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Why physical modeling of fuel cells? 
 
• Better understanding of processes in the cell and their interaction  
• Insights on experimentally inaccessible properties  
• Simulation based prediction of cell performance and lifetime 
• Optimization of cell performance and durability 
 
 
Challenges:  
 
• Complex system: coupling of processes on very different time and length 

scales 
• Details of the involved mechanisms often unknown and material dependent 
• Heterogeneities within the cell require 2D and 3D cell models 

Motivation 
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Modeling Approach 
 

DLR.de  •  Chart 3 

Educt 

Product 

Educt 

Product 

CATHODE ANODE 

Multi-scale  
cell models 
 

Degradation 
 models 
 

Model  
validation 

0.5 1.0 1.5 2.0 2.5 3.0
-0.4
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

 

Radius  /  nm

 100% ECSA
   90% ECSA
   80% ECSA

 

PS
D 



 
• Modeling framework to investigate fuel cell/electrolyzer performance and 

degradation 
• Developed at DLR since 2013 based on the open source software DuMuX [1] 

 

NEOPARD-FC/EL: Numerical Environment for the 
Optimization of Performance And Reduction of 
Degradation of Fuel Cells/ELectrolyzers 
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NEOPARD-FC features 
• 2D and 3D discretizations of the cells  
• Transport models for the cell components  
• Electrochemistry models 
• Specific fluid systems for the different 

technologies 
• Transient simulations (e.g. impedances) 
 
Field of Application: 

• PEMFC 
• DMFC 
• SOEC 

 
[1]: Flemisch et al., 2011, Adv. Water Resour., 34(9). 



• 9 layers spatially resolved (channels, 
GDLs, MPLs, CLs, PEM) 

• Two-phase multi-component 
transport model 

• Charge transport in ionomer phase 
• Ionomer film model in the CLs 
• ORR: BV kinetics with doubling of 

Tafel slope 
• Platinum oxide model 
• Gas crossover through membrane 
• Non-isothermal 
• Realistic boundary conditions: 

lambda-control at fixed back 
pressure in potentiostatic and 
galvanostatic mode 
 

 

PEMFC Model Features 
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Open Questions 
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I. What are the contributions to experimentally measured 

impedance spectra? 
 
 
 

II. What are possible explanations for inductive phenomena 
observed at low frequencies[1]? 

[1]: Pivac & Barbir , 2015, J. Power Sources, 326, 112-119. 



Model Validation 
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• Model validation under various 
operating conditions is important 
for reliability 

• Different RH 
• Different pressure 
• Different stoichiometry 

 
• Strong effect of RH on cell 

performance (Tafel slope + 
transport) 

• High stoichiometry at 50% RH 
leads to lower performance          
 drying out overcompensates 
higher oxygen partial pressure 
 

• Model validation successful? 
 

 
 



Model Validation 
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Impedance measurements at various 
current densities for 30% RH and 50% 
RH: 
 
• Trends and frequencies are correctly 

described by the model 
 

• Total values still show a significant 
deviation 
 

• Inductive feature at low frequency can 
explain the difference between low 
frequency resistance and slope of iV-
curve 

 
 

 
 
 



Process Identification from EIS Simulation 
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Ionomer 

 Strong dependence of 
ionic conductivity on RH 
[1,2] causes inductive 
behavior (PEM and 
CCL) 
 

 Same effect for O2 
transport resistance in 
the CCL ionomer 

[1]: D. K. Paul et al., JES, 161 (2014) F1395. 
[2]: B. P. Setzler, F. Fuller JES, 162 (2015) F519. 



Process Identification from EIS Simulation 
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Electrochemistry 

 HOR at ~104 Hz 
 

 ORR at ~102 Hz: 
• HOR and Diffusion 

peaks are revealed 
 

 PtOx-formation causes 
inductive behavior at 
~10-2 Hz 
 



Process Identification from EIS Simulation 
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Transport 

 Knudsen and bulk diffusion 
are operative at ~102 Hz 

 
 Reduced hydration 

outweighs improved O2 
concentration  reduced 
cell performance 

 
 Concentration gradients 

along the channel cause 
capacitive peak at ~1 Hz 
 

Concentration gradients 
in the cell 



Model validation revisited 
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• Unknown effect at the cell borders 
leads to reduced cell performance 
 

• Stronger concentration gradients inside 
the cell (3D effects?) can explain the 
deviation of model and experiment  
 
 

Schematic! 
In reality 24 
bends 
along the 
flow 
channel  



• The development of predictive fuel cell models is challenging: 
• Complex interplay of many mechanisms on various time and length scales 
• Strong gradients within the cell require the development of 2D and 3D 

models 
• Model validation has to be performed under various operating conditions, 

ideally including the simulation of impedances to ensure model reliability 
 
 
• Inductive phenomena, observed in EIS at low frequencies (~10-2 Hz) may be 

caused by: 
• Platinum oxide formation 
• RH-dependent  ionic conductivity of the ionomer 
• Further RH-dependent mechanisms (O2 transport resistance in the CCL) 

Summary 
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Thank you for your attention 
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"It can scarcely be denied that the supreme goal of all theory is to make 
the irreducible basic elements as simple and as few as possible without 
having to surrender the adequate representation of a single datum of 
experience“ 
      Albert Einstein 



Process Identification from EIS Simulation 
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EIS without all mechanism 

 All major contributions to 
the impedance have 
been identified in the 
analysis 
 

 Remaining features are 
below 0.2 mΩ cm2 



 Increasing GDL thickness results in higher diffusion resistance                     
 negligible compared to concentration gradients due to geometry 

 
 Frequency of the diffusion peak: f ~ 1/d2            
 in accordance with Einstein-Smoluchowski relation: 

Process Identification from EIS Simulation 
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Cathode transport analysis 

2

2
d
Df =



 Increasing GDL thickness results in higher resistance due to               
diffusion and convection 
 

 Frequency of the convection peak: f ~ 1/d 

Process Identification from EIS Simulation 
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Anode transport analysis 



Process Identification from EIS Simulation 
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Transport analysis 

 Electroosmotic H2O flux 
through the PEM causes 
convective transport in the 
anode 

Convection in the anode 



Cathode catalyst utilization 
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ORR reaction rate distribution 
 
• Location of maximum 

reaction rate and distribution 
strongly depends on 
operating conditions 
 

• At high RH 
• Very homogeneous at 

low current densities 
 

• At low RH 
• Strong heterogeneities  

along channel  
• A significant part of the 

CCL is not used 
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• Multiphase Darcy approach + nonlinear complementarity function for robust 
treatment of phase transitions[1] 

• Arbitrary number of phases  here: gas + liquid 
• Arbitrary number of components 

 
 
 
 
 
 
 

 
• Knudsen diffusion in gas phase 

 

Two-phase transport model 
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[1]: Lauser et al., 2011, Adv. Water Resour., 34(8). 
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Weber-Newman model[1]: 
 
 
 
• H+: 
 
 
 
 
• H2O: 

 
 
 
 
 

• Gas species (O2, H2): 

Transport in the Polymer Electrolyte Membrane 
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[1]: Weber, Newman, 2004, J. Electrochem. Soc., 151(2). 
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• Electron transport in the BPPs, GDLs, MPLs, CL: 
 
 
 
 
 
• Proton transport in the CLs: 
 
 
 
 
• Proton transport strongly depends on RH [1,2] 
 
 

Electronic and Ionic Charge Balance in the Electrodes 
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[1]: D. K. Paul et al., JES, 161 (2014) F1395. 
[2]: B. P. Setzler, F. Fuller JES, 162 (2015) F519. 



• Model for ORR reaction rate taking into account 
• Oxygen transport through ionomer film 
• Resistances at gas/ionomer and ionomer/Pt interfaces[1]  

 
• Analytical solutions are possible for                  and  

 
• Reaction rate for                     : 

 
 
 
 
 

 
 
 
 
 
 
 

 
 

Ionomer film model 
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[1]: Hao et al., JES, 162 (2015) F854. 
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Numerical Treatment of Phase Transitions 
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NCP-equations for phase transitions[1] 

• If a phase is not present: 
 
 
 

• If a phase is present 
 
 
 
 
 

 

[1]: Lauser et al., 2011, Adv. Water Resour., 34(8). 
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• Equations 1-3 constitute a non-

linear complementarity problem 
 

• Solution is a non-linear 
complementarity function: 
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Physical Coupling: 
• Macroscopic Approach: 
• Local thermodynamic equilibrium 
 
 
 

Numerical Coupling: 
• Dirichlet-Neumann 
 
 
 

Model Coupling and Schroeder’s Paradox 
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