StackTest - Development of PEMFC Stack Reference Test Procedures for Industry

Jens Mitzel

Second Act - Public Workshop on Durability Issues in PEMFC and DMFC Stuttgart, 30.1.17
General approach of Stack-Test

11 partners:

<table>
<thead>
<tr>
<th>Company</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSA Peugeot Citroën</td>
<td>Automotive</td>
</tr>
<tr>
<td>Powercell Sweden AB</td>
<td>APU</td>
</tr>
<tr>
<td>Paxitech SAS</td>
<td>Portable</td>
</tr>
<tr>
<td>IRD Fuel Cells A/S</td>
<td>micro-chp stack developer</td>
</tr>
<tr>
<td>Dantherm Power A/S</td>
<td>Backup and micro-chp</td>
</tr>
<tr>
<td>AREVA AS</td>
<td>Backup</td>
</tr>
<tr>
<td>Proton Motor Fuel cell GmbH</td>
<td>Transport</td>
</tr>
<tr>
<td>Schunk Bahn- und Industrietechnik GmbH</td>
<td>Transport</td>
</tr>
<tr>
<td>inhouse engineering GmbH</td>
<td>micro-chp stack developer</td>
</tr>
<tr>
<td>Daimler</td>
<td>Automotive</td>
</tr>
<tr>
<td>NuCellSys GmbH</td>
<td>Automotive</td>
</tr>
<tr>
<td>BAXI INNOTECH GmbH</td>
<td>micro-chp system developer</td>
</tr>
</tbody>
</table>
General approach of Stack-Test

3 technical work packages regarding:
- functional and performance testing
- endurance testing
- safety and environment testing

All test procedures acquirable: stacktest.zsw-bw.de
Conclusion – Functional and Performance Tests

• Complex TIP interaction for stack testing demands definition of critical TOCs, sensor positions and procedures

• TMs defined and validated for TIPs influencing the stack performance:
 - All test procedures for performance characterization covered
 - Performance influenced by:
 - Test equipment (e.g., humidification)
 - Sensor positions for parameter control
 - Direction of parameter variation

• TMs can be combined to different TPs:
 - Sequential approach
 - Nested approach

• Representative test operating conditions for all applications
Conclusion – Durability and Endurance Tests

• Different procedures for 3 types of degradation tests:
 ➢ Constant load
 ➢ Load cycling (different cycles defined)
 ➢ Start/Stop cycling

• High impact of test parameter and test bench dynamic on test results:
 ➢ Humidification
 ➢ Reactant supply (pilot time)
 ➢ Electrical load (current transients)

• Definition for determination of degradation rate required

• Impact of test blocks and performance recovery procedures on test results
Acknowledgement

Stack-Test Partners:

- P. Piela, W. Tokarz (ICRI)
- A. Kabza, J. Hunger, L. Jörissen (ZSW)
- E.R. Nielsen, F.B. Nygaard, S. Veltzé (DTU)
- T. Jungmann, U. Groos (Fraunhofer ISE)
- S. Rosini, F. Micoud (CEA)
- T. Malkow, G. de Marco, G. Tsotridis (JRC-IET)
- S.S. Araya, S.K. Kær (AAU)
- I. Alecha (CIDETEC)
- B. Guicherd (SymbioFCell)
- L. Topal, C. Harms, A. Dyck, F. Köhrmann (Next Energy)
Thank you very much for your attention!

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant n° 303445.

All TM and TP documents available → stacktest.zsw-bw.de