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ABSTRACT 

In this paper, a new approach to display Braille is presented. Braille dots are mapped to six tactors of a vibrotactile 

wristband. The dot patterns of characters are displayed with adequate vibrotactile stimuli generated by the tactors. 

Compared to the conventional way of reading Braille, the advantage of the proposed approach is that there is no need to 

commit a hand to active Braille dot scanning and thus, the hand is still free for other activities or tasks. 

In a user study, different methods of mapping Braille to the wristband with respect to the assignment of cell dots to 

tactors as well as temporal aspects were evaluated using objective performance data and subjective ratings. Even with 

little training, promising results were obtained. Sequential mapping methods performed better than parallel methods and 

characters could be correctly recognized in up to 97% of cases.  
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1. INTRODUCTION 

As a consequence of an impairment or loss of visual perception, blind or visually impaired people depend on 

their auditory and haptic channel for receiving information. It is well known that blind people can partially 

compensate the loss in visual channel by improving other senses like their haptic abilities. Several studies 

showed better tactile spatial acuity of blind in comparison to sighted people (Wong et al., 2011; Goldreich 

and Kanics, 2003; Goldreich and Kanics, 2006; Legge et al., 2008). Particularly for deaf-blind persons or 

when acoustic presentation of information to blind people is impossible or uncomfortable, using Braille is a 

common way to convey information. Braille is a tactile writing system with tiny palpable bumps used to 

represent letters through raised dot patterns. Each letter is coded with six dots in a matrix with two columns 

and three rows. Usually, embossed paper or electronic braille displays are used as output. In any case, the 

fingertip is necessary to feel the text which means that the hand cannot be used for other purposes while 

reading Braille. 

In this paper, we introduce a new approach of presenting information to blind or visually impaired people 

without using their auditory channel and without blocking the hand for other activities or tasks. To this, 

tactile stimuli generated by a vibrotactile wristband are used. A review of the state-of-the-art reveals the 

potential of (vibro-)tactile feedback and the variety of applications such as sensory substitution, spatial 

orientation, navigation and motion guidance, exploration of virtual environments, communication, messages 

and multimedia in which tactile displays (Benali-Khoudja, 2004) have been deployed (Choi and 

Kuchenbecker, 2013; Jones and Sarter, 2008; Elliot et al., 2009). Depending on the application, the 

stimulation is applied to different locations such as fingertip (Galambos, 2012), hand (Yang et al., 2009), arm 

(Bark et al., 2011; Bosman et al., 2003; Kapur et al., 2010; Lehtinen et al. 2012; McDaniel, 2010; Piateske 

and Jones, 2005; Tadakuma and Howe, 2009), torso (Lindemann et al., 2006; Schroeder et al., 2015, Van 

Erp, 2004) or foot (Meier et al., 2015).  
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The design of vibrotactile displays and relevant issues such as the spatial and temporal resolution of the 

skin, the absolute and differential perception thresholds, spatial masking, apparent location, temporal 

enhancement, adaptation and frequency, amplitude and duration of stimuli have been intensively investigated 

and published in useful guidelines (Jones and Sarter, 2008; Cheung et al., 2008; Cholewiak and Collins, 

2003; Cholewiak et al., 2001; Pongrac, 2006; Van Erp, 2002; Choi and Kuchenbecker, 2013). Furthermore, 

the conveyance of semantic information through vibrotactile stimuli has been explored with variations in the 

number and placement of tactors as well as in the modulation of signals (Pietrzak et al., 2009; Nicolau et al., 

2013; Brown, 2007; Brewster and Brown, 2004; Yatani, 2009). The so-called “Vibratese” (Geldard, 1957) 

for example used five tactors on the upper body to encode information with variations in intensity and signal 

length. Similar to that, “Optohapt” used nine vibration motors that are scattered over the body (Geldard, 

1966).  

Besides the output of semantic information, displaying Braille with vibrotactile stimuli is not a novelty 

(Guerreiro, 2013). With UbiBraille, Nicolau et al. (2013) mapped Braille to six vibrotactile actuators that 

were attached to the user’s index, middle and ring finger of both hands. Inspired by writing Braille 

characters, raised cell dots are displayed with vibrotactile stimuli on the fingers that are commonly used to 

write the given Braille character. Compared to this mapping, we pursue the idea of assigning cell dots to 

tactors based on a projection of the Braille cell into the cross section of the arm (see Fig. 1). Furthermore, in 

contrast to the simultaneously output of raised dots in the study of Nicolau et al., we also evaluated sequential 

and simultaneous methods. 
 

 

Figure 1. Assignment of Braille dots to the tactors if all tactors of VibroTac (left) or if only three tactors (right) are used 

Other approaches known in the state-of-the-art uses touchscreens of mobile devices to display Braille 

vibrotactilly with the disadvantage that the hands are engaged in the reading process (Rantala, 2009; Jayant, 

2010; Al-Quadah, 2011). Furthermore, individual encodings e.g. in the latter case (combinations of raised 

and unraised dots within a Braille character column is displayed through different encodings inspired by the 

Morse code) lead to high training effort. 

In contrast to such approaches with own coding schemes, we use the well-known writing system Braille. 

Thus, only the mapping of the six dots to the six tactors of the wristband has to be learned. Compared to 

directly reading Braille with the fingertip, using VibroTac as a display for Braille is expected to be 

advantageous in situations where the user’s hands need to be available for manipulative tasks (e.g. in the 

context of professional integration) or when usual tactile displays are complicated to use (e.g. while moving 

or as navigation hints e.g. “Caution, rotating door” on travel). Even though we expect the vibrotactile Braille 

reading to be slower than classical Braille reading, the proposed approach should be well suited to convey 

short messages.  

This paper reports a user study we performed to evaluate the general usability of this approach and of 

VibroTac for displaying Braille characters. We designed different mapping methods that appeared reasonable 

to us and compared them in terms of performance data and subjective ratings. Due to the difficulty of 

recruiting blind people for such a time-consuming evaluation, we decided to conduct this study with sighted 

people. Consequently, the study was designed in a way that Braille literacy is not required: subjects had to 

reproduce the presented dot patterns on a print-out of blank characters without identifying the characters 

themselves. Though we expect better results for blind people as they are superior in tactile acuity and 

perception tasks than sighted people (Goldreich, 2003), further studies with blind people will be necessary 

(see section 6 for future work).  
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As the number of different methods claims high demand in terms of effort and required time of subjects, 

the evaluation experiments were split into two parts. In a pilot study (see section 4) with four subjects, we 

aimed at the evaluation of all presented methods in terms of usability and at the reduction of the number of 

methods. In the main study (see section 5), a selection of the best methods was investigated in detail with 18 

subjects. 

2. THE VIBROTACTILE WRISTBAND VIBROTAC 

The vibrotactile output of Braille is realized with VibroTac (see Fig. 2), a tactile feedback device which was 

developed at the German Aerospace Center (DLR). This battery driven and wireless controllable wristband 

comprises six vibration motors (tactors) that are distributed around the arm in equal distances. Each of the 

tactors can be separately and continuously adjustable in frequency and shape (Schätzle et al., 2010). 

 

 

Figure 2. The vibrotactile wristband "VibroTac" with six tactors which is used to display Braille through  

vibrotactile stimuli 

As the six dots of Braille cells are mapped to the six tactors of VibroTac, the spatial acuity with which the 

user is able to distinguish and localize the stimulation’s position is crucial (for the user’s performance). In a 

study with sighted people, even with very little training, a mean correct detection rate of approx. 95% was 

determined (Schätzle and Weber, 2015). It can be assumed that the tactile perception of blind people is more 

precise, resulting in even higher correct detection rates. 

Besides the requirement of a reliable localization of activated tactors, the ability to present stimuli at 

different tactor locations that are perceived with equal magnitude is not less important. Information is not 

only transmitted by variations of signal shape and length but also by the intensity of the stimuli. As the 

perceived magnitude of stimuli with a certain frequency differ depending on the tactors’ locations e.g. on the 

ulna, radius, muscle or fatty tissue, calibration factors for VibroTac were determined (Schätzle and Weber, 

2015). Applying these factors to the commanded intensities allows for similar perception magnitudes of 

vibrotactile stimuli at the six different tactor locations around the human wrist. 

Due to the ability of VibroTac to present spatially separated stimuli with six tactors that can be 

distinguished reliably and that can be controlled individually in signal shape and intensity, the device is  

well-suited as a haptic display for Braille. 

3. MAPPING BRAILLE TO VIBROTAC 

Mapping Braille to the six tactors of VibroTac can be realized in different ways. On the one hand, this 

concerns the assignment of cell dots to the single tactors, on the other hand the temporal aspects of stimuli 

patterns can be varied. We designed eight different mapping methods that appeared reasonable. Prior studies 

on VibroTac revealed that impulses with a signal length of approx. Ton = 0.3 s and with 30 % of maximum 

available intensity were perceived as pleasant. The resulting frequency of the stimulus is approx. 90 Hz.  
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As described below, unraised dots are displayed with signals of less intensity, resulting in stimuli with 

approx. 50 Hz and a perceived magnitude of approx. 25 % compared to the stimuli of raised dots. In two of 

the following methods, only three tactors were used in order to compare two configurations with different 

distances between the tactors and to check for potential better results due to a more reliable spatial distinction 

of activated tactors. 

 

A) Sequential Methods 

Braille cells are run through in a sequential way starting with the dot in the left column from first to third 

line followed by the right column from first to third line. 

 

1) Sequential (SQ) 

Raised dots are displayed with signal length Ton = 0.3 s and a subsequent signal pause Toff = 0.4 s. Before 

the next character is started, the output is paused for the duration Twait. 

 

2) Sequential rotated (SQ-ROT) 

Analogous to method “SQ” but with VibroTac worn 30° rotated counterclockwise so that the separation 

line between the two columns is orientated vertically. 

 

3) Sequential raised/unraised (SQ-R/UR) 

Analogous to method “SQ” but additionally, unraised dots are presented with a signal of less intensity 

than the signal of a raised dot. Signal times for raised and unraised dots: Ton = 0.3 s, Toff = 0.15 s) and Twait 

between characters. 

 

4) Semi-sequential (SSQ) 

Analogous to method “SQ” but with a short break Tbreak= 0.4 s between the columns of a character. 

B) Parallel Methods 

Several raised dots are displayed simultaneously. 

 

5) Parallel (P) 

All Raised dots are displayed with signal length Ton = 1.0 s and a break Twait is inserted before the next 

character is started. 

 

6) Semi-Parallel (SP) 

First, all raised dots of the left column are displayed with signal length Ton = 1.0 s and after a break  

Tbreak = 1.0 s, all raised dots of the right column are displayed simultaneously and finally Twait is added before 

the next character is started. 

 

C) Three Tactors-Methods 

In these methods, only three tactors (see Fig. 1, right) of the device are used. In consequence, the 

distances between the tactors are larger and hence better result might be obtained due to a more reliable 

distinction of the activation patterns. 

 

7) Three Tactors Semi-Parallel (3SP) 

Analogous to method “SP” 

 

8) Three Tactors Sequential raised/unraised (3SQ-R/UR) 

Analogous to method “SQ-R/UR” 
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Sequential (SQ): 
 

 
 

Semi-sequential (SSQ): 
 

 
 

Parallel (P): 
 

 
Semi-Parallel (SP): 

 

 
 

Three Tactors Semi-Parallel (3SP): 
 

 

Figure 3. Schematic representation of mapping methods with different timing aspects 

4. PILOT STUDY 

In the pilot study, four sighted subjects (1 female, 3 male, with ages ranging from 22 to 34) participated. 

4.1 Methods 

The VibroTac was worn close to the wrist. The subjects sat on a chair and laid their hand relaxed onto the 

table such that the VibroTac did not touch the table surface. Ear protection generating white noise was worn 

in order to avoid acoustical influence of vibrating tactors. Calibration factors determined in a prior study 

(Schätzle and Weber, 2015) were applied to adjust the single tactor intensities so that perception magnitudes 

of vibrotactile stimuli are similar at all six different tactor locations, as information is also coded with the 

stimulus intensity. 
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Subjects were familiarized with VibroTac with three short impulses displayed successively at each tactor. 

Subsequently, the six dots of the Braille cell were presented sequentially with vibrotactile stimuli on the 

corresponding tactors in order to familiarize subjects with the dot-tactor assignment (see Fig. 1). Then, the 

recognition of complete characters was trained ten times by displaying different characters (from the set of 

characters depicted in Fig. 4) with the sequential (SQ) and the parallel (P) methods respectively. Each 

character was repeated three times before subjects had to mark the detected raised dots into a printed blank 

Braille cell and feedback was given by the investigator. Ear protection generating white noise was worn in 

the training phase and in the studies to avoid acoustical influence.  

Each subject ran through a test series with all eight methods in randomized order and with nine different 

characters randomly chosen from a set of characters (see Fig. 4). The upcoming method was demonstrated 

with an example and was trained three times analogously to the training described above. Afterwards, a 

randomly selected character from the set of characters was displayed and subjects were asked to mark the 

recognized dots on the printed blank Braille without feedback of the investigator. 
 

 

Figure 4. Braille codings of different characters as examples of dot patterns that were used in the studies.  

The characters were grouped into easy letters (only 2 raised dots) and in difficult letters (3 – 5 raised dots).  

Braille literacy is not required for the conduction of the studies as dot patterns had to be recognized only  

instead of identifying Braille characters 

This procedure was conducted for nine characters per method. Besides objective data (e.g. correct 

recognition of raised and unraised dots), subjective ratings (e.g. difficulty and learnability) were gathered 

before the next method was started. After the third and sixth run, a recovery break was inserted in order to 

avoid adaptation effects and fatigue. 

4.2 Results 

As can be seen in Fig. 5, better results were obtained with sequential methods (1-4, 8) than with parallel 

methods (5-7) for the correct recognition of characters/dot patterns.  
 

 

Figure 5. Correct recognition of vibrotactile displayed characters in Braille coding for eight different methods 

Similarly, the subjective ratings of the different methods in terms of the difficulty to recognize characters 

(see Fig. 6, left) and the learnability (see Fig. 6, right) revealed the worst ratings for the parallel methods (5-

7). Method 2 (SQ-ROT) with the rotated configuration of VibroTac did not improve performance compared 

to method 1 (SQ). Furthermore, the additional pause between left and right column in method 4 (SSQ) did 

not lead to a substantial improvement in the objective and subjective results. 
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Figure 6. (left) Subjective ratings of the difficulty to recognize characters for different methods  

(Likert scale from 1 = very easy to 7 = very difficult) and (right) subjective ratings of the learnability  

to recognize characters for different methods (Likert scale from 1 = very easy to 7 = very difficult) 

Method 3 (SQ-R/UR) and method 8 (3SQ-R/UR) yielded similar results. The increased distances between 

tactors when using three tactors only (method 8) compared to the method with same temporal condition but 

with six tactors (method 3), had no significant effect on the correct character recognition. The results indicate 

as expected that the parallel methods are more difficult to process and learn compared to the sequential 

methods. 

4.3 Conclusion 

In the pilot study, encouraging results were obtained for the mapping of Braille to a vibrotactile wristband 

with six tactors. With some methods very high recognition rates were obtained even without extensive 

training. The results indicate that the two sequential (SQ and SQ/R-UR) as well as the semi-parallel (3SQ) 

methods are the most promising methods and thus should be further evaluated in more details and with more 

subjects.  

Despite of the moderate results in terms of character recognition and rated learnability obtained with 

parallel and semi-parallel methods, these variations of mapping should not be discarded completely. After 

initial difficulties, intensive training might lead to good results with the advantage of a high reading rate. 

Therefore, the method “Three Tactors Semi-Parallel” is also further investigated in the main study. 

5. MAIN STUDY 

In the main study, the mapping of Braille to the VibroTac is evaluated for three methods that have been 

selected in the pilot study. These are: “sequential”, “sequential raised/ unraised” and “Three Tactors  

Semi-Parallel”. Furthermore, the difficulty of the characters was varied to explore potential Method x 

Difficulty interaction effects. 

5.1 Method 

For the main study, N = 18 (7 female, 11 male) sighted individuals (employees of the German Aerospace 

Center; Mage = 28.4; SD =7.2 with an age range from 16 to 48 years) were recruited. None of them 

participated in the pilot study. First, a written description of the experiment was handed out and subjects 

signed an informed consent document. The experimental setup (posture, hand positioning and calibration 

factors) was the same as described in the pilot study. 

Subjects were familiarized with the VibroTac and its tactor positions: successively, three impulses were 

displayed at each tactor (Ton = 0.6 s and Toff = 0.5 s) and a second time with Ton = 0.3 s and Toff = 0.4 s. 

Afterwards, vibrotactile stimuli according to method “SQ” were displayed in order to learn the assignment of 

Braille dots to the corresponding tactors. After this, each single dot was displayed in randomized order and 

had to be marked on a printed blank Braille cell. The experimenter fed back whether the answer was correct 

or not.  
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In a within-subject design with randomized condition order, eight randomly chosen characters were 

presented in each condition, two of those characters being easy (only two raised dots) and six being difficult 

(more than two raised dots). Again, subjects were asked to mark the detected dot pattern on the printed blank 

Braille without feedback of the experimenter. Before the test series was started, each upcoming method was 

demonstrated by an example and four different characters were trained with feedback of the investigator. As 

in the pilot study, ear protection generating white noise was worn in order to avoid acoustical influence.  

At the end of each condition, a questionnaire on mental workload and method appropriateness had to be filled 

out. For measuring mental workload, the item “mental demand” of the NASA-TLX (Hart and Staveland, 

1988) was used (“How mentally demanding was the task? Was it simple or complex?”; Likert scale from 1 

(very low/simple) to 20 (very high/ complex)). Method appropriateness was measured with the item  

“How appropriate is the method for displaying Braille characters?” (Likert scale from 1 (inappropriate) to 7 

(very appropriate)). 

5.2. Results - Objective Data 

First, the number of correctly identified points for each character (see Tab. 1) was analyzed as the overall 

performance parameter. Repeated measures ANOVA with Method and Difficulty as within factors revealed a 

significant main effect of Method (F(2, 34) = 5.27, p < .05) and Difficulty (F(1, 17) = 6.99, p < .05) as well 

as a significant interaction of both factors (F(2, 34) = 4.97, p < .05). Pairwise comparisons with Bonferroni 

correction showed that the average number of correct points was significantly higher in the “SQ-R/UR” 

condition compared to the “SQ” (p < .05) and “3SP” condition (p < .01). As assumed, performance was 

better in the easy compared to the difficult character conditions. Interestingly, the significant interaction 

indicated that this difficulty effect varies across methods. Paired-samples T-tests indicated no significant 

difficulty effect for method “SQ” (t (17) = .6, ns.), a marginal trend for the method “SQ-R/UR”  

(t (17) = 1.37, p <.10, one-tailed testing) and a significant effect for method “3SP” (t (17) = 4.18, p < .001). 

Table 1. Correctly identified points 

Method Difficulty  Mean (%) SD (%) 

SQ Easy 0,92  0,12 

SQ Difficult 0,90 0,09 

SQ-R/UR Easy 0,98 0,05 

SQ-R/UR Difficult 0,97 0,06 

3SP Easy 0,96 0,05 

3SP Difficult 0,88 0,09 

5.3 Results - Subjective Ratings 

First, the subjective ratings listed in Tab. 2 were analyzed regarding mental workload (“How mentally 

demanding was the task? Was it simple or complex?”; Likert scale from 1 (very low/simple) to 20  

(very high/ complex)). Repeated measures ANOVA with Method as within factor yielded a significant effect 

(F(2, 34) = 12.68, p < .001). Subsequent pairwise comparisons with Bonferroni correction showed that 

method “SQ-R/UR” was rated as being significantly less demanding or complex as the other methods (both 

ps < .01). No meaningful difference was found between “SQ” and “3SP” (see Tab. 2, left). 

Finally, the overall appropriateness of the three methods for displaying characters was rated  

(“How appropriate is the method for displaying Braille characters”; Likert scale from 1 (inappropriate) to 7 

(very appropriate)) and results are listed in Tab. 2, right). Again, ANOVA indicated a significant overall 

effect (F(2, 34) = 5.34, p = .01) and pairwise comparisons revealed that ratings for method “SQ-R/UR” were 

significantly higher compared to the other conditions (both ps < .05). The ratings for the other methods did 

not differ significantly. 

 

 

 

 

 

ISBN: 978-989-8533-64-7 © 2017

42



Table 2. Subjective rating of mental workload (Likert scale from 1 (very low / easy) to 20 (very much / complex)) and of 

method appropriateness (Likert scale from 1 (inappropriate) to 7 (very appropriate))  

Method Workload Appropriateness 

 Mean SD Mean SD 

SQ 10,94 4,77 4,83 1,38 

SQ-R/UR 6,83 4,16 5,78 0,88 

3SP 11,67 4,97 4,72 1,27 

5.4 Discussion 

The data of the main study showed clear evidence that the best performance is reached with the sequential 

method that presents all (raised and unraised) cell dots (SQ-R/UR). Recognition rates of 97-98% were 

obtained for easy as well as for difficult characters. In line with the objective data, subjects also rated this 

method best in terms of mental workload and appropriateness. Similar results (96%) were achieved with the 

semi-parallel method that uses 3 tactors (3SP) at least for easy characters whereas the recognition of 

characters with more than two raised dots within a column led to significant lower recognition performance. 

Despite of the reliable distinction and localization of VibroTac’s tactor positions (correct detection rate of 

approx. 95% for single tactor positions, determined in previous studies by Schätzle and Weber (2015)), the 

sequential method did not lead to convincing results. Obviously, subjects had problems to identify and 

memorize the single dot positions when these were presented in a quick sequence of vibrotactile stimuli. 

Perhaps intensive training could lead to similar results for the method “SQ” and “SQ-R/UR”. Besides the 

difficulty to localize activated tactors, memorizing the sequence might also be challenging.  

In the sequential method that presents all (raised and unraised) cell dots (SQ-R/UR), most information is 

transmitted to the user. This might be the reason for the superior results obtained with this method. Since 

unraised dots are also represented haptically, another recognition strategy is possible: subjects memorize the 

full haptic sequence (like a rhythm) rather than localizing the individual tactor positions. It seems that the 

haptic sequence can be recalled easily. This might work even retrospectively assumed that there is a short 

break before the next character is started. The disadvantage of the “SQ-R/UR” method is the additional time 

in comparison to method “SQ” in order to present the unraised dots. 

Regarding the semi-parallel method “3SP”, the correct detection of activated tactors is a major challenge. 

In comparison with the other two methods, the difficulty and thus the number of raised dots has a significant 

effect on the performance. The assignment of cell dots to the three tactors is not quite intuitive. However, this 

seems not to be the reason for the moderate results obtained for difficult characters as with the same method, 

convincing results are reached for easy characters. 

6. CONCLUSION AND FUTURE WORK 

In this paper, a new approach of displaying Braille through vibrotactile stimuli at the wrist was presented. 

Each of the six Braille cell dots is mapped to one of the six wristband’s tactors. As the Braille coding itself is 

not altered, only the mapping between cell dots and tactors has to be learned. We performed a user study that 

aimed at evaluating the general usability of this approach and at the comparison of different mapping 

strategies (assignment of cell dots to tactors and temporal aspects). Due to the difficulty of recruiting blind 

people for such a time-consuming evaluation, the study was designed in a way that Braille literacy is not 

required. Thus, for a first evaluation of the approach we conducted the study with sighted people. 

Even with little training, very promising results were obtained. The evaluation of eight different mapping 

methods with different assignments of cell dots to tactors as well as temporal aspects revealed significant 

differences in terms of objective performance (activation pattern recognition) and subjective ratings. The 

sequential presentation of raised and unraised dots turned out to be the best method. However, in further 

studies with more intensive training it should be investigated whether similar results can be achieved with the 

method using sequential presentation of raised dots only or with the method based on semi-parallel output of 

raised dots with three tactors or based on parallel output.  
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The results of this study indicate that the mapping of Braille code to six tactors at the wrist is a reasonable 

approach and that reading Braille without using the fingertip seems to be possible. We expect better results for 

blind people as they are superior in tactile acuity and perception tasks than sighted people. The feedback we 

received from a blind person in a preliminary test was positive and encouraging to further proceed with the 

presented approach. Anyway, future studies with blind subjects are essential to optimize and investigate 

relevant issues. First of all, the required time to output characters or words has to be shortened to allow for a 

natural communication. If stimuli are displayed in a fast sequence, one should have in mind that effects such as 

spatial masking, apparent location or temporal enhancement may affect correct localization of stimuli and 

deteriorate the performance. Furthermore, the recognition of several words or sentences and the robustness of 

vibrotactile Braille cues in the presence of distractors e.g. when engaged in another task or when lifting objects 

should be investigated. In addition, reading performance of blind people should be compared with a baseline 

condition e.g. traditional fingertip Braille reading or vibrational Morse code. 
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