
Politecnico di Torino

Facoltà di Ingegneria

Corso di laurea specialistica in Ingegneria Informatica

Tesi di Laurea

3D scientific visualization of wake vortices using the game

engine Unity3D

Candidate: Matteo Franchini

Relatore: Prof. Andrea Bottino

Supervisore: Ing. Wito Engelke

2

Ringraziamenti

Alla mia famiglia, che nei momenti di bisogno mi ha aiutato ed ha reso possibile più

di chiunque altro questo obiettivo.

Ai miei amici, che anche inconsapevolmente mi hanno sempre spronato ad andare

avanti. Siete stati la medicina contro la mia innata pigrizia

3

Index

1 ABSTRACT ... 4

2 INTRODUCTION ... 5

2.1 WAKE VORTICES ISSUE .. 5

2.2 P2P MODEL AND VISUAL REPRESENTATION ... 6

2.3 TESTING UNITY3D .. 7

2.4 GOALS ... 7

3 BACKGROUND.. 8

3.1 AERODYNAMIC EFFECT OF THE WINGTIP VORTICES ... 8

3.2 P2P PROGRAM... 10

3.3 GAME ENGINES AND UNITY 3D ... 12

3.4 UNITY 3D IN SCIENTIFIC VISUALIZATION .. 13

4 DEVELOPMENT.. 14

4.1 3D WORLD SCENARIO .. 14

4.2 MODELING PROCESS .. 16

4.3 STRUCTURE AND WORKFLOW .. 18

4.4 ANIMATION SCRIPTS .. 20

4.5 NETWORKING .. 27

5 USE CASE ... 28

5.1 APPLICATION SET UP ... 28

5.2 USER INTERFACE AND SCREENSHOTS .. 30

5.3 DATA CONGRUENCE VALIDATION ... 31

6 RESULTS AND CONCLUSIONS ... 34

6.1 RESULTS ACCORDING TO GOALS.. 34

6.2 CAN UNITY3D USED FOR SCIENTIFIC VISUALIZATION?.. 35

6.3 FUTURE DEVELOPMENTS .. 35

4

1 Abstract

As a consequence of lift, aircraft's wings generate a pair of counter rotating wake

vortices that represent a serious risk for following airplanes. Nowadays separation

time standards between consecutive aircrafts, significantly influence the air traffic

control, often leading to delays and congestions, and consequentially to a drop of the

airport capacity. Having a 3D representation of this aerodynamic effect based on a

real time vortex prediction model, could be useful to improve the management of the

air traffic control in a specified airport, without loosing any degree of security.

Thanks to the big development of the gaming industry, high performing graphic

hardware has been produced and, short time later, different companies decided to

implement software tools to exploit as much as they could this new type of

standalone graphic cards. In this way different Game Engines started to arouse, born

with the purpose of helping programmers in the process of game developing.

However considered the great potential of game engines, some researchers started

testing if these frameworks could be used not just for gaming but also to develop

scientific simulations. In our project we wanted to do exactly this, using a specific

game engine, called Unity3D, to create the graphic visualization of the wake

vortices, basing the simulation on real data developed by a mathematical model.

 In the following chapters we will discuss in details why we chose Unity3D, how we

implemented the simulation, what other tools we used, what results we reached and

which development prospects our application can have.

5

2 Introduction

2.1 Wake vortices issue

As we stated in the abstract, the wake vortices can represent a serious problem for

incoming aircrafts. Flying into this turbulence path can lead to unpredictable

behavior of the airplane with serious consequential safety issues. Wake turbulence is

caused by the higher-pressure air on the underside of an aircraft's wing mixing with

the lower-pressure area on its upper side. [1]

Current wake vortices separation standards, follow over-conservative separation

times that lead to a significant decrease of the capacity of the airport. (Figure 2.1)

Figure 2.1 [2]

Wake vortices are especially oppressive in proximity of airports runaways where the

nearby presence of landing airplanes, together with close infrastructure and aircraft

circling overhead, makes these strong whirlwind of turbulence a considerable safety

issue. For example in the United States the Federal Aviation Administration, has

strict rules which avoid landing small aircrafts to be closer than six miles to a large

plane, and large jets to be closer than four miles during landings, even if

improvements have been made to vary these separation distances according to certain

circumstances. During the years, wake vortices have been the topic of research

projects conducted by airport and aerospace centers. One of them is the European

Commission's ATC-WAKE project, from 2002 to 2005, which worked to improve

airport planning with the goal to obtain variable aircraft separation plans and trim

valuable minutes from the schedules [1]. The National Aeronautic Space and

Administration (NASA) has been studying for many years the wake vortices. In the

recent years, the researches around the wingtip vortices has moved towards the

development of mathematical models to create a bigger and more complex view of

6

vortices and their interaction with atmospheric conditions. In fact, in order to give a

detailed graphic representation of this effect, we needed a reliable tool that could

provide us proper data suitable to develop the visualization. All these kind of

information are developed by a mathematical model called "Probabilistic Two-Phase

Wake Vortex Decay and Transport Model" or P2P.

2.2 P2P model and visual representation

The P2P (Probabilistic two phase wake vortex decay and transport model) is a

mathematical model that receives some specific data in input and develops

confidence intervals of the position and intensity of the vortex at a certain time-step

as output. It accounts for the effects of wind, turbulence, stable stratification, and

ground proximity. "The model equations are derived from the analytical solution of

the spatiotemporal circulation evolution of the decaying potential vortex and are

adapted to wake vortex behaviour as observed in large-eddy simulations". [3] Wake

vortex degeneration happens in two different phases, a first diffusion phase followed

by quick degeneration phase following a non-linear function of the vortex intensity.

Probabilistic components of the P2P model account for deviations from deterministic

vortex behaviour naturally generated by the stochastic nature of turbulence, vortex

instabilities, and deformations, and also uncertainties coming from environmental

and aircraft parameters. In order to set a specified degree of probability, the model

architecture allows you to always adjust the decay parameters and uncertainty

allowances, considering the growing amount of data. [3] The position and strength of

the vortices are taken as input from our application, called 3D Virtual Airport, in

order to give, as final output the graphic 3D simulation. (Figure 1.2)

7

Figure 2.2

The 3D virtual Airport has been developed almost entirely using the game engine

Unity3D for what concern the data visualization part. All the calculation of vortex

position and intensity are generated by the P2P model.

2.3 Testing Unity3D

Visualization of scientific data can be helpful for the interpretation of results. We

developed here a tool to show in particular how the wingtip vortices progress in time

and we tried to give an impactful visual representation of it. To reach our scope, we

used the high level modern game engine Unity3D, in order to understand if this

powerful tool can be used in scientific applications and not just to develop games.

Recently the computer gaming industry has grown up exponentially and big amount

of money have been invested in the development of game engine frameworks. In

contrast to their development costs, the price of final tool is very low if we compare

it to professional 3D simulation software. [4] For these reasons we decided to use a

game engine to develop our 3D Virtual Airport. Later on we will discuss more in

details why we chose exactly Unity 3D.

2.4 Goals

Considering all these premises our main goal was to build from scratch a virtual

airport in the 3D world, and create some objects to use as primitive tassels to

represent the wake vortices on the screen. Once all the scenario and the primitives

8

are set up and ready, we wanted to exploit the tools we created to represent all the

data that the P2P model send in output.

3 Background

3.1 Aerodynamic effect of the wingtip vortices

The wake vortices (wingtip vortices) are patterns of rotating air, or any other fluid,

generated behind the tip of a wing and both the wings release from their tip a

different wake vortex. It is also important to understand that wingtip vortices are

inevitable because they are the natural consequence of the Lift generation. [5] There

are some design choices that can be taken in order to reduce this induced drag,

picking a specific wing geometry for example influence significantly the drag

generated. Wingtip vortices form the primary component of wake turbulence and it is

crucial understanding this particular phenomenon. To have better knowledge of

wingtip vortices we show in the following pictures how they appears to our eyes in

two specific situations. (Figure 3.1, Figure 3.2)

 [6]

Figure 3.1

https://en.wikipedia.org/wiki/Wake_turbulence

9

 [7]

Figure 3.2

We said that wingtip vortices occur when a wing generate a force called Lift. What

happens in details is that air from below the wing, is drawn around the wingtip into

the region above the wing by the lower pressure, causing a vortex to trail from each

wingtip. Wake turbulence exists in the vortex flow behind the wing and its strength is

determined primarily by the weight and airspeed of the aircraft. The fluid movement

is caused by the natural tendency of air trying to "compensate" sliding from high

pressure zones to lower pressure zones as it's shown in figure 3.3.

 [8]Figure 3.3

It is not interest of this thesis to explain the physic laws behind wingtip vortices,

considering our goal it's sufficient to have an idea of what they are and why they

represent a problem. All the data are provided by the P2P model, we use them as an

input to create the 3D simulation.

10

3.2 P2P Program

In the introduction section of this thesis we described briefly what is the P2P model.

Since it comprehends many difficult aerodynamic equations, we won't go deep into

the details of the model itself, but we will focus more on what kind of data the P2P

program produce in order to understand how the 3D Virtual Airport exploit them.

P2P model has been developed by Dr. Ing. Frank Holzäpfel from the DLR, German

Aerospace Research Center in 2003 and it differentiates from the previous wake

vortices models thanks to the probabilistic component. In fact P2P accounts for the

effect of wind, turbulence, stable stratification and ground proximity, but it consider

as well probabilistic aspects such as:

 Deviation from deterministic vortex behavior caused by the stochastic nature

of turbulence

 Vortex instabilities and deformations

 Uncertainties and fluctuations that arise from environment and aircraft

parameters

Considering all these aspects it develops confidence intervals of wingtip vortices

intensity and position evolving according to time. The P2P has been implemented in

Fortran and to understand more how it works, we can see in figure 3.4 the program

structure and workflow

11

Figure 3.4 [9]

The program takes as input the following files:

 cases.dat

 lidar.dat

 meteo.dat

 ac_init.dat

 ac.dat

12

 ac_parmeters.dat

All of them contain data and information necessary to the P2P model to generate the

wake vortices prevision. Going to deep inside the content of these files fall outside

the purposes of this thesis. The output files are in the format

"yymmdd_hhmmss_UTC_xxx.dat" and contain the coordinates of the vortex position

and the circulation parameter of the vortex itself, all related to a certain time.

3.3 Game engines and Unity 3D

The word "game engine" started arousing in the middle of the 90's with the first

person shooter game "Doom" developed by "Id Software". This game was designed

with a marked separation between the software core and other components like the

art material, the world scenario and the rules of game itself. The importance of this

separation line, became more clear when developers started producing new games

modifying just the art assets such as the 3D world, characters, weapons, structures,

and leaving the engine core software almost unmodified. This is briefly how the

development and success of game engines began. Nowadays, game developers can

create their own game engine framework and reuse significant part of it to develop

and produce new games. This process brings to a remarkable save of time and

money. Unity3D is of the multitude game engines available on the market. It is a

multiplatform game engine developed by Unity Technologies in 2005 when the first

release came out [10]. It supports both 2D and 3D graphics and the scripting

languages used are C# and Javascript, and targets graphic API libraries like:

 Direct3D and Vulcan for Windows and Xbox

 OpenGL for Linux, Mac and Windows

 OpenGLES for Android and iOS

For what concern the 3D development, Unity supports different compression method

for textures and it gives support for normal maps, ambient occlusion and reflection

maps. One of the major strength point of Unity is the support to create builds for

many platforms like: Android, Android TV, Facebook Gameroom, Fire OS, Gear

VR, Google Cardboard, Google Daydream, HTC Vive, iOS, Linux, macOS,

Microsoft Hololens, Nintendo 3DS line,
[11][12][13]

 Nintendo Switch,
[14]

Oculus Rift,

PlayStation 4, PlayStation Vita, PlayStation VR, Samsung Smart TV, Tizen, tvOS,

https://en.wikipedia.org/wiki/Android_%28operating_system%29
https://en.wikipedia.org/wiki/Android_TV
https://en.wikipedia.org/w/index.php?title=Facebook_Gameroom&action=edit&redlink=1
https://en.wikipedia.org/wiki/Fire_OS
https://en.wikipedia.org/wiki/Gear_VR
https://en.wikipedia.org/wiki/Gear_VR
https://en.wikipedia.org/wiki/Google_Cardboard
https://en.wikipedia.org/wiki/Google_Daydream
https://en.wikipedia.org/wiki/HTC_Vive
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Microsoft_Hololens
https://en.wikipedia.org/wiki/Nintendo_3DS_line
https://en.wikipedia.org/wiki/Unity_%28game_engine%29#cite_note-UnityTech-announces-NN3DSsupport-11
https://en.wikipedia.org/wiki/Unity_%28game_engine%29#cite_note-UnityTech-announces-NN3DSsupport-11
https://en.wikipedia.org/wiki/Unity_%28game_engine%29#cite_note-unity-europe-announces-new-3ds-details-13
https://en.wikipedia.org/wiki/Nintendo_Switch
https://en.wikipedia.org/wiki/Unity_%28game_engine%29#cite_note-unity-devs-shine-on-switch-14
https://en.wikipedia.org/wiki/Unity_%28game_engine%29#cite_note-unity-devs-shine-on-switch-14
https://en.wikipedia.org/wiki/PlayStation_4
https://en.wikipedia.org/wiki/PlayStation_Vita
https://en.wikipedia.org/wiki/PlayStation_VR
https://en.wikipedia.org/wiki/Samsung_Smart_TV
https://en.wikipedia.org/wiki/Tizen
https://en.wikipedia.org/wiki/TvOS

13

Wii, Wii U, Windows, Windows Phone, Windows Store, WebGL, Xbox 360, and

Xbox One [10]

3.4 Unity 3D in scientific visualization

So far we analyzed how the game engines arose and why they had such a big

success. Their first, and at the beginning the only, purpose was obviously to support

developers in games production, making their job faster and easier. However some

other important aspects need to be considered. "Effective visualization is the bridge

between quantitative information and human intuition" [11] so, having tools able to

easily represent complex scientific information, could be of great use in many

different fields and could start a new era in scientific visualization. From these

premises researchers started investigating if it could be possible to exploit game

engines functionalities to obtain a nice, and useful, visualization of their projects.

Unity3D itself crossed this path and it has been object of investigation in different

scientific area with good results. In 2013 Marc Baaden's research team of the

institute of CNRS in Paris, developed an application called "UnityMol", which is a

molecular editor viewer and prototyping platform [12] implemented in C# using

Unity3D. This application is able to read Protein Data Bank files, Cytoscape

networks, OpenDX potential maps and Wavefront OBJ meshes. [12] In figure 3.5 we

can see a sample of how UnityMol visualization appears.

Figure 3.5

https://en.wikipedia.org/wiki/Wii
https://en.wikipedia.org/wiki/Wii_U
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Windows_Phone
https://en.wikipedia.org/wiki/Windows_Store
https://en.wikipedia.org/wiki/WebGL
https://en.wikipedia.org/wiki/Xbox_360
https://en.wikipedia.org/wiki/Xbox_One
http://www.rcsb.org/pdb/home/home.do
http://www.cytoscape.org/

14

At California institute of technology in 2013 they started investigating about using

Unity3D in full immersive virtual word to solve "Big" data [13]. According to Alex

Cioc article, the prototype developed can render 100.000 data objects in about 15

seconds on a mid-2011 Macbook Air.

Considering these premises we thought that starting a project like the visualization of

wake vortices, using Unity3D as graphic tool, could lead us to good results.

4 Development

In this chapter of the thesis we will analyze in details the whole developing process

that led us to 3D Virtual Airport, starting from zero until the final application.

4.1 3D world scenario

The first step to develop our scientific simulation was to give birth to the 3D world

scenario, where the visualization had to take place. To reach this goal we could have

used pre-made free to use meshes and save lot of time, but we considered it a bad

option since we wouldn't had control on the number of polygons that compose the

3D models. In real-time application, low latency response is crucial, and this can be

reached (together with other considerations) keeping the meshes as much "light" as

you can. For this reason we created all the 3D models by ourselves focusing our

attention on having 5000 polygons per model maximum, a good trade between low

latency and stressing a bit the Unity3D potential. To create the meshes we chose to

use a 3D modeling software called Blender for different reasons that we will briefly

discuss.

 Open source: like many free software, Blender has a really active

community ready to help you when you are facing a problem. And with a

high probability the issue you have has already been faced by someone else

and you can find the solution really quickly.

 Previous knowledge: for different university exams I used Blender and I was

already confident with tool's shortcuts. This was obviously the most

important reason that brought us choosing this software.

15

 Good integration with unity: Blender is perfectly compatible with unity 3D

and the integration of the models is easy and fast.

 Powerful tool: Last but don't the least, Blender is a really powerful tool with

many functionalities that made it suitable for our purpose.

Once all the model were ready the second actor, Unity3D, comes into play, and it is

fundamental to understand. why we chose this specific game engines out of the

multitude of products available on the market.

 Not just for gaming: Unity has already been used to develop scientific

visualization and it has already partially proved that it can be useful for these

applications.

 Multi-platform: This an amazing pro that makes Unity formidable. Once

you create your world and finish the application, you can build the project to

execute it in many different platform like Windows, Linux, Android, IOS,

Sony Playstation, Xbox, Web application, just to name some.

 Third party devices: It has a good integration with external devices like

Oculus Rift and Kinect

 Integration with Blender: It integrates easily with Blender, in fact the 3D

model created using Blender are recognized by Unity just pasting them in a

specific folder inside our project.

 Active community: More than Blender, Unity has a vast community and

tutorials that are really helpful during your developing process

 Asset store: Within the unity environment there is an Asset store where you

can buy, or download for free depending on what you need, premade objects

suitable for your project.

 IDE: The last important aspect that we considered is that Unity has a really

nice and user friendly environment. The cooperation between the editor and

the scripting side is handy and not too hard to learn for beginners.

16

Figure 4.1

Exploiting the cooperation between these tools we have been able to reach our goals

and create the 3D Virtual Airport.

4.2 Modeling process

Creating the scenario for the simulation took time and effort. However it was crucial

to have a solid base to build on the scientific visualization. The first step was to

model all the 3D Objects that will take part to the simulation using, as we already

discussed in the previous paragraph, Blender. We started building the landing strip of

our virtual airport followed by basic structures like airplanes, hangars, control tower,

to make the scenario looking like a real airport.

Figures 4.2 (Mesh modeling samples)

Standard techniques have been used to design the meshes like extrusions, avoid

unconnected faces and mirroring. All the meshes are conceived as much low

polygons as possible without losing photo-realism. The second part was the texturing

phase. Good texturing is essential to have a nice looking scenario, for this reason we

applied for each one of the model in the scene a double layer texture: a diffuse

17

texture plus a normal map texture. Diffuse textures are simple images that we attach

as wallpaper to the mesh and they look flat unrealistic if we use just them standalone.

Figure 4.3 (Diffuse texture sample)

Normal maps instead are not just simple images. They are represented using the

RGB format (Figure4.4), but they give information about how the light will be

reflected by the mesh. With this method we can reach a realistic effect without

increasing the number of polygons that compose the mesh (Figure 4.5)

Figure 4.4 (Normal map sample)

Figure 4.5

The third step was to create the terrain of the scenario and the integration of the

objects we designed into the Unity3D world. The terrain has been created all in unity

directly because the editor contains specific and very useful tools for terrains and

lands design. For what concerns the integration of all we had to import the models in

Unity and link all the textures we used in order to allow Unity to recognize them and

tell which kind of texture it is. Once all the static objects were set in the right

18

position in the 3D space, we saved the configuration and, after also the light were set,

we started the process of "lights baking". This mechanism is really useful and

consists in calculating all the shadows cast by the stationary items, avoiding to

calculate them at real time, saving precious time. The final result can be seen in

Figure 4.6

Figure 4.6

4.3 Structure and workflow

Virtual 3D Airport has a linear structure designed to be scalable imagining future

developments that the application could have. It consists in five actors cooperating

together to give birth to the simulation. In figure 4.7 are represented these five

pilasters and the data flow from the beginning until the graphic output.

Figure 4.7

19

The objects in this picture represent objects in Unity. To give a logical behavior and

to make them "do something", we must attach scripts to them. In the scripts we code

the laws that govern that specific object. Here we have two different type of items:

 Standard object

 Represented as light blue cylinders. They are unique in the scene

 Prefabs

 Represented as red cubes. They are items that appear many times inside a

 scene. A typical example of prefab can be a bullet inside a shooter game. You

 create the object one time as a prefab, and you can re-use as many times you

 want.

The DataManager had been designed as a standard item and its role is to read the

output file created by the P2P program, convert the data in a specific format

comprehensible by the TimeController.

The TimeController reads the position and the intensity data of the wingtip vortices

and assigns the values to the corresponding time-step in order to have, for each step

of time, an exact value of the position in the 3D space and an exact value of the

intensity of the vortex.

The Timelines represents the vortices, one for each wing. They evolve during time

according to the data received from the P2P program. Figure 4.8 shows an example

of the timelines.

Figure 4.8

The Timestep is the basic tassel that compose the Timeline. Each one of them

represent the intensity and position of the vortex at that exact time. It has been

designed to be able to represent different degrees of information. It has two

20

independent lines, one horizontal and other vertical, that form a kind of "+" symbol.

Around it there is a ring that can vary its radius and thickness, and in the end the

Timestep has a color that represent in our case the strength of the vortex (Figure 4.9)

With all these possibilities the timestep can represent five dimensions of information,

but for our purposes we will just represent intensity of the wake vortices and how it

decays over time.

Figure 4.9

4.4 Animation scripts

We already mentioned that in Unity to animate and give some logic to a certain

object, you need to attach a script to that item. Scripts can be written in two different

languages; C# or Javascript. We chose to code the script in C# because both me and

my supervisor (Dipl. Ing. Wito Engelke), are more confident with it respect to

Javascript. In this paragraph we will look in details all the scripts that compose the

application 3D Virtual Airport

DataReader Script

It is the responsible of reading the output file of the P2P program and store the

information in order to be used by the TimeController script.

21

In this snapshot of code we can see the fields and methods of the DataReader script.

The two private fields "trajec" and "complete_data" represent the two different input

formats that the P2P program can send as output to 3D Virtual Airport, which is able

to read both of them without any issue. So depending on the input, the information

about the vortices are stored in the corresponding buffer.

The function "ReadFile" recognize which input it's arriving and read the whole file

saving all the data into the list. Each element of the list is an array of float which

corresponds to one line of the input file.

Figure 4.10

Considering the file shown in Figure 4.10 for example, the first element of the list

will contain an array composed by the values "4.54, -7.34, 16.08, 21.32, 158.00,

158.00". In order these values represent:

 Time

22

 Y position of the vortex released by the left wing (predicted by P2P model)

 Y position of the vortex released by the right wing (predicted by P2P model)

 Z position of the vortex released by the left wing (predicted by P2P model)

 Z position of the vortex released by the right wing (predicted by P2P model)

 Intensity (circulation) of the vortex released by the left wing (predicted by

P2P model)

 Intensity (circulation) of the vortex released by the right wing (predicted by

P2P model)

all the other values comes from the Lidar measurements and are not taken in account

by 3D Virtual Airport. Here is very important to understand to what coordinates

system these Z and Y values refer to. (Figure 4.11)

Figure 4.11

23

P2P Script

24

In this snapshot we see all the private fields and the methods implemented in the P2P

script attached to the TimeController object. In the "start" section all the values read

by the DataManager are initialized. But what does it mean? It means that all the

values represented of interest represented in Figure 4.10 are normalized in between a

the range [0-1] thanks to the function "normalizeValues". Then the method

"initializeValues" takes the first two rows of values and applies the function

"findLerpsSteps" to the first two sets of values corresponding to the first two time

steps. The function "findLerpsSteps" applies a linear interpolation between the

values to obtain a single value every 0.5 seconds

The function FixedUpdate is part of the unity framework and it is called every fixed

framerate frame. Inside this method when the timestep correspond to the 0.5 seconds

interval, a new tassel of the vortex timeline is added and the whole timeline is

refreshed. In the end the function "approximateTimestep" exploit the method

"isClose" to round the time values to decimal. All the other functions are just for

support and not meaningful to comprehend how 3D Virtual Airport works.

25

Timeline Script

This script is quite simple despite the number of functions that implements. It simply

reacts to any change that happens in the Timeline, such as increase or decrease of the

Timestep number, or change of the Circulation of the vortex. The function

"ChangeOccured" works as a monitor that triggers the method "TimestepUpdate"

26

just when there is need to refresh the Timeline. The "TimestepUpdate" scan the

whole timeline and change the value of each single timestep as required. All this we

discussed is obviously valid for both the objects TimelineLeft and TimelineRight

since they both have a Timeline script attached.

Timestep Script

This script allows to modify the properties of the single timestep. It is always called

automatically buy upper level scripts.

27

4.5 Networking

When the application was finished and ready to run, me and my supervisor Wito

Engelke, decided to do another step forward questioning the possibility to make 3D

Virtual Airport run on a Local Area Network. This idea bumped in our minds

because we wanted to see our simulation running on the Powerwall screen of the

virtual reality laboratory in the DLR (where I developed the thesis). The Powerwall

configuration is shown in figure 4.12.

Figure 4.12

 So to make the three different instances of the application synchronizing and

exchange information, we had to implement a NetworkManager object in Unity able

to take care of all this aspects. To keep things initially simple we chose to have a

"light" scene that didn't include the vortices simulation avoiding possible network

28

delays. Using the premade NetworkManager tool of unity we just needed to attach to

it a script to create a basic GUI and the application was ready. We tested it using

three different machines and three different screens with good results. In figure 4.13

and 4.14 we can see first the application GUI setup, in the second the application

running on three windows on single localhost machine.

Figure 4.13

Figure 4.14

5 Use case

5.1 Application set up

Virtual 3D Airport runs inside the Unity editor, it hasn't been built to be execute in

standalone mode yet. In order to run the simulation some set up steps must be

performed to ensure the expected result. The first thing is to pass to the DataManager

the output file of the P2P program. To do this, the mentioned file has to be located in

the "Data" folder which is inside the default Unity project location "Assets" as we

can see in Figure 5.1.

29

Figure 5.1

Then simply the file can be dragged and dropped inside the designed box area of our

DataManager item (Figure 5.2)

Figure 5.2

It is important that the filename corresponds to one of the two names that the P2P

program generates as output. So the accepted filename formats are "TRAJEC.dat" or

"yymmdd_hhmmss_UTC_xxx.dat" where the first six characters correspond to the

date, the second six to the time and the last three can be random.

The second step is to configure the TimeController. We already explained that the

TimeController item has the P2P script attached and what and all its functionalities.

To do its job this item needs to know three things:

 Who is the Right Vortex

 Who is the Left Vortex

 Who is the aircraft that produce the wingtip vortices

To retrieve all these information we need to drag and drop in the TimeController

boxes the corresponding items as it is shown in Figure 5.3.

30

Figure 5.3

The last operation to perform is on both the Timeline objects and it is again a drag and drop

action to set the reference of who is the airplane as we just did for the TimeController. Once

all these simple steps are done the simulation is ready to run showing how the vortices

evolves during time.

5.2 User interface and screenshots

In this section we will see how the user interface looks like and some screenshot of

the simulation running will be shown. Let's start with an overview of the Unity editor

in the context of 3D Virtual Airport (Figure 5.4).

Figure 5.4

In the Hierarchy tab there is the list of all the objects (standard or prefabs), that

compose the world scenario. The items can have a parent-child link that involves any

geometric transformations affecting the parent, to be reflected on the child too. In 3D

Virtual Airport an example is the relation between the Timeline item and the

Timestep object. In the Project tab we are able to navigate through the application

folders in order to retrieve all the assets imported in our program, like meshes,

scripts, prefabs, store assets. On the right side we have the Inspector view, in which

are listed all the details and subpart of the item selected in hierarchy tab. The central

31

window is the 3D world itself. In the "scene" tab we can see how our scenario

appears while it switches to the "game" tab as soon as we start the simulation.

In the following pictures (Figures 5.5, 5.6) we can appreciate two different point of

views taken after 20 seconds of simulation.

Figure 5.5

Figure 5.6

In the picture 5.5 we are just behind the aircraft and we are looking in the opposite

direction of movement. The vortex decay phase is not dominant yet and the timesteps

still appear dark red. In the image 5.6 instead, we look at the first seconds of

simulation and, considered that 20 seconds already passed, we see how the shade of

red is turning pink, to represent that the wingtip vortices are slowly fading.

5.3 Data congruence validation

The last step to consider our project done successfully, was to check that what we

can see in the visual representation of the wake vortices, was congruent with the

output data developed by the P2P model program. To this we analyzed eleven

32

different out files of the prediction model and we used them as input for 3D Virtual

Airport. In each one of these instances we noticed significant congruencies between,

the position of the vortices calculated by the mathematical model, and where the

vortices were located in our simulation. The second match is in relation with the

trend of the vortices circulation. As we already explained, according to the P2P

model, the wingtip vortices pass through a first phase of stabilization and a second

phase of rapid decay. This aspect is obviously reflected by the data output developed

by the P2P program and it also has a confirmation in our graphic visualization. To

understand all this some pictured are needed:

Figure 5.7

In figure 5.7 we have a detail of the P2P output file called

"130429_053250UTC_HALO.dat". In the highlighted sections we can notice how, in

between 8.42 and 15.8 seconds, the movement of the left wing vortex invert its trend

and it starts moving along the positive Y direction. In figure 5.8 we see how this

trend change is reflected in the graphic visualization calculated by 3D Virtual

Airport.

33

Figure 5.8

The other observed validation refers to the circulation decay after the initial

stabilization part.

Figure5.9

Taking the same sample file we notice that, after about 35 seconds, the circulation

starts decreasing rapidly according to the P2P model. In our simulation we can see

that, after 30s of simulation, the color of the timesteps start turning from red to pink

and then slowly almost into white according to how the system has been designed.

(Figure 5.10)

34

Figure 5.10

6 Results and conclusions

6.1 Results according to goals

At the beginning of this project our goals were well clear; we wanted to test the game

engine Unity3D exploiting its functionalities to develop a scientific visualization. We

also aimed to create a useful tool able to increase airports capacity and improve the

management of air traffic control. To reach all these goals we implemented a 3D

representation of a complex aerodynamic effect, such as the wake vortices, using

Unity3D to give birth to the simulation. We started from zero and we managed to

create a good looking 3D scenario of an airport. Then, cooperating with the P2P

program developed by Dr. Ing. Frank Holz Äpfel, we have been to create different

geometric primitives to obtain a nice and clear visualization of the wake vortices. All

the primitives we created are scalable and reusable according to the game engine

philosophy.

Looking at our simulation running bumps directly to the eyes what is happening on

the landing strip, how the vortices are evolving with the passing of time, and when

they are totally faded away and it is safe for another aircrafts to pass through that

same path.

35

6.2 Can Unity3D used for scientific visualization?

At first, when Wito Engelke talked to me about this project I was a little bit skeptic

about the data calculation part of the simulation. Then, when Wito told me that all

the prevision data about the vortices would be calculated outside Unity, I started

thinking that the project, developed in the proper way, could be a success. After this

experience I feel confident saying that a tool like Unity3D can be used to develop

scientific visualization, as long as it delegates the data calculation to another tool. I'm

not saying that Unity3D can't do it, it's just that we didn't test it and we focused more

on the visualization part. The information can be sent to Unity3D as a data stream or

as buffer of text files for example; it can quickly interpret them and create the

corresponding 3D visualization. The huge advantage of using this game engine for

scientific purposes is its scalability and the possibility of reusing the primitives we

created in the project. For example if in my future I need for a project to develop a

visualization of sound waves, I can easily take the geometric primitives created in 3D

Virtual Airport and adapt them to generate a new kind of simulation.

6.3 Future Developments

Every project can keep growing and new features can be added. Virtual 3D Airport is

none the less and many nice features can be implemented for the future. The first

thing that can be done is to show in the visualization the upper and lower bound of

the prediction developed by the P2P model. As we already said P2P is a probabilistic

model that designs interval of confidence; these intervals have a floor and a roof in

which the vortices are located. So having a visual representation of both the vortices

and their limits could be interesting. Another improvement that can be done to

increase the Virtual 3D Airport potential is making it "real time" taking as input not

just a single file but continuous stream of data. This particular feature should be

developed cooperating with the authors of the P2P program because so far, it doesn't

support such functionality. Unity3D supports external devices like Oculus Rift for

instance. implementing in Virtual 3D Airport the integration for that kind of tool s

for sure a nice improvement that can be added. Then, since the core of the

networking part has already been implemented, it could be possible to integrate it in

3D Virtual Airport in order to be able to see the simulation running on a powerwall

configuration such as that one of the virtual reality lab in the DLR in Braunschweig.

36

A neat future scenario that this application can face, is to be integrated in real

functioning airports and be used to improve air traffic control. The core of the

simulation is ready, the only new part that should be developed is creating the 3D

scenario of the real airport.

37

Bibliography

[1] C. LO, "http://www.airport-technology.com/features/featuretackling-runway-

wake-turbulence/," 26 jun 2013. [Online].

[2] L. (. Speijker,

"http://www.wakenet.eu/fileadmin/user_upload/WS1/Topic4/WN3E_WS1_To

pic4_1_Speijker.pdf," [Online].

[3] F. Holzäpfel, "Probabilistic Two-Phase Wake Vortex," Journal od Aircraft,

vol. 40, p. 1, 2003.

[4] M. H. a. F.-E. W. Karl-Ingo Friese, "Using Game Engines for Visualization in

scientific appications," IFIP International Federation for Information

Processing.

[5] L. Clancy, Aerodynamics.

[6] NASA, "https://en.wikipedia.org/wiki/Wake_turbulence," [Online].

[7] Reddit,

"https://www.reddit.com/r/aviation/comments/1moh9w/airbus_a340_wingtip_

vortices_1920x1200/," [Online].

[8] Boldmethod, "http://www.boldmethod.com/learn-to-

fly/aerodynamics/winglets-and-wingtip-vortices/," [Online].

[9] Dr.-Ing. habil. Frank Holzäpfel, Probabilistic Two-Phase Wake Vortex Model

P2P, 2014.

[10] Wikipedia, "https://en.wikipedia.org/wiki/Unity_(game_engine)," [Online].

[11] S. G. Djorgovski, "https://www.microsoft.com/en-us/research/wp-

content/uploads/2012/04/djorgovski.pdf," [Online].

[12] Baaden-Chavent, "http://www.baaden.ibpc.fr/umol/," 2013. [Online].

[13] A. Cioc, "http://www.astrobetter.com/blog/2013/03/25/immersing-yourself-in-

your-data/," 2013. [Online].

