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ABSTRACT

In order to improve the accuracy and reliability of 

myocontrol (control of prosthetic devices using signals 

gathered from the human body), novel kinds of sensors able 

to detect muscular activity are being explored. In particular, 

Optical Myography (OMG) consists of optically tracking 

and decoding the deformations happening at the surface of 

the body whenever muscles are activated. OMG potentially 

requires no devices to be worn, but since it is an advanced 

problem of computer vision, it incurs a number of other 

drawbacks, e.g., changing illumination, identification of 

markers, frame tear and drop. In this work we propose an 

improvement to OMG as it has been recently introduced, 

namely we relax the need of precise positioning and 

orientation of the markers on the body surface. The small 

size of the markers and their curvature while adhering to the 

surface of the forearm can lead to missed detections and 

misdetections in their orientation; here we rather detect the 

deformations by applying a Convolutional Neural Network 

to the region of interest around the feature source 

segmented, from the forearm. The classification-based 

approach yields results similar to those obtained by other 

classification based modalities, reaching accuracies in the 

range of 96.21% to 99.30% when performed on 10 intact

subjects.

INTRODUCTION

Recently introduced in the scientific community of 

assistive robotics, Optical Myography (OMG) is a novel 

way of non-invasively detecting the muscular activity [1].

The main idea is simple: muscle activation, for instance 

when flexing the index finger, induces a quite precise 

deformation in the forearm due to the enlargement of the 

muscle belly, and the consequent shifting of the adjacent 

musculoskeletal structures. This phenomenon is currently 

being exploited by the techniques called Force Myography 

(FMG) and Tactile Myography (TMG); in these cases, the 

aforementioned deformations are detected via pressure / 

force sensors, used in small numbers (FMG) or in a high-

resolution array (TMG). The results are highly promising 

[2] [3].  In OMG, such deformations are captured using 

optical recognition alone, that is, by "looking" at the 

forearm. Whenever the fingers flex, or the wrist rotates 

and/or extends, small changes in the forearm's volume and 

shape appear to the trained eye and become apparent if 

markers are applied to the surface of the forearm; they can 

be linearly related to the required muscle activations [1]   

[4]. This possibility leads to applications in, e.g., advanced 

upper-limb prosthetics: a camera aimed at the stump of an 

amputee could be able to control the device, either in the 

real world or in an Augmented / Virtual Reality setup. The 

main advantage of OMG is probably that it is the "ultimate" 

non-invasive human-machine interface for the disabled, 

since it requires no equipment to be placed on the forearm / 

stump (in principle even markers can be avoided, if the 

algorithm is smart enough). On the other hand, it naturally 

suffers of the problems commonly associated to computer 

vision: dependence on the illumination and focus, loss of 

precision due to the varying distance between camera and 

subject, occlusions, missed and/or misdetection of the 

markers, and surface features of the forearm. In this work 

we propose an advancement to [1], in which AprilTags [4]

[5] were used and tracked by a camera during movement of 

the fingers. In a new experiment, we rather used a plain 

sticker, whose deformations was observed by a single 

camera and then passed to a Convolutional Neural Network 

(CNN). With this approach, the need for a fixed relation of 

the camera to the arm is mitigated and the camera can be 

worn at the arm. Our experimental results show that the 

classification of five different finger poses are in the range 

of 96.21% to 99.3% and therefore on par with state of the 

art methods like surface EMG, Ultrasound or Force 

Myography.

Related work

Muscle activity exists even after the amputation of the 

hand [6] [7]. Such activity can be non-invasively detected in 

a number of ways: through the electrical activity of the 

motor units (surface electromyography or sEMG [8]), the 

deformations of the involved body parts (force or tactile 

myography [2]), listening to the vibrations induced by the 

muscle motion (mechanomyography [9]), and so on. We 

hereby concentrate on another modality, termed Optical 

Myography (OMG), which estimates finger poses by 

optically observing deformations on the surface of the 

forearm. This is performed by mounting a web-camera to a 

fixed set-up frame and by strapping the subject's forearm to 

it. By preventing the forearm to move relative to the camera, 

solely its muscle deformations can be detected with the help 

of fiducial markers such as AprilTags [4]. The 6-D
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information (translation and rotation) collected from each of 

these tags are processed and regressed to four different 

finger poses (trained independent of one another). The small 

size of the markers can lead to its improper identification. 

The curvature when stuck to the surface of the forearm also 

leads to misdetections in orientation. These factors magnify 

once the arm is released from the set-up in attempt to carry 

out practical tasks.  

EXPERIMENT DESCRIPTION

Setup Description

An elastic band is used to strap a camera onto the 

forearm. The images are recorded at a resolution of 640x480 

pixels at a frame rate of 25 frames per second. Artificial 

lighting (from LED lights) is used in these experiments to 

achieve uniformity in the experiments and to avoid changes 

in illumination caused by natural light. Motion blur was also 

physically suppressed to a certain extent by using a velcro 

band around the forearm and the camera to prevent upwards 

vertical movement. The images are pre-processed to obtain 

the ROI using the computer vision library OpenCV and then 

passed to a CNN, which is implemented using the 

TensorFlow software library.

Participants

The participants chosen for the experiment were people 

with all their fingers intact. Each subject was asked to use 

around 80% of their maximum force while following a 

stimulus signal displayed by a virtual hand on a computer 

screen. The camera was strapped on the subject’s arm to 

simulate an attachment to the base of an active hand 

prosthesis as shown in Figure 2.  

There were two subjects with the dominant hand being 

their left, while the others were right handed. The average 

age of the participants (three female and 7 male) is 26.2

±3.65 years. A plain sticker was stuck on to the anterior side 

of each subject’s arm. Once prepared for the experiment, the 

subject was asked to place the forearm (freely) on a plain 

surface. The subject was then shown both the graphical 

interface used for recording and a virtual 3-D hand model 

presenting the stimulus signal to be followed. The stimuli 

used are thumb flexion, thumb abduction (rotation), index 

flexion, combo flexion (combination of the little, ring and 

middle finger) and rest (all fingers relaxed), repeated 10 

times at equal intervals. The experiments were approved by 

the Ethical Committee of the DLR and all subjects gave 

written consent.

Image processing

By using a plain sticker on the forearm, the sticker's 

bounding box can be used as a region of interest (ROI) and 

its deformations and slight changes in position can be used 

as characteristics for the CNN to distinguish between the 

finger poses. This requires a segmentation of the sticker in 

each camera image from the background. In order to 

segment the sticker, the RGB colour space is transformed 

into a three channel log opponent chromacity (LO) space, a 

method common in skin segmentation algorithms [10] [11].

In order to cope with intensity issues such as glare, the 

intensity channel (I channel) is subtracted from the LO-Rg

channel and this new channel is used as the base for the rest 

of the image processing upon normalization. 

A fixed ROI is set for the first frame in order to remove 

unnecessary background. A median filter smoothens the 

image before an adaptive threshold is used to segment the 

boundaries.  Morphological operations are used in cases 

where the sticker's boundary merges with the forearm's or 

the sleeve's due to its placement. The contours of the sticker

are then extracted and enclosed within a rectangular 

bounding box. Necessary conditions are imposed on the 

Figure 2: (left) The sticker attached to the 

forearm of a subject; (right) segmentation of the 

sticker

Figure 1: The experiment setup, where a subject is 

following the stimuli on the monitor with a sticker 

stuck on to the left forearm and a camera attached to 

the arm to capture its deformations
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Figure 3: Boxplot of classification accuracy of each pose

bounding box to filter the contours of the sticker. Once the 

estimated contour and bounding box of the sticker is 

verified by the user in the first frame (the remaining being 

automated), a mask of the contour segments only the sticker 

and sets the regions outside the contour to a pixel value of 0 

(black). 

Classification method

The network is a simple CNN consisting of two 

convolution layers with exponential linear unit (ELU) 

activation and a fully connected layer. Each convolution 

layer consists of 16 filters. The filters in the first layer have 

a relatively large size of 11x11 pixels while the second 

layer's filters are of size 5x5 pixels. The images sent as input 

to the CNN are greyscale images of size 130x130 pixels. 

Image sizes are restricted to be smaller than the down-scaled 

image to preserve information. About nearly a second (800 

ms) of delay is imposed to adapt for the reaction time of the 

subject. Intermediate pose data are also not considered as an 

input in order to make it a purely classification problem. 

The data sent in for training are shuffled in a pseudorandom 

process so that each of the stimuli is uniformly distributed 

throughout the training set. The training set is then split into 

batches of 70. The predictions are estimated by optimizing 

the parameters of the CNN using stochastic gradient descent 

which minimizes the loss over 20 epochs. The initial 

learning rate is 0.001; which is then decreased by 5% every 

succeeding epoch. The loss function is that of the mean of 

the sparse softmax cross-entropy of the output of the final 

fully connected layer (the logits). The accuracy is calculated 

by finding the argmax of the logits and comparing it to the 

true labels.  

"Leave-one-repetition-out" cross-validation was used to 

evaluate subject accuracy, that is, for each subject and 

repetition we trained the CNN on nine repetitions and tested 

on the selected one. We averaged out all results across 

subjects to yield a global result.

RESULTS

Figure 3 shows the overall accuracy, i.e. the percentage 

of correctly classified cases versus all observed cases, 

averaged over all subjects as well as overall precision, i.e. 

the true positives versus all positives. The mean and 

standard deviation cannot be taken as the best value over the 

repetitions since the overall (intra-subject) sample space is 

small (10 repetitions yielding 10 separate tests). Thus the 

median and interquartile range (IQR) depict an evaluation 

closer to that of the true performance of the model. The 

confusion matrix of the global median is then used to obtain

the global accuracy and precision. The final results are 

displayed in percentage (after normalization).

As a comparison with existing literature, we show in Figure

4 that OMG using CNN (OMG_CNN) performs on par with 

the other classification-based modalities. We use the results 

obtained during similar experiments published in the 

following papers: 

Naik et al. [12], Table II, III(A) and III(B) (labelled 

sEMG in our Figures): Five transradial amputees were 

engaged in performing 11 finger poses, which were detected 

using two proposed sEMG configuration which they 

considered optimal. We take the average of the little, ring, 

middle, pointer and thumb extension, and the little, ring and 

middle finger flexion as the rest pose and combo flexion 

respectively. The remaining poses were the same as in this 

work.

Cho et al. [2], Table 2 and Figure A1 (FMG): Four 

transradial amputees performed five trials with 11 different 

grip gestures. The key grip performed in their study was 

assumed similar to the thumb flexion in our work, the 

mouse grip was almost the same as the thumb abduction, the 

precision open is assumed similar to the index flexion and 

the finger point and relaxed hand were the same as the 

combo flexion and rest position respectively. The final 

confusion matrix drawn from the four subjects’ was that of 

their mean as used by the OMG method between the 

subjects. 

Sikdar et al. [13], Table I (SMG): Ten healthy 

volunteers performed individual finger flexions. The combo 

flexion was derived by taking the average of the 

performance by the little, ring and middle finger flexion, 

while the remaining were the same as in this work. The rest 

and the thumb abduction could not be gathered for the 

comparison.

Consider the bar plots in Figure 4. The index and 

combo flexion are in fact as high as achieved when using 

sEMG. One can note that the thumb flexion, thumb 

abduction and rest position has a lower precision (Figure

4b). This can be explained by the low variation between the 

three poses, which causes a higher risk of false positives. 
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CONCLUSIONS

In this paper we have proposed a simple improvement 

to optical myography (OMG), namely, the usage of a single 

undifferentiated marker ("sticker") instead of several 

AprilTags, as it was done in [1]. We have demonstrated that 

such a simple arrangement is enough to obtain classification 

results, for several movements of the fingers, which are 

comparable to those already obtained in literature using 

sEMG, ultrasound imaging and force myography. A 

Convolutional Neural Network seems to be a good option to 

take advantage of the image-like nature of the sticker and its 

deformation due to muscular activity. The main challenges 

to be faced here are the morphological operations used to 

disjoin boundaries intersecting with the sticker's during 

contour extraction. It is interesting to note that thumb 

movements are not easily distinguishable from each other 

and from the rest pose, probably due to the fact that the 

muscles, which control the thumb are deeper and therefore 

harder to detect on the skin surface using an optical camera.

OMG is, of course, susceptible to all well-known 

pitfalls of computer vision: motion blur, varying 

illumination and occlusion(s). This is going to be the main 

line of future research, especially as we will lift the 

assumption of the forearm being fixed in a specific spatial 

position.
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Figure 4: Modality-wise comparison of accuracy (top) and 

precision (bottom) in percentage between the various 

finger poses
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