IMPROVING HAND AND WRIST ACTIVITY DETECTION USING TACTILE SENSORS AND TENSOR REGRESSION METHODS ON RIEMANNIAN MANIFOLDS

Noémie Jaquier1, Claudio Castellini2 and Sylvain Calinon1
1Idiap Research Institute, Martigny, Switzerland
2DLR - German Aerospace Center, Wessling, Germany

ABSTRACT

Simultaneous and proportional control of a prosthetic hand and wrist is still a challenging issue, although giant steps have lately been made in this direction. In this paper, we study the application of a novel machine learning method to the problem, with the aim to potentially improve such control. Namely we apply different kernels for tensor Gaussian process regression to data obtained from an advanced, flexible tactile sensor applied on the skin, recording muscle bulging in the forearm. The sensor is a modular, compact bracelet comprising 320 highly sensitive elements organized as a tactile array. The usage of kernel functions with tensor arguments and kernel distances computed on Riemannian manifolds enables us to account for the underlying structure and geometry of the tactile data. Regression accuracy results obtained on data previously collected using the bracelet demonstrate the effectiveness of the approach, especially when using Euclidean distance and Kullback-Leibler divergence-based kernels.

INTRODUCTION

Despite recent advances in externally-powered prosthetics, intuitive and robust control of polyarticated prosthetic hands and wrists by amputees remains an unsolved problem, mainly due to unadapted user interfaces and inadequate sensorization [1]. Despite remarkable advanced in this direction, e.g., [2, 3, 4], a full, clinically accepted application still has to appear. The recent results of the ARM competition of the Cybathlon, won by Robert Radocy of TRS Prosthetics wearing a body-powered prosthesis1, stand as a powerful warning for the scientific community.

In this paper, we advance the usage of tactile sensing or tactile myography (TMG) to detect hand and wrist movement in a non-invasive way in order to replace or augment the traditional surface electromyography (sEMG). We bring the qualitative analysis of TMG data performed in [5] one step further, by studying regression methods allowing to account for the structure and the geometry of the muscle bulging data. This is enforced using tensor Gaussian Process Regression, a technique consisting of predicting a posterior Gaussian density for new inputs knowing a set of input and output data.

We first describe the proposed regression method, then we quickly review the experimental setup and data collection process, and lastly we present our experimental results. A quick discussion completes the paper.

PROPOSED APPROACH

Mathematical background

Gaussian Processes (GP) are a class of probabilistic models that defines a posterior over functions given a set of input and output data. The distribution is assumed to be Gaussian with some mean and covariance. The covariance is computed using a kernel function as a measure of similarity. The idea behind GP is that if two input points are similar according to the kernel, the output of the function at those points will also be similar [6].

Tensors are generalization of vectors and matrices to higher dimensions. They provide an efficient and natural way to represent structured multidimensional data such as videos sequences or electroencephalography (EEG) data. Recently, regression methods have been extended to tensor data, allowing an efficient exploitation of their structure, see for example [7, 8].

Riemannian manifolds are mathematical spaces that locally resemble a Euclidean space. A Riemannian manifold is a smooth manifold whose tangent space is equipped with an inner product [9]. Such model conserves the underlying geometry of the data. Examples of well known manifolds are the surface of hyperspheres (to represent orientations), the space of symmetric positive definite (SPD) matrices [10], or the space of p-dimensional subspaces in a n-dimensional Euclidean space called the Grassmann manifold [11].

Tensor Gaussian Process Regression

Given a dataset of N observations \{\{(\mathbf{X}_n, y_n)\}\}_{n=1}^N$, concatenated as \(\mathbf{X} \in \mathbb{R}^{N \times I_1 \times \ldots \times I_m}\) and \(\mathbf{Y} \in \mathbb{R}^{N \times J}\), we are interested in making prediction for a new input \(\mathbf{X}_*\). By extending GP regression to tensor inputs, the predictive dis-

1see http://www.cybathlon.ethz.ch/de/cybathlon-news/resultate/arm-resultate.html as well as http://www.trsprosthetics.com.
Kernels with tensor inputs on manifolds: In order to exploit both the structure and the geometry of tensor inputs, the kernel is defined as a product of \(M \) positive semi-definite factor kernels

\[
k(\mathbf{X}, \mathbf{X}') = \prod_{m=1}^{M} k(\mathbf{X}(m), \mathbf{X}'(m)),
\]

where \(\mathbf{X}(m) \in \mathbb{R}^{I_m \times I_1I_2\ldots I_M} \) is the mode-\(m \) matricization or unfolding of tensor \(\mathbf{X} \) \cite{12, 13}. Each factor kernel measures the similarity between mode-\(m \) unfolding of two tensors. We consider factor kernels in the form of Radial Basis Function (RBF) kernels defined as

\[
k(\mathbf{X}(m), \mathbf{X}'(m)) = \exp\left(-\frac{d(\mathbf{X}(m), \mathbf{X}'(m))}{2\beta^2_m}\right),
\]

where \(d(\mathbf{X}(m), \mathbf{X}'(m)) \) is a distance measure. Kernels based on different distances for matrices are presented below.

Kernels based on Kullback-Leibler divergence: The Kullback-Leibler divergence measures the difference between two probability distributions \(p \) and \(q \). In our case, each \(\mathbf{X}(m) \) is treated as a Gaussian generative model with \(I_m \) variables and \(I_1I_2\ldots I_M \) observations and parameters \(\mu_m \) and \(\Sigma_m \) \cite{12}. The corresponding probabilistic distance measure is defined as

\[
d_{KL} = KL\left(p(\mathbf{X}(m)|\mu_m, \Sigma_m) || q(\mathbf{X}'(m)|\mu'_m, \Sigma'_m)\right),
\]

where the Kullback-Leibler divergence between two Gaussian distributions \(\mathcal{N}_0(\mu_0, \Sigma_0) \) and \(\mathcal{N}_1(\mu_1, \Sigma_1) \) is

\[
\frac{1}{2}\left((\Sigma_1^{-1}\Sigma_0) + (\mu_1 - \mu_0)(\Sigma_1^{-1}(\mu_1 - \mu_0)) - \ln(\det(\Sigma_1))\right).
\]

Kernel on the Grassmann manifold: The Grassmann manifold \(G_{n,p} \) is the space of \(p \)-dimensional subspaces in a \(n \)-dimensional Euclidean space. In this manifold, it is not possible to find a geodesic distance that yields a positive definite kernel \cite{15}. We use the non-geodesic projection or Chordal metric \(\|Y_0 - Y_1\|_F \) to define the projection Gaussian kernel or Chordal distance-based kernel

\[
d_{Chordal} = \|V_nV_n^T - V_m'V_m'^T\|_F.
\]

Here, \(V_m \) corresponds to the right orthonormal vectors of the SVD decomposition of the mode-\(m \) unfolding \(\mathbf{X}_m \).

EXPERIMENT

In order to test the applicability and accuracy of the presented technique, we applied it to the dataset presented in \cite{5}. We give here a very short description of the materials and methods used, see the original paper for details.

Experimental setup

The device used to capture muscles bulging around the full circumference of the arm is a shape-conformable tactile bracelet. The bracelet uses high-performance resistomer-based tactile sensor technology, built upon the fact that the interface resistivity between two electrodes changes according to the applied load. The layout of the bracelet is such that a total number of 320 pressure sensors, arranged in a \(8 \times 40 \) torus shape around the forearm, gather a high-spatial-resolution (5mm) “pressure image” exerted by the deformation of the muscles engaged in moving the hand and wrist. The idea in itself is well-known, initially inventoried and studied by Crauelus and others \cite{16, 17}, and its effectiveness is being studied with remarkable results, even when tested on amputated subjects \cite{18}. TMG can be seen as a high-resolution version of force myography as laid out in the mentioned papers; Radman et al. \cite{19} provide a striking example of TMG applied to intact subjects, showing excellent classification accuracy. In order to provide a better form of simultaneous and proportional control, we hereby focus upon regression instead of classification.

In the experiment reported in \cite{5}, the ground truth was obtained by simply using the values of an animated visual stimulus, namely a hand model with nine degrees of freedom, with the understanding that the subjects would follow it with reasonable accuracy. This is an instance of on-off goal-directed training, already successfully employed, e.g., in \cite{20, 21}. Such a method has the drawback of potentially reducing the precision in the prediction of the intended activations due to the delay required by the subject to adapt; nevertheless, it is an accepted way to associate an intended activation with a specific input signal pattern; in the case of amputees, it is actually the only possible way, since amputees cannot produce reliable ground truth in principle.
Participants and experimental protocol

The dataset was gathered from 10 intact subjects induced to follow movements of a realistic 3D hand model displayed on a monitor. The sequence of movements consisted of thumb rotation, flexion of the index and little finger, wrist flexion, extension and supination as shown by Fig. 1a. Each participant repeated this sequence of movements ten times while sitting in front of a monitor (see Fig. 1b).

![Thumb Index Little Wr. flex Wr. ext. Wr. sup. 6 1 4 4 - - - 1 3 2 - - - 1](image)

Figure 1: (a) Movements executed by the participants. (b) A bird’s eye view of the experimental setup used in [5] (reproduced with permission).

EXPERIMENTAL RESULTS

Table 2: Number of participants for which each method performed best per movement.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Thumb</th>
<th>Index</th>
<th>Little</th>
<th>Wr. flex</th>
<th>Wr. ext.</th>
<th>Wr. sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{\text{Eucl}})</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>(d_{\text{KL}})</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>(d_{\text{SPD}})</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>(d_{\log\text{SPD}})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>(d_{\text{Chordal}})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

We applied tensor Gaussian Process Regression using RBF kernels based on Kullback-Leibler divergence \((d_{\text{KL}})\), Euclidean metric on \(S_{+}\) \((d_{\text{SPD}})\), log-Euclidean metric on \(S_{+}\) \((d_{\log\text{SPD}})\) and Chordal distance \((d_{\text{Chordal}})\) in order to predict the visual stimulus values from the tactile bracelet. We compared the different results with those obtained by applying Ridge Regression \((RR)\), equivalent to regularized least squares regression, and Gaussian process with the standard Euclidean metric computed by vectorizing the input data \(d_{\text{Eucl}} = \| \text{vec}(X_{(m)}) - \text{vec}(X'_{(m)}) \|^2\). Cross-validation was applied to obtain a statistically significant estimation. The entire dataset for each participant and movement was randomly shuffled, then 10% of it was used to train each model and the test was performed on the remaining 90%. This procedure was repeated 50 times with a different random shuffle each time.

Table 1 shows three examples of typical average and standard deviation of the normalized root-mean-square error \((\text{NRMSE})\) values obtained by applying the different regression methods for each movement. The NRMSE values for Ridge Regression range from 1% to 11% depending on the movements and participants. This is in line with the values found by Koiva et al. [5]. As expected, all kernel methods achieve better results than Ridge Regression as they can encode nonlinear relationships. The NRMSE values of kernel methods range from 0.5% to 7.5% in function of the movements and participants.

We then compared the efficiency of the different kernel methods for each movement. Table 2 shows the number of participants for which each method performed best per movement. We observe that GP regression using the Euclidean metric and tensor GP regression with KL divergence-based kernel perform the best detection in most of the cases. Tensor GP regression with KL divergence-based kernel is generally the most efficient method to predict finger movement, especially thumb rotation, for most of participants. However, GP with Euclidean-based kernel seems more suitable to detect wrist movements.

DISCUSSION AND CONCLUSION

In this paper, we studied different kernels for tensor Gaussian Processes regression to detect hand and wrist activity by observing muscles bulging in the forearm. The paper concentrated on comparing several regression methods to data obtained in a previous experiment. The results presented above indicate that TMG data obtained from the forearm using the tactile bracelet can be effectively used to obtain graded muscle activations — as opposed to classification. As expected, due to the location of involved muscles, NRMSE values for movement involving the wrist are generally better predicted than the fingers movements, and errors in the prediction of thumb rotation are slightly higher. The slightly better results obtained by GP with Euclidean-based kernel on the wrist movements may be explained by the fact that muscles activation are more difficult to measure for finger movements, so that taking the structure of the data in account improves the detection of movements inducing patterns more difficult to distinguish.

All in all, it seems reasonable to claim that such a rich flow of information as the one obtained using 320 tactels (as opposed to the traditional sEMG schema in which a few sensors are involved) can provide better control than the state of the art; particularly, simultaneous and proportional control would greatly benefit from regression applied to TMG data. The results are promising, with all kernels methods being able to predict the different movements with an accuracy superior to previous approaches. Accounting for the structure and geometry of the data proved to be particularly helpful to detect finger movements.

ACKNOWLEDGEMENTS

This work was partially supported by the DFG/SNSF project “TACT-HAND: Improving control of prosthetic hands using tactile sensors and realistic machine learning” (Sachbeihilfe CA1389/1-1, Swiss National Science Foundation project 200021E-160665).
Table 1: Normalised root-mean-square error [%] for three participants and each performed movement. The lowest NRMSE for each movement and each participant is highlighted.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Thumb</th>
<th>Index</th>
<th>Little</th>
<th>Wr. flex</th>
<th>Wr. ext.</th>
<th>Wr. sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>6.75 ± 0.59</td>
<td>7.16 ± 0.55</td>
<td>7.79 ± 0.67</td>
<td>4.54 ± 0.40</td>
<td>4.03 ± 0.58</td>
<td>2.64 ± 0.31</td>
</tr>
<tr>
<td>GP, d<sub>uel</sub></td>
<td>3.79 ± 1.12</td>
<td>2.69 ± 0.43</td>
<td>2.70 ± 0.38</td>
<td>2.75 ± 0.67</td>
<td>1.86 ± 0.51</td>
<td>1.19 ± 0.20</td>
</tr>
<tr>
<td>TGP, d<sub>KL</sub></td>
<td>2.80 ± 1.25</td>
<td>1.54 ± 0.50</td>
<td>1.86 ± 0.47</td>
<td>3.73 ± 1.38</td>
<td>1.56 ± 0.50</td>
<td>1.19 ± 0.46</td>
</tr>
<tr>
<td>TGP, d<sub>logSPD</sub></td>
<td>5.00 ± 0.70</td>
<td>2.86 ± 0.50</td>
<td>2.98 ± 0.51</td>
<td>2.94 ± 0.79</td>
<td>1.98 ± 0.52</td>
<td>1.43 ± 0.31</td>
</tr>
<tr>
<td>TGP, d<sub>logTGP</sub></td>
<td>3.88 ± 0.97</td>
<td>2.94 ± 0.47</td>
<td>2.99 ± 0.54</td>
<td>3.07 ± 0.66</td>
<td>2.09 ± 0.45</td>
<td>1.45 ± 0.29</td>
</tr>
<tr>
<td>TGP, d<sub>hep</sub></td>
<td>3.96 ± 0.87</td>
<td>3.12 ± 0.56</td>
<td>3.10 ± 0.43</td>
<td>2.99 ± 0.73</td>
<td>2.40 ± 0.53</td>
<td>1.51 ± 0.25</td>
</tr>
</tbody>
</table>

Participants
<table>
<thead>
<tr>
<th>Participant</th>
<th>Thumb</th>
<th>Index</th>
<th>Little</th>
<th>Wr. flex</th>
<th>Wr. ext.</th>
<th>Wr. sup.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>10.82 ± 0.71</td>
<td>9.58 ± 0.81</td>
<td>8.74 ± 0.84</td>
<td>4.61 ± 0.55</td>
<td>3.70 ± 0.26</td>
<td>3.01 ± 0.43</td>
</tr>
<tr>
<td>GP, d<sub>uel</sub></td>
<td>5.12 ± 0.97</td>
<td>4.66 ± 0.91</td>
<td>3.98 ± 0.74</td>
<td>2.80 ± 0.61</td>
<td>1.78 ± 0.22</td>
<td>1.91 ± 0.41</td>
</tr>
<tr>
<td>TGP, d<sub>KL</sub></td>
<td>7.46 ± 2.13</td>
<td>6.89 ± 1.04</td>
<td>4.75 ± 0.93</td>
<td>3.92 ± 0.86</td>
<td>3.25 ± 0.75</td>
<td>2.71 ± 0.58</td>
</tr>
<tr>
<td>TGP, d<sub>logSPD</sub></td>
<td>5.07 ± 0.86</td>
<td>5.04 ± 0.92</td>
<td>4.10 ± 0.83</td>
<td>2.83 ± 0.50</td>
<td>1.68 ± 0.30</td>
<td>1.63 ± 0.47</td>
</tr>
<tr>
<td>TGP, d<sub>logTGP</sub></td>
<td>5.66 ± 1.13</td>
<td>4.78 ± 0.55</td>
<td>4.27 ± 0.62</td>
<td>3.35 ± 0.56</td>
<td>2.48 ± 0.38</td>
<td>1.81 ± 0.33</td>
</tr>
<tr>
<td>TGP, d<sub>hep</sub></td>
<td>5.45 ± 0.97</td>
<td>4.75 ± 0.62</td>
<td>4.20 ± 0.68</td>
<td>3.35 ± 0.47</td>
<td>2.75 ± 0.54</td>
<td>1.95 ± 0.39</td>
</tr>
</tbody>
</table>

REFERENCES

