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Abstract—A large variety of services require a precise lo-
calization. While global navigation satellite systems may show
accurate positioning results in good view-to-sky conditions, their
performance decreases drastically in case of shadowing and
multipath propagation, such as indoors or in urban scenarios.
Our approach is therefore to use terrestrial signals of opportunity
for positioning. We exploit multipath propagation in a multipath
assisted positioning approach: each multipath component is
regarded as being emitted by a virtual transmitter in a line-of-
sight condition. Since the locations of the virtual transmitters are
unknown, they are estimated in addition to the user position. This
results in a simultaneous localization and mapping (SLAM) prob-
lem, where physical and virtual transmitters are considered as
landmarks. This paper discusses our approach named Channel-
SLAM, and extends it by a solution to the data association
problem. We present and compare two different methods to
decide for associations among virtual transmitters. By means
of simulations, we show that data association can increase the
positioning performance of Channel-SLAM remarkably.

Index Terms—Channel-SLAM, data association, multipath as-
sisted positioning, simultaneous localization and mapping

I. INTRODUCTION

The variety of applications that are based on the knowledge

of the user position has led to a considerable growth in

research on precise localization over the recent years. Intel-

ligent transportation systems (ITSs) are an important field

where location based services have received a lot of attention.

In particular, the vision of fully autonomous vehicles has

triggered research efforts. Precise positioning of vehicles in

both a relative and an absolute sense is a key requirement for

an autonomous vehicle. For navigation applications, the use

of global navigation satellite systems (GNSSs) as a stand-

alone system is the standard method nowadays. While the

positioning performance of GNSSs tends to be good in open

areas with a good view to sky, it may drastically decrease in

urban areas due to signal blocking and multipath propagation.

In urban canyons, tunnels or indoors, chances are that no

position estimate can be obtained at all.

Especially in urban areas, for example mobile radio commu-

nication systems provide a very good coverage. Therefore, our

approach uses available ground-based radio frequency (RF)

signals of opportunity (SoOs) for positioning. However, mul-

tipath propagation might decrease the positioning performance

drastically depending on the environment by distorting range

estimates. Standard methods such as the delay locked loop try

to mitigate the influence of multipath components (MPCs) on

the line-of-sight (LoS) path [1].

Instead of combating multipath propagation, the idea of

multipath assisted positioning is to exploit it: each MPC that

arrives at a receiver can be treated as a signal sent by a

virtual transmitter under a pure LoS condition. Using virtual

transmitters for positioning, the minimum number of physical

transmitters that is needed to locate a receiver may decrease

depending on the environment. In scenarios with a lot of

multipath propagation, we may be able to locate and track

a receiver with a single physical transmitter.

Multipath assisted positioning schemes have been used in

different ways. One idea is to use multipath propagation in a

fingerprinting scheme [2]. The authors of [3], [4], for example,

assume the environment to be given as a-priori knowledge

in form of a floor plan, from which the virtual transmitter

positions can be calculated. A similar approach has been

presented in [5] for radar applications. In [6], bounds on the

positioning performance are derived for this case.

In our approach named Channel-SLAM [7], [8], we do

not assume any prior knowledge of the environment. Hence,

the locations and delay offsets of the virtual transmitters are

unknown, and we estimate them simultaneously with the user

position. This approach has the structure of a simultaneous

localization and mapping (SLAM) [9] problem, in which we

simultaneously locate a receiver and map the physical and

virtual transmitters as landmarks.

In general, using a SLAM scheme, the uncertainty about

the user and landmark states increases with time. When a new

landmark is observed, it is initialized with a large uncertainty

about its state depending on the available measurements.

Therefore, it is beneficial to know if a new landmark had

been observed before, and if so, to which of the previously

observed landmarks the new one corresponds. This problem is

often referred to as the association problem in SLAM [10]. For

example, in visual SLAM, the distinction between landmarks

is based on visual features, such as shape, size or color.

In our case however, the landmarks are physical or virtual

transmitters, and correspond to the LoS path or MPCs, respec-

tively. Therefore, the landmarks arise only due to reflections or

scattering of the transmit signal. Since all signals components

that are received via the different propagation paths contain

the same data and have the same carrier frequency, finding

correspondences among landmarks is a challenge that we



Fig. 1. Signals from the physical transmitter Tx are reflected at the straight
surface and can be treated as being transmitted by the virtual transmitter vTx
in a pure LoS condition. The position of vTx is the position of Tx mirrored
at the surface.

address within this paper. A first approach to reuse transmitters

in Channel-SLAM based on additional, discretized user maps

has been presented in [11]. In this paper, we propose a new,

more general method for data association in Channel-SLAM

based on [10].

The paper is organized as follows. Section II explains

the idea of multipath assisted positioning and derives the

current Channel-SLAM algorithm. In Section III, we extend

Channel-SLAM by our solution to the association problem.

An evaluation based on simulations in an urban scenario is

presented in Section IV. We conclude the paper in Section V.

II. MULTIPATH ASSISTED POSITIONING

A. Virtual Transmitters

The idea of virtual transmitters is visualized in Fig. 1. The

signal emitted by the physical transmitter is reflected at the

surface and arrives at the receiver as a MPC. However, the

MPC can be treated as a signal originating from the virtual

transmitter vTx in a pure LoS condition to the receiver. While

the user moves along the trajectory, the reflection point on the

wall moves as well, but the position of the virtual transmitter

is static. The virtual transmitter is located at the position of

the physical transmitter mirrored at the reflecting surface, and

the two transmitters are inherently time synchronized.

A similar idea can be applied to the case where the signal

is scattered or diffracted at a punctual scatterer as illustrated

in Fig. 2. Our model of scattering is that the energy of the

signal impinging on the scatterer is uniformly distributed in

all directions. Then, the position of the virtual transmitter is at

the scatterer itself, and the physical and the virtual transmitter

are not time synchronized any more: an additional delay offset

τ0 between the two transmitters corresponding to the actual

propagation distance of the signal from the physical to the

virtual transmitter has to be considered. This delay offset can

be interpreted as a clock offset.

The model of reflections at straight walls and scattering at

punctual scatterers can be generalized to multiple reflections

or scattering points [7]. If the signal is only reflected at straight

Fig. 2. Signals from the physical transmitter Tx are scattered at the punctual
scatterer and can be treated as being transmitted by the virtual transmitter
vTx in a pure LoS condition. The position of vTx is the position of the
punctual scatterer. There is a delay offset τ0 between the physical and virtual
transmitter.
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Fig. 3. Based on the received signal, the parameters of the signal components
are estimated in the first step by the KEST algorithm. In the second step, the
estimates serve as measurements for estimating the positions of the user and
the physical and virtual transmitters. In addition, user heading rates of change
measurements from an IMU are incorporated in the second step.

walls as in Fig. 1, the delay offset τ0 equals zero, i.e., the two

transmitters are perfectly time synchronized. Otherwise, if at

least one scatterer is involved, the delay offset is greater than

zero.

We consider static scenarios only, where the locations of the

physical transmitters and environmental objects do not change

over time.

B. Channel-SLAM

Our approach to track the user in a two-dimensional setting

consists of two steps as depicted in Fig. 3. In the first step,

we estimate parameters of the signal components and track

them over time using the Kalman enhanced super resolution

tracking (KEST) algorithm [12]. In the second step, we fuse

the KEST estimates with inertial measurement unit (IMU)

data to obtain an estimate for the position of the user and

the physical and virtual transmitters. Since the first step is

connected to estimating the channel impulse response (CIR),

and the second part essentially solves a SLAM problem, we

named our approach Channel-SLAM [7]. The Channel-SLAM

algorithm does not differentiate between physical and virtual

transmitters. In the following, the term transmitter is therefore

a general term for physical and virtual transmitters.

We assume the wireless multipath channel to be linear and

time-variant. Hence, we express the CIR h(τ, t) at time t
and delay τ as a sum of signal components with complex



amplitudes αi(t) and times of arrival (ToAs) di(t) [13],

h(τ, t) =
∑

i

αi(t)δ(τ − di(t)). (1)

We use the KEST algorithm presented in [12] to detect

and track the complex amplitudes, the ToAs and the angles

of arrival (AoAs) in the azimuth plane, θi(t), for each signal

component i. The KEST algorithm is composed of two stages.

The inner stage applies a maximum likelihood (ML) estimator

to estimate the parameters of each signal component. In

an outer stage, these parameters are tracked over time by

a Kalman filter. In addition, the overall number of signal

components is tracked.

We estimate the complex amplitudes only for a better signal

component tracking performance, and do not use them further

during the position estimation. Hence, after sampling from the

received signal, the measurement vector at time step k is

zk =
[

d
T
k θ

T
k

]T
, (2)

where

dk = [d1,k . . . dNTX,k]
T
, (3)

are the ToA estimates and

θk = [θ1,k . . . θNTX,k]
T
, (4)

are the AoA estimates from KEST at time step k. The number

of propagation paths, or signal components, is denoted by

NTX. Note that NTX corresponds to the number of transmitters,

and may change over time. However, for notational conve-

nience, we drop the time step index k in NTX.

The state vector xk that is to be estimated at each time step

k consists of the user state xu,k and the transmitters’ state

xTX,k, i.e.,

xk =
[

xu,k
T

xTX,k
T
]T

=
[

xu,k
T

x
<1>
TX,k

T
. . . x<NTX>

TX,k

T
]T

, (5)

where x
<j>
TX,k is the state of the jth transmitter. The user state

consists of the position and velocity in two dimensions, which

is

xu,k = [xk yk vx,k vy,k]
T
. (6)

The state of the jth transmitter includes its location and its

clock offset τ0 to the receiver, namely

x
<j>
TX,k =

[

x<j>
TX,k y<j>

TX,k τ<j>
0,k

]T

. (7)

Our goal is to estimate the state vector for all time steps,

i.e., x0:k, based on the measurements z1:k. Therefore, we

calculate the posterior distribution of the user and transmitter

states recursively over time in a Bayesian recursive estimation

context [14]. Using Rao-Blackwellization, we can factorize

this posterior distribution conditioned on the measurements

z1:k as

p (x0:k|z1:k) = p (xTX,0:k,xu,0:k|z1:k)

= p (xu,0:k|z1:k)× p (xTX,0:k|z1:k,xu,0:k) .
(8)

The first factor in the second line of Eq. (8) is the posterior

distribution of the user state xu,0:k for time step 0 to k. The

second factor in the same line denotes the posterior distribution

of the transmitters state xTX,0:k for time step 0 to k conditioned

on the user state. The measurements z1:k are obtained from

Eq. (2). We assume independence among the measurements

for each transmitter, and factorize the conditioned posterior

distribution of xTX,0:k as

p (xTX,0:k|z1:k,xu,0:k) =

NTX
∏

j=1

p
(

x
<j>
TX,0:k|z

<j>
1:k ,xu,0:k

)

. (9)

The assumption of independence among transmitter measure-

ments allows to estimate the state vector of each transmitter

independently.

Bayesian recursive estimation schemes work in two recur-

sively executed steps, namely the prediction and the update

step [14]. In the prediction step of the user, we make use

of heading rate of change measurements from a gyroscope in

an IMU. For a detailed explanation of the implementation,

we refer the reader to [7], [8]. However, note that we do

incorporate only heading rate of change measurements from

a gyroscope, but no acceleration measurements. The speed of

the user is modeled by a random walk model.

Since we consider a static environment, the transmitter po-

sitions and clock offsets are constant. Hence, in the prediction

step of the transmitters’ state vector, the transition prior of the

jth transmitter can be expressed as

p
(

x
<j>
TX,k|x

<j>
TX,k−1

)

= δ
(

x
<j>
TX,k − x

<j>
TX,k−1

)

, (10)

where δ(·) denotes the Dirac distribution.

In the update steps of both the user and the transmitters,

the measurement noise samples for the ToA and AoA mea-

surements are assumed to be drawn from uncorrelated zero-

mean Gaussian distributions with variances σ2

d,j and σ2

θ,j ,

respectively, for the jth transmitter. The likelihood p (zk|xk)
for the measurement vector zk conditioned on the state vector

xk can then be expressed as the product

p (zk|xk) =

NTX
∏

j=1

N
(

dj,k; d̂j,k, σ
2

d,j

)

N
(

θj,k; θ̂j,k, σ
2

θ,j

)

,

(11)

where N
(

x;µ, σ2
)

denotes a Gaussian probability density

function (PDF) in x with mean µ and variance σ2. The

predicted ToA between the user and the jth transmitter is

calculated as

d̂j,k =
1

c0

√

(xk − x<j>
TX,k)

2 + (yk − y<j>
TX,k)

2 + τ<j>
0,k , (12)

where c0 denotes the speed of light. The corresponding

predicted AoA is

θ̂j,k = atan2
(

yk − y<j>
TX,k , xk − x<j>

TX,k

)

− atan2 (vy,k, vx,k) ,

(13)



where the function atan2 (y, x) calculates the four quadrant

inverse tangent function, returning the counter-clockwise an-

gle between the positive x-axis and the point given by the

coordinates (x, y).
For the actual estimation of the state, we use a Rao-

Blackwellized particle filter as in [7]. The user state is es-

timated by an outer particle filter. Each of the user particles

represents one hypotheses for the user state, and has NTX inner

particle filters that estimate the states of the NTX transmitters

associated to it. The posterior distribution of the user state is

approximated by [15]

p (xu,k|z1:k) =

Np
∑

i=1

w<i>
k δ

(

xu,k − x
<i>
u,k

)

, (14)

where x<i>
u,k is the ith user particle, w<i>

k its associated weight,

and Np the number of user particles. Similarly, the posterior

distribution of the state of the jth transmitter of the ith user

particle is approximated as

p
(

x
<i,j>
TX,k |z1:k

)

=

Np,Tx
∑

l=1

w<i,j,l>
k δ

(

x
<i,j>
TX,k − x

<i,j,l>
TX,k

)

,

(15)

where x
<i,j,l>
TX,k is the lth particle of the jth transmitter of the

ith user particle, w<i,j,l>
k its associated weight, and Np,Tx the

number of transmitter particles. The update of the weight of

the ith user particle can be expressed by the proportionality

w<i>
k ∝ w<i>

k−1
p
(

zk|x
<i>
u,k

)

. (16)

For a detailed description of how to calculate the weights

in the particle filter for the user and the transmitters, we refer

to [7], [15].

The KEST algorithm tracks signal components over time as

described above. Whenever the KEST algorithm detects a new

signal component, a new transmitter is initialized based on the

measurement zk, i.e., the ToA and AoA estimates of KEST.

When the KEST algorithm loses track of a signal component,

the corresponding transmitter is not observable any more. In

the current version of Channel-SLAM, it does not contribute

to the location estimation any further.

III. THE ASSOCIATION PROBLEM

In the Channel-SLAM algorithm [7], [8] summarized in

Section II, every signal component, or propagation path,

corresponds to one transmitter. However, the KEST algorithm

may lose and regain track of signal components. Hence, two

or more signal components that are received at different time

steps may originate from the same transmitter. This situation

is depicted in Fig. 4. The LoS signal from a transmitter is

received in Region I, but blocked by an obstacle in Region

II. When the signal is received again by the user in Region

III, the KEST algorithm initializes a new signal component,

and hence a new transmitter is assumed. This new transmitter

is the same transmitter observed before in Region I, though.

Similarly, the KEST algorithm may lose track of a signal

component when its received signal strength is very low, or if

Fig. 4. As the user moves on its track, the LoS signal in Region I to the
transmitter is lost in Region II temporarily due to blocking by an obstacle. In
Region III, the signal is obtained again.

Fig. 5. Based on the new measurement zk at the receiver, a new transmitter
may be initialized, or the measurement may be associated with any of the three
previously observable transmitters Txp,Txq , or Txr . The ellipses represent the
estimated posterior distributions of the transmitter states.

there is another signal component with similar parameters and

higher signal strength. When the strength of the lost signal

component increases again, the KEST algorithm might start

tracking it again assuming a new transmitter.

When KEST detects a new signal component, a new trans-

mitter is initialized, and there are two possible cases:

1) the new transmitter is indeed a new transmitter that has

never been observed before, or

2) the new transmitter corresponds to an ’old’ transmitter

that had been observed before.

Data association describes the question for which case to

decide, and, in the second case, to which old transmitter the

new one corresponds.

Fig. 5 illustrates the association problem with an example.

The ellipses represent the position posterior distributions of the

previously, but not currently observed transmitters Txp,Txq ,

and Txr. When the KEST algorithm detects a new signal com-

ponent with a ToA and AoA measurement, the corresponding

new transmitter is either initialized based on the measurement,

or it may be associated with one of the old transmitters

Txp,Txq , and Txr. In the latter case, the new transmitter is

initialized using the previously estimated posterior distribution

of the corresponding old transmitter. Note that due to the

clock offsets of the transmitters, each of the associations with

Txp,Txq , and Txr may be more or less likely, leading to

ambiguities.

Correct associations can improve the positioning perfor-

mance, as the uncertainty about the state of a new transmitter

is high upon initialization. On the one hand, this is because

the uncertainty about the user state tends to increase over

time, and new transmitters might therefore be initialized with a



high uncertainty as well. On the other hand, the measurements

cover only two dimensions, i.e., ToA and AoA, whereas the

transmitter state vectors are of three dimensions as in Eq. (7).

Note that also for the data association, we do not take into

account the amplitudes of the signal components estimated

by KEST, since the assumption of perfectly scattering and

reflecting objects does not hold in practice due to the shape

or materials of these objects. Hence, a measurement covers

only a subspace of the transmitters’ state vector, leading to an

underdetermined problem for each single time step. Only when

the user moves through the scenario and takes measurements

from a sufficient number of different points in space, the

posterior distribution of a transmitter can converge. If prior

information in terms of a correct association can be used

for initialization of a transmitter, the uncertainty about that

transmitter tends to be smaller upon initialization, and the user

state estimate can be corrected up to a certain extent.

However, wrong associations can make the filter diverge.

Since we face an underdetermined problem in each time step

as described above, association ambiguities might arise. It

is of high importance to prevent wrong associations in the

first place, or to resolve them during the filtering process.

Therefore, we use a multiple hypothesis tracking (MHT)

method for the associations among transmitters. As we use

a particle filter to track the posterior distribution of the user

state, the user state is represented by a number of particles with

associated weights. A MHT method is very suitable to this

kind of filter, since association decisions can be made based

on each particle individually. Hence, each particle carries a

hypothesis on the associations among transmitters.

When a new signal component is detected at time step k
by the KEST algorithm, a new transmitter is initialized. The

variable nk describes the association of the new transmitter to

the previously observable transmitter nk. A set of association

decisions made by particle i up to time step k is denoted by

n̂<i>
k . Within the scope of this paper, we assume that KEST

initializes no more than one signal component at each time

step.

The marginalized likelihood of the measurement at time

step k for particle i assuming that a newly detected signal

component with measurements contained in zk corresponds

to the old transmitter nk is denoted by [10]

pnk
= p

(

zk|nk, n̂
<i>
k−1

,x<i>
u,k , z1:k−1

)

. (17)

We can calculate pnk
as

p
(

zk|nk, n̂
<i>
k−1

,x<i>
u,k , z1:k−1

)

=

∫

p
(

zk|x
<i,nk>
TX,k , nk, n̂

<i>
k−1

,x<i>
u,k , z1:k−1

)

× p
(

x
<i,nk>
TX,k |nk, n̂

<i>
k−1

,x<i>
u,k , z1:k−1

)

dx<i,nk>
TX,k , (18)

where x
<i,nk>
TX,k denotes the state vector of the nk

th transmitter

for the ith user particle.

Assuming a hidden Markov model, the first integrand in

Eq. (18) can be simplified to

p
(

zk|x
<i,nk>
TX,k , nk, n̂

<i>
k−1

,x<i>
u,k , z1:k−1

)

= p
(

zk|x
<i,nk>
TX,k , nk, n̂

<i>
k−1

,x<i>
u,k

)

. (19)

Since we use a particle filter to estimate transmitter states,

the transmitter posterior distributions are represented by parti-

cles with associated weights. The second integrand in Eq. (18)

can therefore be rewritten similarly to Eq. (15) as

p
(

x
<i,nk>
TX,k |nk, n̂

<i>
k−1

,x<i>
u,k , z1:k−1

)

=

Np,Tx
∑

l=1

w<i,nk,l>
k δ

(

x
<i,nk>
TX,k − x

<i,nk,l>
TX,k

)

, (20)

where x
<i,j,l>
TX,k is the lth particle of the jth transmitter of the

ith user particle, and w<i,j,l>
k its associated weight. Thus, we

have for pnk
in Eq. (17)

pnk
= p

(

zk|nk, n̂
<i>
k−1

,x<i>
u,k , z1:k−1

)

=

Np,Tx
∑

l=1

w<i,nk,l>
k p

(

zk|x
<i,nk,l>
TX,k , nk, n̂

<i>
k−1

,x<i>
u,k

)

.

(21)

At each time step k, we have a set Υk of previously tracked

transmitters that are currently not observable any more. When

KEST loses track of a signal component, the corresponding

transmitter is added to Υk. When a new transmitter is to be

initialized, the marginalized likelihoods pnk
for the measure-

ment zk are calculated as in Eq. (21) for each old transmitter

nk ∈ Υk.

In order to reduce the computational complexity, we regard

only those old transmitters for associations for which pnk

exceeds a threshold ρ. We denote a set of indices of these

transmitters by Γk. Thus, we have

Γk = {j : j ∈ Υk ∧ pj > ρ}. (22)

Association decisions are made based on each particle i
individually, and there are different ways to come to a decision.

For the ML method, the association for which pnk
from

Eq. (21) is the highest is chosen, if at least one probability

pj of a transmitter j ∈ Γk is greater than a threshold p0. In

this case we have

n̂<i>
ML,k = argmax

nk∈Γk

pnk
, (23)

and the new transmitter is associated to transmitter n̂<i>
ML,k,

i.e., it is initialized with the estimated posterior distribution

of transmitter n̂<i>
ML,k. If no pj exceeds p0, no association is

made, and the new transmitter is initialized without any prior

information, but with the first ToA and AoA estimate from

KEST for the corresponding signal component.

An alternative to the ML method is data association sam-

pling (DAS). In DAS, we sample associations randomly from

the probabilities c pnk
for nk ∈ Γk and the probability c p0

representing no association. The variable c is a normalizing
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Fig. 6. The urban simulation scenario. There is one physical transmitter Tx.
The user travels along the blue track from START to END. The user traveled
distance is marked at every 50m. The black lines represent walls that reflect
RF signals, black dots represent punctual scatterers.

constant. While the association resulting in the highest pnk

is chosen deterministically in the the ML approach, the ran-

domness in DAS allows less likely association decisions. On

the one hand, this tends to increase the number of particles

required and therefore the computational complexity. On the

other hand, DAS is more robust. In particular, in case of

measurement ambiguities, we expect the DAS scheme to

outperform the ML method.

IV. SIMULATIONS

We performed simulations to evaluate our data association

approach. A top view of the urban multipath scenario is

depicted in Fig. 6. The thick black lines represent walls

that reflect the RF transmit signal, and the black dots model

punctual scatterers such as traffic light poles. In the scenario,

there is one physical transmitter marked by the red triangle

labeled Tx. The blue line represents the track of a car equipped

with a receiver traveling from START to END with one loop

around the central building. The traveled distance of the user is

marked at every 50m. The car moves with a constant velocity

of 10m/s. Each 0.05ms, the receiver records a snapshot of the

received signal.

With a ray tracing approach, we simulate the CIR and

the received signal for each snapshot as input for the KEST

algorithm. The physical transmitter continuously emits a signal

of rectangular shape in frequency domain with a bandwidth of

100MHz and a center frequency of 1.51GHz. For simplicity,

we assume an additive white Gaussian noise (AWGN) channel

with free-space path loss. Each reflection of the RF signal

causes a power loss of 3 dB, and each scattering a power

loss of 6 dB. The signal-to-noise-ratio (SNR) at the receiver

averaged over the entire receiver track is 8.74 dB. The receiver
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Fig. 7. Results of the KEST algorithm, where signal components with a
long life span are extracted. The delays of the signal components, which are
the estimated ToAs multiplied by the speed of light, are plotted versus the
user traveled distance. Hence, each line describes the evolution of a signal
component. The absolute values of the normalized amplitudes of the signal
components are indicated by the colors.

is equipped with a two-dimensional antenna array consisting

of nine elements to obtain ToA and AoA estimates of the

impinging signal components.

Since Channel-SLAM considers an underdetermined sys-

tem, we prefer signal components that are visible over a long

time span. Hence, we choose only those signal components

from the KEST algorithm that have a long life span. For our

simulations, we use all signal components that are observable

for a user traveled distance of at least 38m as shown in Fig. 7.

The delay and amplitude of the signal components are plotted

versus the user traveled distance. Note that the AoAs of the

components are not shown here, and the delays are the ToA

estimates multiplied by the speed of light and hence in meter.

The absolute values of the amplitudes are normalized in linear

domain.

The user travels through the urban scenario on the trajectory

as described above. We assume only the starting position and

direction of the user to be known roughly to create a local

coordinate system. The user particles are initially distributed

normally around the true user position with a variance of

1m2. The average root mean square error (RMSE) over 150
runs of the user versus the user traveled distance is plotted in

Fig. 8 for different cases. The red curve describes the RMSE

if no associations are made among transmitters. In this case,

each time a new signal component is detected by the KEST

algorithm, a new transmitter is initialized with the available

ToA and AoA estimates from the KEST algorithm. The blue

curve shows the RMSE for the ML method, and the green

curve for DAS.

Since we assume the initial state of the user to be known,

the RMSE is small in the beginning and increases after the first

meters for all curves as expected. For the red curve, where no

associations are made, the RMSE stays constant after a trav-

eled distance of approx. 230m and even decreases when the
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user gets back in a LoS condition to the physical transmitter.

Towards the end of the track, the RMSE increases again with

a final value of 20.8m. The reason for the increasing RMSE

might be the high geometrical delusion of precision (GDOP)

value at the end of the track, where all signal components

arrive at the user from a similar direction.

For the ML association and the DAS method, represented by

the blue respectively green curve, the positioning performance

is very similar during the first 470m of traveled distance. After

approx. 370m, both association methods show a performance

gain. At this part of the track, several transmitters that had

been observed in the beginning are observed again, and are

reused by associations. Hence, the RMSE drops significantly

for both the ML and the DAS method. However, both suffer

from the high GDOP value at the end of the track, where the

RMSE increases again. Towards the end of the track, DAS

shows a slightly better positioning performance than the ML

method. We assume that this is due to the relatively large

number of transmitters that are observable in this area, and

hence possible ambiguities in associations. The ML method

chooses the most likely associations, which might be wrong

though, while the DAS method samples associations making

the scheme more robust. The final RMSE values are 14.6m
for the ML method and 12.5m for DAS.

An interesting observation are the small scale fluctuations

in the RMSE for both association methods. They occur when

a number of particles decide for wrong associations, causing

the RMSE to increase. When the measurement probabilities for

these particles in future time steps become small, the particles

are unlikely to be resampled, and the RMSE decreases again.

Such an effect can be observed after a traveled distance of

approx. 390m, for example.

V. CONCLUSION

Within this paper, we extended the Channel-SLAM algo-

rithm by a solution to the association problem. In multipath

assisted positioning, a transmitter that had been observable

before might be observed again at a later point, and an

association can be made. We presented and compared two

different ways to decide for associations among transmitters

on a particle basis, a ML and a DAS method. Both methods are

MHT schemes. Our simulations showed that the positioning

error for a user decreases remarkably when data association

schemes are used in Channel-SLAM, and DAS performs

slightly better than the ML method.
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