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Abstract— Myocontrol, that is control of prostheses using
bodily signals, has proved in the decades to be a surprisingly
hard problem for the scientific community of assistive and
rehabilitation robotics. In particular, traditional surface elec-
tromyography (sEMG) seems to be no longer enough to guar-
antee dexterity (i.e., control over several degrees of freedom)
and, most importantly, reliability. Multi-modal myocontrol
is concerned with the idea of using novel signal gathering
techniques as a replacement of, or alongside, sEMG, to provide
high-density and diverse signals to improve dexterity and make
the control more reliable.

In this paper we present an offline and online assessment
of multi-modal sEMG and force myography (FMG) targeted
at hand and wrist myocontrol. A total number of twenty
sEMG and FMG sensors were used simultaneously, in several
combined configurations, to predict opening/closing of the hand
and activation of two degrees of freedom of the wrist of
ten intact subjects. The analysis was targeted at determining
the optimal sensor combination and control parameters; the
experimental results indicate that sEMG sensors alone perform
worst, yielding a nRMSE of 9.1%, while mixing FMG and
sEMG or using FMG only reduces the nRMSE to 5.2− 6.6%.
To validate these results, we engaged the subject with median
performance in an online goal-reaching task. Analysis of this
further experiment reveals that the online behaviour is similar
to the offline one.

I. INTRODUCTION

Smooth, natural control of upper-limb prostheses (an in-
stance of myocontrol) is the paradigmatic simple problem
which looks simple from an abstract point of view and
turns out to be extremely hard in practice. Back in the
Fifties surface electromyography (sEMG), formerly a mus-
culoskeletal condition diagnostic technique, began to be used
in a two-sensors configuration to open and close a one-
degree-of-freedom (DOF) motorized gripper — actually, the
first self-powered hand prosthesis in history. Surprisingly,
this rudimentary form of control is today still unsurpassed,
although (multi-sensor) sEMG was targeted by control the-
orists and mathematicians soon after the pioneers’ era (an
early example can be found in [1]).

And yet, proper myocontrol (e.g., control of multi-fingered
prosthetic hands) is still by and large unsolved, the main
problem being unreliability. On top of this, upper-limb
prosthetic hardware is expensive, heavy, badly-looking and
clumsy: these are the reasons why self-powered prostheses
are so often rejected [2], [3], although better functionality
and control are highly desired characteristics of the ideal
upper-limb prosthesis in the population of patients [4], [5].
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Only one commercially available solution is known, namely
manufactured by COAPT Engineerings, which employs ma-
chine learning. In a word, proper myocontrol is a surprisingly
hard problem and twenty-five years of research have not
yet produced a reliable, dexterous, natural and clinically
accepted system, enabling upper-limb amputees control their
prostheses.

Among the ways to improve the situation [3], [6], [7],
multi-modal sensing from the human body is an interesting
choice. The idea is simple: to gather more information
from the surface of the amputee’s missing limb than sEMG
currently can. This can be enforced by using different kinds
of sensors as a substitute, as well as by coupling them
to sEMG. Of course one must take into account that the
tests used to prove or disprove the validity/feasibility of a
technique should resemble as much as possible the real-life
conditions in which the interface will be supposed to work
[8].

In this paper we focus upon one specific alternative tech-
nique, force myography (FMG, [9]), and perform an offline
and preliminary online analysis of the optimal combination
of FMG and sEMG, with the aim of simultaneous and
proportional (s/p) myocontrol of a prosthetic hand and two-
DOFs wrist. FMG uses pressure sensors to detect muscle
activity through the deformations induced on the stump,
contrary to sEMG which detects electrical fields generated
by said activity. FMG has potential to detect different infor-
mation with respect to sEMG [10], provides similar accuracy
and better-conditioned signals than sEMG [11], [12] and has
already been tested offline and online even on amputees [13];
but as far as we know, a study on the combination of FMG
and sEMG is still missing.

Ten intact subjects, fitted with ten sEMG plus ten FMG
sensors on the forearm have been engaged in a repetitive
trajectory-following task involving the opening/closing of the
hand, as well as flexion/extension and pronation/supination
of the wrist. Offline, we have tried several sEMG and
FMG combinations to predict such muscular activations.
Furthermore, the subject who obtained the median offline
accuracy was involved in an online version of the experiment,
and induced to reach specific target configurations of the
hand and wrist. Since the control machine was trained on
minimal and maximal values only, whereas the online test
involved intermediate activation levels too, the task was far
from easy.

If confirmed on a larger scale, our results would indicate
that specific combinations of sEMG and FMG sensors could
be used in real life to improve s/p myocontrol of hand and
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Fig. 1. Left: Schematic showing the arrangement of sensors to be placed on the subjects forearm; Right: image of a subject fitted with the wireless
data acquisition device. The sensor are connected by wires to the analog-to-digital converter (in the black box), which then transmits the digital signal via
Bluetooth to the PC.

wrist prostheses. This claim is further substantiated by the
fact that both the FMG and sEMG sensors we used are small,
lightweight and low-power, meaning that they could easily
be embedded in a prosthetic socket.

II. MATERIALS AND METHODS

The purpose of the study was to investigate the influence of
two factors on a combined sEMG and FMG based prosthetic
control. Namely these factors are the sensor placement on
the proximal end of the users forearm as well as different
methods of combining the two sensor types.

We were able to engage ten healthy subjects (2 of them
female, 26.9 ± 7.05 years) in this experiment. All subjects
received an oral and written description of the experiment
and signed a consent form after all questions were answered.
This experiment was approved by the work council of the
DLR and conducted in accordance with the Declaration of
Helsinki.

Connan et al. [14] developed a wireless data acquisition
device for the purpose of investigating multi-modal my-
ocontrol. The initial data analysis in [14] showed promising
results for a future use in prosthetic control.

A. Setup

Similar to [14], we fitted the subjects with two bracelets
equipped with sEMG and FMG sensors. However, we ar-
ranged the sensors differently. Each bracelet contained both,
sEMG and FMG sensors, in alternating order. A schematic
of the sensor placement can be found in Fig. 1 on the left
hand side and an image of a subject fitted with the device
can be found in Fig. 1 on the right hand side.

In total 20 sensors were placed on the forearm, ten sEMG
and ten FMG sensors. For further details about the sensors
we refer the interested reader to [14].

B. Experimental Protocol

The participants were asked to perform five different hand
and wrist actions, namely

• power grasp,
• wrist flexion,
• wrist extension,
• wrist supination and
• wrist pronation.

These five actions were performed five times each. The
users were asked to follow a visual stimulus indicating the
respective action.

For our investigations we used a well established regres-
sion based machine learning (ML) algorithm, namely Ridge
Regression with Random Fourier Features (RRRFF) [15]–
[17]. This ML method represents a finite-dimensional ap-
proximation of least squares Support Vector Regression. For
details about this approach we refer to the above mentioned
publications. However, we would like to mention two of the
advantages of this method. RRRFF allows for proportional
control and is bounded in space, which means that the
computation time for ML training does not depend on the
number of samples.

We performed a five-fold cross validation based on the
five repetitions mentioned before. To investigate the influence
of the placement we only used ten sensors at a time, five
sEMG and five FMG sensors. Three different arrangement
(or subsets) of sensors were investigated,

• only sensors from the distal bracelet (c1),
• only sensors from the proximal bracelet (c2) and
• an alternating mixture of both bracelets (c3).

Grey boxes in Fig. 1 highlight the third arrangement. All
three arrangement cover the full circumference of the fore-
arm. Furthermore, for all three cases the order of sensors

1365



is alternating. The only difference between those three ar-
rangement is a distal or proximal shift of the sensors. For
this analysis we used the so-called stacked approach. This
simple sensor mixture model concatenates the two sensors
types by simply stacking the signals one after the other in
the input vector

xst = [xsEMG1 · · ·xsEMG5 xFMG1 · · ·xFMG5]
T .

The second part of the analysis deals with the comparison
of different methods of mixing the two sensors types. For this
purpose we compared four different methods, of which two
are the two sensor types individually, the third is the above
mentioned stacked approach and the forth approach is a hier-
archical one, where each sensor type is trained individually
and the prediction of these two learning machines serves as
the input to a third learning machine combining said outputs.
This approach is called ensemble learning [18]. A schematic
of these approaches can be found in Fig. 2. For each of the
four approaches we used only ten of the 20 sensors in order
to have a fair comparison1.
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Fig. 2. Schematic representation showing the inputs and outputs of the
four sensor type mixing approaches (from left to right: only sEMG, only
FMG, stacked, ensemble)

The performance was evaluated using the normalised root
mean squared error (nRMSE). All calculations have been
performed in MathWorks computing environment MATLAB.
Both of the comparisons were statistically evaluated using
the open source software environment R [19]. We performed
a one-way repeated measures ANOVA with a level of sig-
nificance of α = 0.05. As a post-hoc test to determine the
individual interactions between the different arrangements
and approaches we performed the Tukey-test.

C. Validation

Furthermore, we performed an online trial of the sensor
mixture comparison to validate our findings. This was a sin-
gle subject case study. In order to have a fair representation
we chose the subject with the median performance in the
offline comparison. Said subject was asked to perform a
series of online goal-reaching tasks.

Herein the user first performed the same data acquisition
session as in the offline case before (five repetitions of five
hand and wrist actions), followed by a set of tasks where the
user had to reach a certain action based on a visual stimulus.
A task was considered successful, when the user could
maintain the desired action (within a tolerance of ±15% per

1When we used only one sensor type, we processed data from all ten
sensors of one type. When we mixed two sensor types, we processed five
sensors of each type.

DOF2) within a certain time (task length: tl = 15s) and for a
dedicated time (dwelling time: td = 1.5s). The performance
was evaluated using the success rate (SR = # successful tasks

# all tasks )
and the task completion time (TCT), which is the time it took
the user to complete a task successfully.

The difficulty here lies in the fact that we only train the
ML algorithm on full activation (100%) of each action and
on rest (no activation), while the tasks also require the user
to reach intermediate activations of 33% and 66%, which
were not explicitly trained. Since the ML method of choice
is a regression based algorithm, interpolation occurs for
intermediate values. This way of training a regression method
is an instance of a goal-directed on-off set of stimuli, and
has already been successfully used in literature [20], [21].

In total the user performed 120 tasks, two repetitions of
five different hand/wrist actions at three different activation
levels for four different mixing methods.

III. EXPERIMENTAL RESULTS

The investigation of the three different placements was
evaluated using the nRMSE. Fig. 3 depicts a boxplot of the
performance of all ten subjects.

0.05

0.10

0.15

0.20

c1 c2 c3
Configurations

nR
M

S
E

Fig. 3. Boxplot indicating the performance of the machine learning
algorithm for three different sensor arrangements based on the data of ten
subjects(nRMSEc1 = 0.0649 ± 0.0289 , nRMSEc2 = 0.0799 ± 0.049
and nRMSEc3 = 0.0624± 0.0262).

A one-way ANOVA was performed to evaluate the results
statistically. No significant difference between the three
configurations has been found (F (2, 18) = 1.33762, p =
0.2873). Pairwise interactions have been determined using
the Tukey-test, p = 0.397 for c1-c2, p = 0.975 for c1-c3
and p = 0.285 for c2-c3. For convenience, c1 refers to the
proximal bracelet, c2 refers to the distal bracelet and c3 refers
to the mixed configuration highlighted in grey in Fig. 1 on
the left hand side.

Furthermore, the results of the comparison of the mixing
approaches can be found in Fig. 4. Again, we used the

2This leads to a target size of less than 1% of the working space
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nRMSE to evaluate the performance for each of the ten
subjects.
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Fig. 4. Boxplot indicating the performance of the mixing approaches based
on sEMG only (nRMSE = 0.0912 ± 0.0434), FMG only (nRMSE =
0.0526 ± 0.0138), ensemble (nRMSE = 0.0575 ± 0.0314) and stacked
(nRMSE = 0.0655± 0.0306) (from left to right)

This comparison was also statistically evaluated using a
one-way ANOVA. Significant difference between the four
approaches has been found (F (3, 27) = 7.05105, p =
0.0012). The post-hoc Tukey-test showed that sEMG only
is significantly worse than any other of the four approaches
with p between < 0.001 and 0.00784. The remaining three
approaches show no significant difference between one an-
other with p between 0.693 and 0.997.

To improve the performance of the RRRFF algorithm we
performed a hyperparameter (σ) optimisation. This was done
for each of the three different input signal types, namely
sEMG sensors, FMG sensors and for the output of the lower
level RRRFF machines in the ensemble approach, see Fig.
2. The optimal values across subjects are σsEMG = 0.7,
σFMG = 0.5 and σens = 0.15. These values were used in the
online case. For the offline analysis the individual optimal
values of each subject were used.

The validation involving the median subject of the previ-
ous comparison was evaluated using the success rate (SR)
and the task completion time (TCT). The result are depicted
in Fig. 5.

Since we only engaged one subject in this validation, we
didn’t perform a statistical evaluation.

IV. DISCUSSION AND CONCLUSIONS

A. Discussion

Different sensor configurations yielded no significantly
different performances; given this result, we could simplify
the experiment (no sensor donning/doffing was required)
and acquire data during one session only with 20 sensors,
instead of three3, keeping unwanted experimental variance
to a minimum. As opposed to this, the results of the method
comparison are very interesting. A better performance by the

3Ensemble and stacked use the same sensor configuration.
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Fig. 5. Results of the online comparison between the four mixing
approaches in terms of success rate (SR) on the right hand side and task
completion time (TCT) on the left hand side.

multi-modal approach was expected; instead, it is surprising
how much better FMG only performed, compared to the
state-of-the-art sEMG. The improvement from sEMG only
(nRMSE = 0.0912 ± 0.0434) to FMG only (nRMSE =
0.0526±0.0138) is significant. A further interesting finding is
that the mixture of sensors did not result in an improvement
in performance compared to FMG only. The difference
between stacked (nRMSE = 0.0655 ± 0.0306), ensemble
(nRMSE = 0.0575 ± 0.0314) and FMG only was not
significant, see Fig. 4.

The results of the single-subject online validation show a
similar behaviour. FMG only shows the best performance
(SR of 83.3% and a TCT of 4.33s) with stacked at a
comparable level (SR of 73.33% and a TCT of 4.27s),
while sEMG only shows a rather poor performance (SR
of 33.3% and a TCT of 6.38s). One particular difference,
however, is evident: whereas offline ensemble performed on
a similar level as FMG only and stacked, when going online
its performance (SR of 26.67% and a TCT of 5.40s) is even
lower than that of sEMG only. However, we have to keep in
mind that these results originate from only one subject and
shall therefore serve as an orientation rather than definitive
proof.

B. Conclusion

The two experiments we report about in this paper rep-
resent an initial exploration in the direction of improving
myocontrol via the combination of different sensor tech-
niques. Fusion of these different sensor information is one
of the main ways ahead [8], [12], and FMG alone has
already been proved effective in lab-controlled conditions.
In this specific case, we have tested several combinations
of sEMG/FMG sensors to check whether one can get better
results by using them together rather than separately. Their
availability, light-weight and low power consumption makes
such a combination feasible, at least from the point of view
of clinical prosthetics.

We need to remark that the approach was tested online
on one subject only; an online test on a wider population
is required to better determine whether one sEMG/FMG

1367



combination, together with a specific machine learning ap-
proach, really improves the controllability of the hand/wrist.
This is the subject of our immediate future work. Further
future research revolves the general issue of s/p control of
hand and wrist. In particular, the simultaneous activation of
more DOFs, as well as the suppression of the interaction
among them must be taken care of. We believe that a tighter
integration of sEMG and FMG will bring us closer to an
answer to the question.
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