horizontal wavelengths of ~350–460 km in the stratosphere are most likely
not the direct source of the persistent gravity waves (3–10 h ground-relative periods and over 1000 km
horizontal wavelengths) in the MLT observed by Chen et al. [2016] and Chen and Chu [2017]. However, it is
possible that these stratospheric dominant waves dissipate in the upper stratosphere and mesosphere and
generate secondary waves. These secondary waves as well as the gravity waves in the tail of the lognormal
distribution may survive into the MLT, providing sources for the persistent waves in the MLT. Future observa-
tions and model simulations are required to solve these mysteries. Furthermore, wave intermittency and
momentum flux may be inferred from the McMurdo lidar data as the potential subjects of future research.
Such studies and parameters may help provide constraints to the GCM gravity wave parameterization.
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