

Reliable optimization of the PEMFC stack efficiency for automotive application

J. Mitzel^{1*}, P. Piela², M. Schulze¹, K.A. Friedrich¹

¹ German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany *: Jens.Mitzel@dlr.de

² Mościcki Industrial Chemistry Research Institute, Rydygiera 8, 01-793 Warsaw, Poland

Outline

- Common use of stack efficiency
- Redefinition of stack efficiency
- Stack performance optimization method
- Optimization results of stack efficiency
- Conclusion

Conclusion

- Redefinition of fuel cell efficiency on the stack level:
 - ➤ New figure of merit including media conditioning
 - ➤ Considering conditions in the system
- Stack performance optimization:
 - ➤ Use of Nelder-Mead algorithm
 - ➤ Different optimization functions (and combinations)
 - Optimized operating conditions depend on load level
 - ➤ Parameter optimization for look-up tables etc.

Thank you very much for your attention!

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant n° 303445.

