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ABSTRACT

Simultaneous and proportional control of a prosthetic

hand and wrist is still a challenging issue, although giant

steps have lately been made in this direction. In this pa-

per, we study the application of a novel machine learning

method to the problem, with the aim to potentially improve

such control. Namely we apply different kernels for tensor

Gaussian process regression to data obtained from an ad-

vanced, flexible tactile sensor applied on the skin, record-

ing muscle bulging in the forearm. The sensor is a modular,

compact bracelet comprising 320 highly sensitive elements

organized as a tactile array. The usage of kernel functions

with tensor arguments and kernel distances computed on

Riemannian manifolds enables us to account for the under-

lying structure and geometry of the tactile data. Regression

accuracy results obtained on data previously collected using

the bracelet demonstrate the effectiveness of the approach,

especially when using Euclidean distance and Kullback-

Leibler divergence-based kernels.

INTRODUCTION

Despite recent advances in externally-powered pros-

thetics, intuitive and robust control of polyarticulated pros-

thetic hands and wrists by amputees remains an unsolved

problem, mainly due to unadapted user interfaces and inad-

equate sensorization [1]. Despite remarkable advanced in

this direction, e.g., [2, 3, 4], a full, clinically accepted ap-

plication still has to appear. The recent results of the ARM

competition of the Cybathlon, won by Robert Radocy of

TRS Prosthetics wearing a body-powered prosthesis1, stand

as a powerful warning for the scientific community.

In this paper, we advance the usage of tactile sens-

ing or tactile myography (TMG) to detect hand and wrist

movement in a non-invasive way in order to replace or aug-

ment the traditional surface electromyography (sEMG). We

bring the qualitative analysis of TMG data performed in [5]

one step further, by studying regression methods allowing

to account for the structure and the geometry of the mus-

cle bulging data. This is enforced using tensor Gaussian

Process Regression, a technique consisting of predicting a

posterior Gaussian density for new inputs knowing a set of

input and output data.

We first describe the proposed regression method, then

we quickly review the experimental setup and data collec-

tion process, and lastly we present our experimental results.

A quick discussion completes the paper.

PROPOSED APPROACH

Mathematical background

Gaussian Processes (GP) are a class of probabilistic mod-

els that defines a posterior over functions given a set of

input and output data. The distribution is assumed to be

Gaussian with some mean and covariance. The covariance

is computed using a kernel function as a measure of sim-

ilarity. The idea behind GP is that if two input points are

similar according to the kernel, the output of the function at

those points will also be similar [6].

Tensors are generalization of vectors and matrices to

higher dimensions. They provide an efficient and natural

way to represent structured multidimensional data such as

videos sequences or electroencephalography (EEG) data.

Recently, regression methods have been extended to tensor

data, allowing an efficient exploitation of their structure, see

for example [7, 8].

Riemannian manifolds are mathematical spaces that lo-

cally resemble a Euclidean space. A Riemannian mani-

fold is a smooth manifold whose tangent space is equipped

with an inner product [9]. Such model conserves the un-

derlying geometry of the data. Examples of well known

manifolds are the surface of hyperspheres (to represent ori-

entations), the space of symmetric positive definite (SPD)

matrices [10], or the space of p-dimensional subspaces in a

n-dimensional Euclidean space called the Grassmann man-

ifold [11].

Tensor Gaussian Process Regression

Given a dataset of N observations {(Xn,yn)}
N
n=1,

concatenated as X ∈ R
N×I1×...×Im and Y ∈ R

N×J , we

are interested in making prediction for a new input X ∗. By

extending GP regression to tensor inputs, the predictive dis-

1see http://www.cybathlon.ethz.ch/de/cybathlon-news/resultate/arm-resultate.html

as well as http://www.trsprosthetics.com.
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tribution of y∗ corresponding to X ∗ can be inferred as

y∗|X ∗,X ,Y ,θ ∼ N (y
∗
, cov(y∗)), (1)

where

y
∗
= k(X ∗,X )

(

k(X ,X ) + σ2I
)

−1
Y , (2)

cov(y∗) = k(X ∗,X ∗)

− k(X ∗,X )
(

k(X ,X ) + σ2I
)

−1
k(X ,X ∗),

and (K)ij = k(X i,X j) is the covariance or kernel matrix

[12, 13].

Kernels with tensor inputs on manifolds: In order to ex-

ploit both the structure and the geometry of tensor inputs,

the kernel is defined as a product of M positive semi-

definite factor kernels

k(X ,X ′) =
M
∏

m=1

k(X(m),X
′

(m)), (3)

where X(m) ∈ R
Im×I1I2...IM is the mode-m matriciza-

tion or unfolding of tensor X [12, 13]. Each factor kernel

measures the similarity between mode-m unfolding of two

tensors. We consider factor kernels in the form of Radial

Basis Function (RBF) kernels defined as

k(X(m),X
′

(m)) = exp

(

−
d(X(m),X

′

(m))

2β2
m

)

, (4)

where d(X(m),X
′

(m)) is a distance measure. Kernels based

on different distances for matrices are presented below.

Kernels based on Kullback-Leibler divergence: The

Kullback-Leibler divergence measures the difference be-

tween two probability distributions p and q. In our case,

each X(m) is treated as a Gaussian generative model with

Im variables and I1I2...IM observations and parameters

µm and Σm [12]. The corresponding probabilistic distance

measure is defined as

dKL = KL
(

p(Xm|µm,Σm)‖q(X ′

m|µ
′

m,Σ′m)
)

, (5)

where the Kullback-Leibler divergence between two

Gaussian distributions N0(µ0,Σ0) and N1(µ1,Σ1)) is
1
2

(

tr(Σ−1
1 Σ0)+(µ1−µ0)

⊤
Σ
−1
1 (µ1−µ0)−k+ln detΣ1

detΣ0

)

[14].

Kernels on the manifold of SPD matrices: Different met-

rics on the manifold of SPD matrices Sn
++ may be used

to define positive definite kernels [15]. The log-Euclidean

metric ‖ lnΣ0 − lnΣ1‖F corresponds to the geodesic dis-

tance between two SPD matrices Σ0 and Σ1, e.g. the short-

est path between two elements on the manifold. It yields the

corresponding distance

dlogSPD = ‖ ln(cov(Xm))− ln(cov(X ′

m))‖F, (6)

where cov(Xm) ∈ R
Im×Im is the covariance matrix of

Xm. Similarly, we exploit the non-geodesic metric ‖Σ0 −
Σ1‖F yielding the distance

dSPD = ‖cov(Xm)− cov(X ′

m)‖F. (7)

Kernel on the Grassmann manifold: The Grassmann

manifold Gn,p is the space of p-dimensional subspaces in

a n-dimensional Euclidean space. In this manifold, it is not

possible to find a geodesic distance that yields a positive

definite kernel [15]. We use the non-geodesic projection or

Chordal metric ‖Y0Y
⊤

0 −Y1Y
⊤

1 ‖F, where Y0, Y1 ∈ Gn,p to

define the projection Gaussian kernel or Chordal distance-

based kernel with

dChordal = ‖VmV⊤

m − V ′

mV ′⊤

m ‖F. (8)

Here, Vm corresponds to the right orthonormal vectors of

the SVD decomposition of the mode-m unfolding Xm.

EXPERIMENT

In order to test the applicability and accuracy of the

presented technique, we applied it to the dataset presented

in [5]. We give here a very short description of the materials

and methods used, see the original paper for details.

Experimental setup

The device used to capture muscles bulging around the

full circumference of the arm is a shape-conformable tac-

tile bracelet. The bracelet uses high-performance resis-

tive elastomer-based tactile sensor technology, built upon

the fact that the interface resistivity between two electrodes

changes according to the applied load. The layout of the

bracelet is such that a total number of 320 pressure sensors,

arranged in a 8×40 torus shape around the forearm, gather

a high-spatial-resolution (5mm) “pressure image” exerted

by the deformation of the muscles engaged in moving the

hand and wrist. The idea in itself is well-known, initially

invented and studied by Craelius and others [16, 17], and

its effectiveness is being studied with remarkable results,

even when tested on amputated subjects [18]. TMG can

be seen as a high-resolution version of force myography as

laid out in the mentioned papers; Radmand et al. [19] pro-

vide a striking example of TMG applied to intact subjects,

showing excellent classification accuracy. In order to pro-

vide a better form of simultaneous and proportional control,

we hereby focus upon regression instead of classification.

In the experiment reported in [5], the ground truth was

obtained by simply using the values of an animated visual

stimulus, namely a hand model with nine degrees of free-

dom, with the understanding that the subjects would follow

it with reasonable accuracy. This is an instance of on-off

goal-directed training, already successfully employed, e.g.,

in [20, 21]. Such a method has the drawback of potentially

reducing the precision in the prediction of the intended ac-

tivations due to the delay required by the subject to adapt;

nevertheless, it is an accepted way to associate an intended

activation with a specific input signal pattern; in the case

of amputees, it is actually the only possible way, since am-

putees cannot produce reliable ground truth in principle.
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Participants and experimental protocol

The dataset was gathered from 10 intact subjects in-

duced to follow movements of a realistic 3D hand model

displayed on a monitor. The sequence of movements con-

sisted of thumb rotation, flexion of the index and little fin-

ger, wrist flexion, extension and supination as shown by

Fig. 1a. Each participant repeated this sequence of move-

ments ten times while sitting in front of a monitor (see Fig.

1b).

(a) (b)

Figure 1: (a) Movements executed by the participants. (b)

A bird’s eye view of the experimental setup used in [5]

(reproduced with permission).

EXPERIMENTAL RESULTS

Table 2: Number of participants for which each method

performed best per movement.

Metric Thumb Index Little Wr. flex Wr. ext. Wr. sup.

dEucl 1 4 4 6 3 6

dKL 8 6 5 2 4 3

dSPD 1 - 1 1 3 -

dlogSPD - - - 1 - 1

dChordal - - - - - -

We applied tensor Gaussian Process Regression us-

ing RBF kernels based on Kullback-Leibler divergence

(dKL), Euclidean metric on S++ (dSPD), log-Euclidean met-

ric on S++ (dlogSPD) and Chordal distance (dChordal) in or-

der to predict the visual stimulus values from the tactile

bracelet. We compared the different results with those ob-

tained by applying Ridge Regression (RR), equivalent to

regularized least squares regression, and Gaussian process

with the standard Euclidean metric computed by vector-

izing the input data dEucl = ‖vec(X(m)), vec(X ′

(m))‖
2.

Cross-validation was applied to obtain a statistically sig-

nificant estimation. The entire dataset for each participant

and movement was randomly shuffled, then 10% of it was

used to train each model and the test was performed on the

remaining 90%. This procedure was repeated 50 times with

a different random shuffle each time.

Table 1 shows three examples of typical average and

standard deviation of the normalized root-mean-square er-

ror (NRMSE) values obtained by applying the different re-

gression methods for each movement. The NRMSE values

for Ridge Regression range from 1% to 11% depending on

the movements and participants. This is in line with the val-

ues found by Koiva et al. [5]. As expected, all kernel meth-

ods achieve better results than Ridge Regression as they can

encode nonlinear relationships. The NRMSE values of ker-

nel methods range from 0.5% to 7.5% in function of the

movements and participants.

We then compared the efficiency of the different ker-

nel methods for each movement. Table 2 shows the

number of participants for which each method performed

best per movement. We observe that GP regression us-

ing the Euclidean metric and tensor GP regression with KL

divergence-based kernel perform the best detection in most

of the cases. Tensor GP regression with KL divergence-

based kernel is generally the most efficient method to pre-

dict finger movement, especially thumb rotation, for most

of participants. However, GP with Euclidean-based kernel

seems more suitable to detect wrist movements.

DISCUSSION AND CONCLUSION

In this paper, we studied different kernels for tensor

Gaussian Processes regression to detect hand and wrist ac-

tivity by observing muscles bulging in the forearm. The

paper concentrated on comparing several regression meth-

ods to data obtained in a previous experiment. The results

presented above indicate that TMG data obtained from the

forearm using the tactile bracelet can be effectively used to

obtain graded muscle activations — as opposed to classifi-

cation. As expected, due to the location of involved mus-

cles, NRMSE values for movement involving the wrist are

generally better predicted than the fingers movements, and

errors in the prediction of thumb rotation are slightly higher.

The slightly better results obtained by GP with Euclidean-

based kernel on the wrist movements may be explained by

the fact that muscles activation are more difficult to mea-

sure for finger movements, so that taking the structure of

the data in account improves the detection of movements

inducing patterns more difficult to distinguish.

All in all, it seems reasonable to claim that such a rich

flow of information as the one obtained using 320 tactels

(as opposed to the traditional sEMG schema in which a

few sensors are involved) can provide better control than

the state of the art; particularly, simultaneous and propor-

tional control would greatly benefit from regression applied

to TMG data. The results are promising, with all kernels

methods being able to predict the different movements with

an accuracy superior to previous approaches. Accounting

for the structure and geometry of the data proved to be par-

ticularly helpful to detect finger movements.
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Table 1: Normalised root-mean-square error [%] for three participants and each performed movement. The lowest

NRMSE for each movement and each participant is highlighted.

Participant 1 Thumb Index Little Wr. flex Wr. ext. Wr. sup.

RR 6.75± 0.59 7.16± 0.55 7.79± 0.67 4.54± 0.40 4.03± 0.58 2.64± 0.31

GP, dEucl 3.79± 1.12 2.69± 0.43 2.70± 0.38 2.75± 0.67 1.86± 0.51 1.19± 0.20

TGP, dKL 2.80± 1.25 1.54± 0.50 1.86± 0.47 3.73± 1.38 1.56± 0.50 1.19± 0.46

TGP, dSPD 3.66± 0.70 2.86± 0.50 2.89± 0.51 2.94± 0.90 1.98± 0.52 1.43± 0.31

TGP, dlogSPD 3.88± 0.97 2.94± 0.47 2.99± 0.54 3.07± 0.66 2.09± 0.45 1.45± 0.29

TGP, dChordal 3.96± 0.87 3.12± 0.56 3.10± 0.43 2.99± 0.73 2.40± 0.53 1.51± 0.25

Participant 3 Thumb Index Little Wr. flex Wr. ext. Wr. sup.

RR 10.82± 0.71 9.58± 0.81 8.74± 0.84 4.61± 0.55 3.70± 0.26 3.01± 0.43

GP, dEucl 5.12± 0.97 4.66± 0.91 3.98± 0.74 2.80± 0.61 1.78± 0.22 1.91± 0.41

TGP, dKL 7.46± 2.13 6.89± 1.04 4.75± 0.93 3.92± 0.86 3.25± 0.75 2.71± 0.58

TGP, dSPD 5.07± 0.86 5.04± 0.92 4.10± 0.83 2.83± 0.50 1.68± 0.30 1.83± 0.47

TGP, dlogSPD 5.66± 1.13 4.78± 0.55 4.27± 0.62 3.35± 0.56 2.48± 0.38 1.81± 0.33

TGP, dChordal 5.45± 0.97 4.75± 0.62 4.20± 0.68 3.35± 0.47 2.75± 0.54 1.95± 0.39

Participant 6 Thumb Index Little Wr. flex Wr. ext. Wr. sup.

RR 4.34± 0.25 4.58± 0.29 3.15± 0.20 1.05± 0.06 1.30± 0.11 0.98± 0.06

GP, dEucl 1.90± 0.35 1.70± 0.35 1.23± 0.23 0.67± 0.24 0.53± 0.12 0.45± 0.10

TGP, dKL 1.27± 0.34 1.11± 0.45 0.69± 0.16 0.60± 0.91 0.43± 0.22 0.34± 0.14

TGP, dSPD 2.08± 0.42 2.06± 0.44 1.35± 0.21 0.66± 0.24 0.48± 0.11 0.47± 0.08

TGP, dlogSPD 2.31± 0.33 2.15± 0.44 1.75± 0.26 0.59± 0.16 0.68± 0.17 0.65± 0.07

TGP, dChordal 2.13± 0.32 2.12± 0.34 1.67± 0.21 0.61± 0.09 0.77± 0.16 0.62± 0.078
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