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ABSTRACT

Tactile myography is a promising method for dexterous 

myocontrol. It stems from the idea of detecting muscle 

activity, and hence the desired actions to be performed by a 

prosthesis, via the muscle deformations induced by said 

activity, using a tactile sensor on the stump. Tactile sensing 

is high-resolution force / pressure sensing; such a technique 

promises to yield a rich flow of information about an 

amputated subject’s intent.

In this work we propose a preliminary comparison 

between tactile myography and surface electromyography 

enforcing simultaneous and proportional control during an 

online target-reaching experiment. Six intact subjects and a 

trans-radial amputee were engaged in repeated hand opening 

/ closing, wrist flexion / extension and wrist pronation / 

supination, to various degrees of activation. Albeit limited, 

the results we show indicate that tactile myography enforces 

an almost uniformly better performance than sEMG. 

INTRODUCTION

Dexterous myocontrol is the study of natural control of 

a dexterous prosthesis by (so far, mostly) upper-limb 

amputees. By “natural” it is here meant, that such a control 

should work transparently to the subject, enforcing 

simultaneous and proportional (s/p) activation of a multi-

degree-of-freedom (DoF) prosthetic artefact, directly upon 

the subject’s desire [Jiang et al. (2009)]. Surprisingly, even 

after 20 years of research, the problem is still open, from a 

number of points of view. First and foremost, upper-limb 

prosthetic devices are still heavy, noisy, power-consuming 

and cumbersome; second, non-invasively or minimally-

invasively extracting enough information from the subject’s 

body to drive up to ten DoFs is a challenge; last but 

definitely not least, enforcing reliability of such a control 

proves to be hard due to the inherently statistical nature of 

machine-learning approaches used to enforce it, as well as 

to the changing nature of the signals yielded by surface

electromyography (sEMG). Extensive surveys (e.g., [Micera 

et al. (2010), Peerdeman et al. (2011), Ison and Artemiadis 

(2014), Engdahl et al. (2015)]) show that solving these three 

problems would lead to greater acceptance and more 

extensive usage of such costly devices.

Among the proposed avenues to solve them, we here 

focus on multi-modal sensing [Jiang et al. (2012), Fang 

et al. (2015)]; in particular, force myography (FMG) and its 

high-resolution counterpart, tactile myography (TMG) are 

showing very promising results. Almost 20 years have now 

gone by since Kenney and Craelius’s seminal works 

[Kenney et al. (1999), Curcie et al. (2001)] on the detection 

of stump deformations as an alternative to sEMG [Merletti 

et al. (2011)]; and the applications are now out in the 

academic world [Cho et al. (2016), Radmand et al. (2016)]. 

In particular, TMG has the advantage of providing a more 

stable signal than sEMG [Connan et al. (2016)] and, due to 

its high spatial resolution (up to 5mm), a richer image of the 

underlying muscle activity.

In this specific work we describe an experiment in 

which TMG was compared as fairly as possible with sEMG, 

during an online target-reaching task aimed at hand and 

wrist s/p control. We fitted six intact subjects and a trans-

radial amputee with a shape-conformable tactile bracelet, 

and induced them to reach predetermined graded activations 

of the hand opening / closing, wrist flexion / extension and 

wrist pronation / supination; the experiment was then 

repeated using 20 commercially available sEMG sensors.

Using several performance measures, TMG showed superior 

results with respect to sEMG: it enforced a higher Success 

Rate (SR), shorter Times to Complete each Task (TCT) and 

longer Time In the Target area when the tasks would fail 

(TIT). The results obtained by the amputated subject are

quantitatively worse than those obtained by the intact 

subjects, but he still completed more than twice as many 

tasks successfully with TMG than with sEMG.

As far as we know, this is the first time that TMG-based 

full online s/p control of the hand and wrist is enforced; the 

encouraging results we obtained let us claim that TMG 

should be used as an alternative to, or as a companion of, 

sEMG in dealing with dexterous myocontrol.

MATERIALS AND METHODS 

Experimental setup

TMG data was gathered using a custom-made shape-

conformable tactile bracelet based upon the resistive 

principle [Kõiva et al. (2015)] consisting of 320 tactile 

sensors (taxels) distributed on ten rigid submodules evenly 

distributed around the proximal end of the subject’s forearm
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or stump. For further details about the device, please refer to 

the above-mentioned paper.

sEMG data were gathered using 20 commercially 

available myoelectric sensors (MyoBock 13E200 by

Ottobock GmbH), arranged on two bracelets, covering

approximately the same surface and location of the subject’s 

forearm as the TMG device did (see Figure 1). The sensors 

were wirelessly connected to the PC using a custom-built

wireless ADC device [Connan et al. (2016)]. 

Figure 1: the amputated subject wearing the two sEMG bracelets (left)

and the tactile device (right).

To test the approach we used a realistic 3D hand model 

displayed on a computer screen. Although the model has 

about 20 DoFs and roughly represents a human hand

(including polygon-based 3D rendering and shading), most 

DoFs were coupled to one another. In the end only three 

DoFs were considered, namely wrist rotation, wrist flexion / 

extension and hand opening / closing. More in detail, five 

specific configurations of the model (actions), namely hand 

opening / closing, wrist pronation, wrist supination, wrist 

flexion and wrist extension, were used, each one 

corresponding to coordinated, graded motions of the three 

DoFs. 

S/p control was enforced using three parallel instances 

of, in turn, Ridge Regression (RR) applied to the 320 TMG 

signals and Ridge Regression with Random Fourier 

Features (RR-RFF) applied to the 20 sEMG signals (both 

signals were previously mildly low-pass filtered, but no 

feature extraction was enforced). RR is a well-known linear 

regression method – essentially least-squares regression plus 

a regularisation term [Hoerl and Kennard (1970)]. RR-RFF 

is a non-linear extension to RR, finitely approximating a 

Gaussian kernel, already successfully employed in 

myocontrol several times [Gijsberts et al. (2014), Strazzulla 

et al. (2016)]. Notice that the three DoFs of the model were 

always operated simultaneously and proportionally, since 

both RR and RR-RFF are pure regression approaches (i.e., 

no classification involved).

Subjects and experimental protocol

The experiment was joined by six intact subjects 

(30.7±7.2yrs old, five males, one female) and one left-hand 

trans-radial amputated subject (35yrs old male, amputation

in 2005, routinely using a Variplus hand by Otto Bock 

GmbH with standard two-electrode control since 2012). All 

subjects signed an informed consent form; the experiment 

was performed according to the declaration of Helsinki, and 

it was previously approved by the DLR Work Safety 

Committee. 

The subjects would comfortably sit in front of the

screen displaying two 3D hand models; one of the model 

would act as a visual stimulus, i.e., the subjects were asked 

to do what that hand was doing, while the other would show 

the predicted intended action. The experiment consisted of 

two identical parts, one performed using the TMG device 

and one performed using the sEMG sensors. Half of the 

subjects started with TMG then proceeded to the sEMG 

part; the order was reversed for the other half. Figure 2 

shows an intact subject while performing the experiment.

Figure 2: an intact subject performing the experiment with sEMG sensors. 

The grey hand is the visual stimulus, while the orange one is the prediction. 
A smiling face indicates that the current task was accomplished.

Initially each subject performed three repetitions of 

each required action (plus a “rest” position) while following 

the visual stimulus; data collected during this phase were 

used to train the control method at hand (RR for the TMG 

part, and RR-RFF for the sEMG part); training took not 

more than 300ms. Subsequently, 30 tasks in randomised 

order were administered to the subjects, as follows: the 

visual stimulus would perform an action to either full, two-

third or one-third activation; the prediction model would 

then be activated, and the subjects were simply asked to 

have the prediction model mimic what the stimulus was 

doing. Intermediate levels of activation were used to 

determine whether proportional control could actually be 

achieved, e.g., that the wrist could be flexed at two thirds of 

the maximum activation. Each task was successful if the 

subject could match and keep the desired action at the 

desired activation level for 1.5s; “matching” was defined as 

remaining within 15% of each target DoF value. If she/he 

was not able to do so within 15s, the task was declared 

failed. A visual cue (smiling or sad face) was given as the 

result of a successful / unsuccessful task.

To evaluate the performance of each method we 

calculated the ratio of successful tasks over 30 (Success 

Rate, SR), the time it took the subject to accomplish the 

successful tasks (Time to Complete a Task, TCT) and the 

total time spent within the goal for unsuccessful tasks (Time 

In the Target, TIT). In the latter case (unsuccessful tasks), at 
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this stage we did not differentiate the two sub-cases in 

which either the required DoF activation could not be 

reached, or other DoFs would be unwillingly activated at the 

same time.

The amputated subject was administered exactly the 

same procedure, executing first the sEMG part.

EXPERIMENTAL RESULTS

Intact subjects. SR was evaluated statistically using a paired

Student’s t-test – Figure 3 shows the SR comparison. The t-

test returned = 0.0952), which means that the difference 

is not significant ( = 0.05). However, the average 

performance of the tactile bracelet (75.56% ± 21.26%) was 

around 20% better than the performance of the sEMG 

sensors (55.56% ± 16.42%). Furthermore, in case of TCT 

and TIT the tactile bracelet outperformed the sEMG sensors 

with = 4.93 ± 0.95 , = 6.28 ± 0.58 ,

= 1.33 ± 1.38 and = 1.91 ± 0.36 .

These results are summarised in Figure 4. 

Figure 3: boxplot of the performance comparison between

TMG and sEMG sensors. 

Figure 4: results of the comparison between TMG and sEMG in terms of 

task completion time (TCT) and Time In the Target (TIT).  

Amputated subject. The amputated subject obtained the 

following results for each method:

sEMG:
= 20%

= 6.04 ± 4.37

= 0.84 ± 1.48

TMG:
= 43.33%

= 4.80 ± 2.38

= 0.32 ± 0.63

His success rate is more than double with TMG than 

with sEMG; as well the required TCTs are on average 20% 

better (shorter) with TMG. As opposed to this, the TITs 

obtained with TMG are considerably shorter. (Notice: the 

larger the TIT, the better.)

DISCUSSION AND CONCLUSIONS

Although preliminary since we tested only six intact 

subjects and one amputated subject, the experimental results 

we presented look very promising. For the comparison with 

TMG (which we enforced using a custom-built device with 

320 sensors), we used 20 commercially available sEMG 

sensors, a very high amount if compared with relevant 

literature, which potentially poses serious challenges for the 

embedding in a prosthetic socket. Still, for intact subjects, 

TMG outperformed sEMG from all points of view 

considered (SR, TCT and TIT), although statistical 

significance is still under question (but notice the relatively 

low number of subjects tested). The amputated person 

obtained similarly better results with TMG for SR and TCT, 

but this result must be taken with two important 

considerations: first, the subject was totally untrained to 

activate his wrist; second, sEMG was administered first, 

which might have caused a competitive bias in favour of 

TMG. (The first remark explains his low overall 

performance.) Interestingly, his TIT is on average larger

when using sEMG than TMG; this might indicate that some 

specific actions were almost unfeasible with TMG, as 

opposed to sEMG. Further analysis is required to shed light 

on this issue.

In the only direct reference to a competitor approach we 

are aware of, namely [Radmand et al. (2016)], a rigid 

cylindrical encasing fitted with 126 taxels was used to 

classify eight activation configurations performed by ten 

intact subjects; body postures were also taken into account 

by having the subjects perform the tasks in eight different 

positions in front of them. Since classification was used in 

this experiment, we cannot offer any direct comparison; 

their excellent results (classification rates uniformly close to 

100%) further indicate the potentiality of TMG.

Lastly, let us remark that in this work linear regression 

(in the regularised form of Ridge Regression) directly 

applied to the mildly filtered tactile values was sufficient to 
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obtain the results shown. On one hand, this opens up the 

immediate possibility to embed the whole approach in a 

prosthetic socket; on the other hand, we will explore in the 

near future several different sets of features extracted from 

the tactile image, possibly inspired by image processing, in 

order to reduce the dimensionality of the input space, and to 

exploit the reciprocal proximity of the adjacent taxels.

The final proof of feasibility of TMG is obviously to be 

drawn out of real-life experiments, in which the subject’s 

body posture, the weight of the grasped objects, and the 

artefacts induced by bumping and accelerations, will need to 

be taken into account.

ACKNOWLEDGEMENTS

This work was partially supported by the German 

Research Agency project TACT-HAND: improving control 

of prosthetic hands using tactile sensors and realistic 

machine learning (DFG/SNSF Sachbeihilfe CA1389/1-1).

REFERENCES

[Cho et al. (2016)] Cho, E., R. Chen, L.-K. Merhi, Z. Xiao, 

B. Pousett, and C. Menon (2016). Force myography to control robotic 
upper extremity prostheses: A feasibility study. Frontiers in 

Bioengineering and Biotechnology 4, 18.

[Connan et al. (2016)] Connan, M., E. Ruiz Ramírez, B. Vodermayer, 

and C. Castellini (2016). Assessment of a wearable force- and 

electromyography device and comparison of the related signals for 
myocontrol. Frontiers in Neurorobotics 10(17).

[Curcie et al. (2001)] Curcie, D. J., J. A. Flint, and W. Craelius 

(2001). Biomimetic finger control by filtering of distributed forelimb 
pressures. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering (TNSRE) 9(1), 69–75.

[Engdahl et al. (2015)] Engdahl, S. M., B. P. Christie, B. Kelly, 
A. Davis, C. A. Chestek, and D. H. Gates (2015). Surveying the interest of 

individuals with upper limb loss in novel prosthetic control techniques. 

Journal of NeuroEngineering and Rehabilitation 12(1), 1–11.

[Fang et al. (2015)] Fang, Y., N. Hettiarachchi, D. Zhou, and H. Liu 

(2015, Nov). Multi-modal sensing techniques for interfacing hand 

prostheses: A review. IEEE Sensors Journal 15(11), 6065–6076.

[Gijsberts et al. (2014)] Gijsberts, A., R. Bohra, D. Sierra González, 

A. Werner, M. Nowak, B. Caputo, M. Roa, and C. Castellini (2014). Stable 

myoelectric control of a hand prosthesis using non-linear incremental 
learning. Frontiers in Neurorobotics 8(8).

[Hoerl and Kennard (1970)] Hoerl, A. E. and R. W. Kennard (1970). 

Ridge regression: Biased estimation for nonorthogonal problems. 
Technometrics 12, 55–67.

[Ison and Artemiadis (2014)] Ison, M. and P. Artemiadis (2014). The 

role of muscle synergies in myoelectric control: trends and challenges for 
simultaneous multifunction control. J. Neural Eng. 11. 

[Jiang et al. (2012)] Jiang, N., S. Dosen, K.-R. Müller, and D. Farina 

(2012). Myoelectric control of artificial limbs: is there the need for a 
change of focus? IEEE Signal Processing Magazine 29(5), 149–152.

[Jiang et al. (2009)] Jiang, N., P. Parker, and K. Englehart (2009). 

Extracting simultaneous and proportional neural control information for 
multiple degree of freedom prostheses from the surface electromyographic 

signal. IEEE Transactions on Biomedical Engineering 56(4), 1070–1080.

[Kenney et al. (1999)] Kenney, L., I. Lisitsa, P. Bowker, G. Heath, 

and D. Howard (1999). Dimensional change in muscle as a control signal 
for powered upper limb prostheses: a pilot study. Medical Engineering and 

Physics 21(8), 589–597.

[Kõiva et al. (2015)] Kõiva, R., E. Riedenklau, C. Viegas, and 
C. Castellini (2015). Shape conformable high spatial resolution tactile 

bracelet for detecting hand and wrist activity. In Proceedings of ICORR - 

International Conference on Rehabilitation Robotics, pp. 157–162.

[Merletti et al. (2011)] Merletti, R., A. Botter, C. Cescon, M. Minetto, 

and T. Vieira (2011). Advances in surface EMG: Recent progress in 

clinical research applications. Critical reviews in biomedical 
engineering 38(4), 347–379.

[Micera et al. (2010)] Micera, S., J. Carpaneto, and S. Raspopovi

(2010, October). Control of hand prostheses using peripheral information. 
IEEE Reviews in Biomedical Engineering 3, 48–68.

[Peerdeman et al. (2011)] Peerdeman, B., D. Boere, H. Witteveen, 

R. H. in ‘t Veld, H. Hermens, S. Stramigioli, H. Rietman, P. Veltink, and 
S. Misra (2011). Myoelectric forearm prostheses: State of the art from a 

user-centered perspective. Journal of Rehabilitation Research and 

Development 48(6), 719–738.

[Radmand et al. (2016)] Radmand, A., E. Scheme, and K. Englehart 

(2016). High-density force myography: A possible alternative for upper-

limb prosthetic control. J Rehabil Res Dev. 53(4), 443–456.

[Strazzulla et al. (2016)] Strazzulla, I., M. Nowak, M. Controzzi, 

C. Cipriani, and C. Castellini (2016). Online bimanual manipulation using 

surface electromyography and incremental learning. IEEE Transactions on 
Neural Systems and Rehabilitation Engineering 25, 227–234.

ID # 94

MEC17 - A Sense of What's to Come


