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Abstract

High Altitude Long Endurance (HALE) platforms are the aerial platforms capable
of flying in the stratosphere for long periods of time. This master thesis presents
aircraft system identification procedures geared towards such fixed wing platforms
where aerodynamic forces and moments are parametrically modelled with so-called
stability and control derivatives. The first part of the thesis addresses local system
identification procedures intended for controller synthesis at low altitude flights
whereas the second part of the thesis deals with a preliminary study on a new
global system identification method.
The local system identification procedure is based on the two step method, which
offers flexibility regarding the aerodynamic structure. Therefore, it is suitable for
the development of a system identification tool chain for various fixed wing plat-
forms. Various system identification experiments have been conducted to collect
flight test data. The parameters for the estimation of aerodynamic forces and mo-
ments are then found through an optimization procedure. Such parameters have
been validated using a validation set from flight test data and their applicability for
controller synthesis has been demonstrated.
Global system identification typically requires the collection of flight test data at
multiple points in the flight envelope and often, is combined with extensive Com-
putational Fluid Dynamics (CFD) solutions as well as wind-tunnel experiments.
Such an approach is time consuming and costly. This thesis presents a new method
to overcome the limitations of the current methodology by applying a parameter
search on VLM-based (Vortex Lattice Method) dynamic simulations of aircraft sys-
tem identification manoeuvres and correcting the estimated models with available
flight test data. The current study shows improvements in fidelity with decrease
in Root Mean Squared Error (RMSE) by factor 0.2 and 0.5 for x-axis and z-axis
forces in body frame respectively, while reducing the effort for obtaining a model
with similar fidelity.
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Symbols

Symbols

u, v, w x-axis velocity, y-axis velocity, z-axis velocity

p, q, r roll, pitch and yaw rates

φ, θ, ψ roll, pitch and yaw angle

X,Y, Z x-axis force, y-axis force, z-axis force

L,M,N x-axis moment, y-axis moment, z-axis moment

h altitude

E[ ] expectation operator

xAP measured state x from airdata probe

xest estimated state x

xGPS measured state x from GPS

xKF estimated state x from Kalman filter

xIMU measured state x with IMU

xm measured state x

Acronyms and Abbreviations

AP Air-data Probe

CFD Computational Fluid Dynamics

DLR Deutschen Zentrums für Luft- und Raumfahrt

HALE High Altitude Long Endurance

ETH Eidgenössische Technische Hochschule

EKF Extended Kalman Filter

GOF Goodness Of Fit

GPS Global Positioning System

IEKF Iterative Extended Kalman Filter

IEKS Iterative Extended Kalman Filter and Smoother

IMU Inertial Measurement Unit

NRMSE Normalised Root Mean Squared Error

RMSE Root Mean Squared Error

TIC Theil’s Inequality Coefficient

UAV Unmanned Aerial Vehicle

VLM Vortex Lattice Method

WV Wind Vane
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Chapter 1

Introduction

This thesis was accomplished within the Flying Robots Group of the Robotics and
Mechatronics Center at DLR in collaboration with the Fixed Wing Aerial Robotics
Group of the Autonomous Systems Lab at ETH Zurich

Within the flying robots group at Robotics and Mechatronics Center, research has
been focusing on fixed wing solar electrical platforms capable of stratospheric flight
for a long period of time. These High Altitude Long Endurance (HALE) platforms
have potential to provide an alternative solution to satellite technologies by oper-
ating above the clouds at a lower cost than satellites while offering flexibility and
maintainability. Thus, the future applications for these platforms can possibly range
from mobile communication networks to long term observations and environmental
measurements [1]. Elektra 2 in figure 1.1 is an example of such HALE platforms.
The topic of this master thesis is high fidelity aerodynamic modelling via aircraft
system identification for such fixed wing platforms.

1.1 Background and motivation

System identification has been chosen as the primary tool for high fidelity modelling
of HALE platforms. Aircraft system identification is the process of building math-
ematical models of an aircraft based on measurements. The typical aircraft system
identification problem involves determining the mathematical models of aerody-
namic forces and moments by identifying unknown aerodynamic parameters from
measurements of inputs and outputs. The outcome of the aircraft system identi-
fication is a model valid over a known region in the flight envelope with specific
uncertainty bounds. Due to the nature of the approach where traditional modelling
techniques are combined with data from real flight, aircraft system identification
tends to result in a highly accurate model.

The main motivation for the current project stems from practical considerations of
field robotics where the gap between the theory and practice is being challenged.
Currently, the Flying Robots Group uses a flight dynamics model from geometry
based approach where the aerodynamic database is created using the vortex lattice
method(VLM) [3]. However, the low fidelity of this type of dynamic model limits its
usage in controller synthesis, as the model offset from reality is typically too great
for robust offline tuning of control parameters which can then be useful in flight.
Consequently, the tuning of the control parameters is done manually in flight which
often consumes weeks of flight experiments. More importantly, HALE platforms
have wide ranges of operation and therefore, gain scheduling over different regions
of flight envelope is perhaps required. Thus, manual in-flight tuning may not be a
feasible option. In summary, the main motivation for a high fidelity aerodynamic
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Chapter 1. Introduction 2

Figure 1.1: Elektra 2 from SolarStratos roll out [2].

model is reducing the amount of effort or even avoiding the in-flight tuning of the
control parameters.

Additionally, high fidelity models of fixed wing platforms can be integrated into
on going research for HALE platforms at DLR. In particular, simulation of strato-
spheric mission and model based control for landing on moving platforms [4, 5]
are important milestones for research on HALE platforms. In close cooperation
with Elektra Solar GmbH (a spin-off from DLR) and SolarXplorers SA (project
SolarStratos [2]), the flying robots group is involved in the development of highly
efficient drives, avionics components, payloads and autonomy functionalities for au-
tonomous and optionally piloted solar high-altitude platforms and missions includ-
ing the development of manned solar aircraft, called Elektra 2, for stratospheric
flight. The initial verification of such developments require simulation of strato-
spheric mission. Furthermore, high fidelity model of the aircraft can be used to
improve the landing of aerial vehicles on the moving platforms - a novel landing
system that can increase payload capacity and operation availability of HALE plat-
forms by removing the landing gear.

1.2 Objectives and scope

The main objective of current study is the development of a high fidelity aerody-
namic model and modelling procedures which can reduce the amount of effort or
even avoid in-flight tuning of the control parameters for HALE platforms. Accom-
plishment of this objective requires solving following challenges or sub-objectives.

• Local system identification to obtain a mathematical model of high fidelity
level for HALE platforms which is valid over one region of flight envelope.

• Global system identification to obtain a mathematical model of high fidelity
level for HALE platforms which is valid over the entire flight envelope.
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Local aircraft system identification is a well defined research area where typical chal-
lenges arise from practice due to differences in system specifications and reliability.
In this line of argument, application of aircraft system identification techniques to
different fixed-wing platforms offers different practical challenges. In the context of
current project, a locally valid mathematical model of an aircraft must serve as a
first step towards high fidelity modelling for HALE platforms that is valid globally
and can be of practical use for controller synthesis.
Typical global system identification involves gathering of data at multiple points of
flight envelope, mainly with respect to altitude and mach number. Yet, such ap-
proach is time consuming and costly as it requires series of long flight test campaign.
An alternative is incremental model update where aerodynamic database from the
wind tunnel is updated with available flight test data in which the functional de-
pendencies between different aerodynamic sources are mapped through polynomial
expressions. Such methods are limited in its usage as extensive wind-tunnel tests
and CFD computation with highest fidelity levels are required. The main challenge
in the current project is to combine recent advances in system identification and
dynamic CFD simulations to reduce the development time and efforts.
Currently, HALE platforms are not available for flying at DLR and therefore the
fixed wing platforms in this master thesis research are limited to Elektra 1 and
Penguin UAV where longitudinal motion of Elektra 1 would be the main subject
for local and global system identification. Furthermore no high altitude flights are
conducted which limits the scope to low altitude. Yet, current research must serve
as a first step towards stratospheric flight for HALE platforms such as Elektra 2
as the methods being developed in this project must be validated at low altitudes
first with readily available platforms. Within the scope of the thesis the global
identification methods are applied to operating points outside the ”nominal” flight
conditions which were used to derive the model, but still constrained at low altitude.
In others words, low altitude flight with variations in true airspeed were used to
study the overall concept by applying the methods to other velocity points in the
flight envelope.

1.3 Flying robots

Elektra 1 [6] is a single seat, solar powered composite aircraft developed by Elektra
Solar GmbH with high aspect ratio of 14.70 (see figure 1.2). The main geometric
parameters of Elektra 1 are: MTOW = 300kg, wing area S = 8.2m2, wing span b
= 13m and the mean aerodynamic chord c = 0.81m. The moment of inertia has
been provided by the manufacturer. Elektra 1 is equipped with various sensors for
its optionally piloted mode and measurements for system identification. In partic-
ular MTi 100-series provide complete MEMS based IMU, VRU, AHRS and GNSS
where it provides acceleration and angular rate measurements in addition to mag-
netometer measurements to estimate the orientation of the aircraft. GNSS provides
latitude, longitude and altitude measurements. Additionally, PSS-8 airdata probes
located at the right wing provides measurements for true airspeed. Overall mea-
surements are available at 50Hz whereas IMU measurements are sampled at 400Hz
respectively. The aircraft has commonly used control surfaces namely aileron, ele-
vator and rudder while thrust is provided by an electric motor driving a propeller.
Wireless LAN is used for communication with the ground station. The software for
the real time computer running QNX Neutrino RTOS is automatically generated
from MATLAB/Simulink models through auto-code generation.
Penguin BE [7] in figure 1.3 is an electric UAV from UAV Factory Ltd. with a high
wing and negative V-tail configuration. The main geometric parameters of Penguin
UAV are: MTOW = 21.5kg, wing area S = 0.841m2, wing span b = 3.298m and
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Figure 1.2: Elektra 1 in flight

Figure 1.3: Penguin UAV landing on the moving car

the mean aerodynamic chord c = 0.32m. The mass and the moment of inertia were
computed using mass point measurements. Penguin BE is the aerial platform for
the research on novel landing systems and thus, the UAV is equipped with various
sensors by DLR for navigation and control. Particularly, Penguin UAV is equipped
with 3DM-Gx3-25 IMU from MicroStrain, PSS-8 airdata probe and Novatel Flex-
Pak6 RTK receiver and antenna. 3DM-Gx3-25 IMU collects linear acceleration, an-
gular velocity and orientation of the aircraft at the sample rates of 100 Hz whereas
PSS-8 airdata probe located near the tip of the fuselage, measures true airspeed
and temperature at the sampling rate of 20 Hz. Highly accurate differential GPS
from NovAtel collects latitude, longitude and altitude measurements at the rate of
20 Hz. Overall, the measurements are available at 20Hz. The UAV has aileron
and ruddervator (negative V-tail) for its control surfaces while the trust is provided
by a geared brushless DC motor with 19×11 inch propeller in push configuration.
Similar to Elektra 1, wireless LAN is used for communication with the ground sta-
tion and the software for the real time computer is automatically generated from
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MATLAB/Simulink models through auto-code generation.

1.4 Outline of the thesis

Chapter 2 presents the local aircraft system identification for Elektra 1. The de-
scription of the local system identification toolbox can be found in chapter 3 where
its application to Penguin BE is highlighted. The chapter 4 presents the global
aircraft system identification for Elektra 1.
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Chapter 2

Local Aircraft System
Identification for Elektra 1

This chapter presents the local aircraft system identification applied to symmetric
motion of Elektra 1. The result of the local aircraft system identification is a
parametrized aerodynamic model which is valid over the neighborhood of the known
region or trim point where the data has been gathered. The development of a
mathematical model with sufficient fidelity for Elektra 1 would facilitate not only
controller synthesis and nonlinear flight simulation at low altitude, but also serve
as a stepping stone towards the global system identification and consequently, an
assistance to gain-scheduling and simulation of the entire stratospheric mission.

The two step method is an equation error method in the time domain where the
external force and moment acting on the aircraft are reconstructed from flight data
(step one) and the aerodynamic derivatives are identified by applying the least
squares method on the reconstructed force and moment (step two). This method
does not involve the minimization of errors which are directly computed from the
aircraft states. The advantages of two step method over output and filter error meth-
ods are (1) flexibility for the selection of the nonlinear aerodynamic model structure
[8, 9, 10] (the equation error approach allows rapid investigation of various model
structures through the linear projection of feature space in optimization process
[8, 10]) and (2) extensibility to incremental model update scheme. Moreover, stud-
ies have shown that the accuracy of aerodynamic models from these approaches
yield comparable results to the output error method [11]. Yet its optimization
through the least squares method is susceptible to the noise and therefore, two step
method requires both estimation and smoothing of the aircraft states, force and
moment through extensive data compatibility check [10]. A frequency domain ap-
proach has not been considered due to the difficulty in producing chirp and Pseudo
Random Binary Sequence (PRBS) signals for manned aircraft. Furthermore, time
domain methods are the most appropriate and direct when one is looking for real
time physical parameter estimates for the nonlinear aerodynamic models. [10]

Local aircraft system identification is a well defined research area and there are
several well regarded texts on aircraft system identification. Among them, [10]
is one of the widely accepted text for time domain approaches and is used as a
main reference for this work. Additionally, an overview and theoretical foundations
can also be found in [12, 13] whereas practical examples of two step method can
be found [9, 8]. Yet, typical challenges in aircraft system identification stem from
differences in system specifications and reliability [12, 10]. Therefore, the main
contribution of the work presented in this chapter is application of two step method
to a new aerial platform Elektra 1, and development of a custom tool chain for

7



Chapter 2. Local Aircraft System Identification for Elektra 1 8

aircraft system identification within the Flying Robots Group for their research on
HALE platforms.

The experiment design (section 2.1), application of the two step method (section
2.2 and 2.3), validation of the aerodynamic model (section 2.4), limitations and
recommendations (section 2.5) are presented sequentially in this chapter.

2.1 Data gathering

An overview of data gathering from designing and performing the experiments, and
recording of system inputs and outputs can be found in [10, 12]. The conventions
are as follows: u and w are the x-axis and z-axis linear velocities along the body
axes. q is the y-axis angular velocity about the body axes and de is the elevator
deflection. The angle of elevator deflection is defined positive when its trailing edge
is deflected upwards. X and Z are x-axis and z-axis force along the body axes
whereas M is y-axis moment around the body axes.

Figure 2.1: Pitching moment derivatives w.r.t elevator (left) and throttle (right)

Figure 2.2: X-axis force derivatives w.r.t elevator (left) and throttle (right)

The parameters to be identified are stability and control derivatives of the aircraft
(see [14] for their definitions). One of the key criteria in experiment design is the
collection of data that contains enough information about the parameters to be
identified. In other words, such parameters must have a dominant influence in the
collected time histories of the aircraft motion. According to [15] a derivative is
considered identifiable when its term has a magnitude of at least 10% of the largest
term’s magnitude and such analysis requires frequency response magnitudes of the
various parameters are plotted as a function of the input signal frequency as shown
in figures 2.1, 2.2 and 2.3.
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Figure 2.3: Z-axis force derivatives w.r.t elevator (left) and throttle (right)

Note that a geometry based modelling method [3] has been used to compute the
a priori model of Elektra 1 aircraft. The frequency response magnitudes of the
longitudinal derivatives with respect to elevator and throttle in figures 2.1, 2.2 and
2.3 have been computed from such a priori aerodynamic model with the method
proposed in [10]. According to [10] the regions of identifiability typically lie between
0.1 rad/s and 1 rad/s (corresponds to phugoid) and also, between 1 rad/s and 10
rad/s. This is in alignment with the results shown in figures 2.1, 2.2 and 2.3. It
can be observed from these figures that the parameters are identifiable via elevator
commands with the frequencies around 0.1 rad/s and 8 rad/s, and via throttle
commands with the frequencies around 2.3 rad/s. Typical time domain inputs
such as pulse, DLR3211 [10] and doublet are chosen with specific time steps and
magnitude such that the energy of the input signals are maximized in the region
around the required frequencies. See figures 2.4, 2.5 and 2.6. Note that these inputs
signals are designed taking the inaccuracies of the a priori model. Consequently the
bandwidth where the energy of the input signals are maximized, are chosen in range
of 0 rad/s to 2 rad/s for phugoid and 2 rad/s to 12 rad/s for short period.
The control derivative Xde is the parameter that shows a constant negative value
over all the frequencies (see figure 2.2). Furthermore Xde is not identifiable us-
ing the designed input signals (see figures 2.4, 2.5 and 2.6 for the designed input
signals). This is because its magnitude is always below 10% of the largest term’s
magnitude over the selected bandwidth for the input design. According to [14] Xde

represents the axial force due to the elevator which captures the contribution of the
tail plane drag and lift. Assuming negligible drag of the tail plane and relatively
small deflection of the elevator, the term Xde is considered to have non-significant
effect to the force in x-axis along the body axes.

Figure 2.4: Phugoid manoeuvre - elevator (left) and energy spectrum (right)
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Figure 2.5: Short period manoeuvre - elevator (left) and energy spectrum (right)

Figure 2.6: Thrust variation manoeuvre - throttle (left) and energy spectrum (right)

During the flight test the aircraft is first manually trimmed by the pilot at cruise
speed under 1 km altitude. Designed control inputs are applied in open loop for
the longitudinal motion. All the manoeuvres namely phugoid, short period and
thrust variation are executed multiple times each in order to mitigate effects of
variations in atmospheric conditions and offsets in the initial conditions. In total
3 phugoid, 2 short period and 4 thrust variation manoeuvres could be gathered.
Subsets of the data are discarded based on an analysis of the influence of lateral
motion on longitudinal motion. Other subsets of the data are discarded due to
wrong trim settings (in case of all thrust variation manoeuvres) and wrong shape
in control inputs (in case of 3211 manoeuvre). Note that deviations from the exact
planned execution of the time steps of input signals can be tolerated but the shape
of the signal must be kept as accurate as possible [12]. In conclusion two phugoid
manoeuvres were used each, to identify and validate the locally identified model
and the rest of the data set have been discarded due to inadequacy.

In summary 2 phugoid motions could be gathered for the identification and thus,
the ratio between training and validation set was 5:5. This ratio is far from the
ideal where the author expected to use 60% to 80% of the data for the parameter
identification and 20% to 40% of the data for the model validation. Use of more data
is recommended as it can attribute to more robustness in parameter identification
with respect to atmospheric conditions.

Furthermore the data gathering procedure must be improved for Elektra 1. Firstly,
it is recommended to turn on the autopilot to stabilize lateral motion while executing
longitudinal system identification manoeuvres in open loop. This is to reduce the
influence of lateral motion on longitudinal motion. Secondly, use of automation
for the execution of designed input signals must be considered. Although [12, 10]
recommends the manual execution of manoeuvres by the pilot the team concluded
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that use of autopilot is favourable for this size of manned aircraft. One of the
possible solution can be a procedure where the aircraft is first manually trimmed
by the pilot with a graphical assistance and a button to automatically execute the
input signals is pressed.

2.2 Nonlinear flight path reconstruction

Flight path reconstruction or data compatibility check has three purposes namely
(1) estimation of aerodynamic force and moment from measurements, (2) correc-
tion of the measurements due to sensor bias and drift, and (3) smoothing of the
measurements. Since least squares for parameter identification is susceptible to
noises [10] and parameters to be identified are typically aircraft stability and con-
trol derivatives that are anticipated by physical phenomena, fulfilling the above
mentioned purposes is a key step to the two step method. The approach taken is
called estimation-before-modelling [10, 16, 17] with optimal filtering that accounts
noises in both input and output variables. In this study EKF with backward kalman
smoothing (EKS), iterative EKF with backward smoothing (offline IEKS) and it-
erative EKF (online IEKS) have been implemented and compared. Note that the
algorithms for the nonlinear flight path reconstruction is performed on the data
in batch. Here, the data in batch refers to the data sets where different system
identification manoeuvres (e.g phugoid 1, phugoid 2, short period 1 and so on)
with slight different trim conditions. In this way the correlation between various
instrumentation errors can be avoided in practice [10].

2.2.1 Process and measurement models

The implementation of EKF requires process and measurement model in the form
of the equation 2.1 where x(t) is the vector of relevant states, u(t) is the vector
of measured inputs, y(t) and z(tk) is the vector of observations in continuous and
discrete settings respectively. Lastly, w(t) and v(tk) are the noises from process and
measurement models at continuous time variable t and discrete time tk at step k.

ẋ(t) = f(x(t), u(t),w(t)), x(t0)
y(t) = g(x(t))
z(tk) = y(tk) + v(tk)

(2.1)

The relevant state vector is defined as x(t) = [xac(t), A(t), Θ]T where the aircraft
states are defined as xac(t) = [u, v, w, p, q, r, φ, θ, ψ, h]T . A(t) = [A0, A1,
A2]T represents the vector of force and moment as the third order Gauss-Markov
process where A0 = [X, Y , Z, L, M , N ]T , A1 = Ȧ0 and A2 = Ȧ1. Furthermore
the instrumentation error vector is Θ = [∆ax, ∆ay, ∆az, ∆p, ∆q, ∆r, ∆α, ∆β,
KVa

]T which includes biases and scaling factors for the sensors. No wind vane or
5 hole probe were attached in Elektra 1 to measure the angle of attack α and side
slip angle beta. Yet an effort to make the system identification tool box as universal
as possible was made and therefore, possible use of wind vane and 5 hole probe is
taken into account even for Elektra 1.

The aircraft states xac(t) are governed by aircraft equation of motion described in
equation 2.2. The aircraft is assumed to be a rigid-body with no wind and also,
equation 2.2 is expressed in the body fixed frame with its origin in the center of
gravity. Elaboration on the notation is as follows: [u, v, w, p, q, r] denote body axis
linear and angular velocities along and about the Xb, Yb, Zb axes at the center of
gravity. The Euler angles are the orientation of aircraft (body axes) with respect to
the Earth-fixed inertial reference frame (north-east-down) and are [φ, θ, ψ] or roll,
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pitch and yaw angles. h is the altitude from GPS which is the inertial position
above the WGS84 ellipsoid or mean sea level.

u̇ = −qw + rv − g sin θ + CFx

v̇ = −ru+ pw + g cos θ sinφ+ CFy

ẇ = qu− pv + g cos θ cosφ+ CFz

ṗ = pqC11 + qrC12 + qC13 + CMx + CMzC14

q̇ = prC21 + (r2 − p2)C22 − rC23 + CMy

ṙ = pqC31 + qrC32 + qC33 + CMx
C34 + CMz

φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ sec θ + r cosφ sec θ

ḣ = u sin θ − v cos θ sinφ− w cos θ cosφ

(2.2)

In the above equations [CFx , CFy , CFz , CMx , CMy , CMz ] are normalized force and
moment with respect to mass and appropriate moment of inertia in the above
equation. Note the inclusion of additional differential equations for the angular
rates p, q, and r. See [18, 16, 17] for the derivation and use of such differential
equations for the angular rates. Unlike the widely used equations of motion [19, 10]
for angular rates the numerical differentiation of angular rates is avoided. The
coefficients Cij for i = 1, 2, 3 and j = 1, 2, 3, 4 can be found in equation 2.3.

C11 =
Ixz(Iz+Ix−Iy)
IxIz−I2xz

C12 =
Iz(Iy−Iz)−I2xz

IxIz−I2xz

C13 = 0 C14 = Ixz

Ix

C21 = Iz−Ix
Iy

C22 = Ixz

Iy

C23 = 0

C31 =
Ix(Ix−Iy)+I2xz

IxIz−I2xz
C32 =

Ixz(Iy−Iz−Ix)
IxIz−I2xz

C33 = 0 C34 = Ixz

Iz

(2.3)

In an estimation-before-modelling approach the force and moment are modeled
as a third order Gauss-Markov process as shown in equation 2.4 which yields a
quadratic interpolation polynomial as a function of time. One can imagine an auto-
regressive process of order 3 where its polynomial coefficients are updated by the
recursive algorithm at each time step. An advantage of such approach is tolerance
to low measurement sampling rate and sensor noise for the construction of force
and moment [20]. In equation 2.4 ωA0

, ωA1
and ωA2

are Gaussian white noises.Ȧ0

Ȧ1

Ȧ2

 =

0 1 0
0 0 1
0 0 0

A0

A1

A2

+

wA0

wA1

wA2

 (2.4)

As shown in equations 2.5 and 2.6 accelerometer biases are modelled as Markov pro-
cess whereas the other instrumentation errors are assumed to be constants. Sources
of biases and scaling factors for the sensors can be due to the wrong mounting
of IMU and air probe, manufacturing errors, calibration errors and measurement
drift from inherent characteristics of the sensors. These biases and scaling factors
for the IMU and air probe are included as states of the EKF. In this way unbi-
ased and minimum mean squared estimation of sensor biases and scaling factors is
achieved where deviation of left and right hand side of equation 2.2 with respect to
measurements are stochastically attributed to instrumentation errors.

˙∆ax = − 1
τ∆ax + w∆ax

˙∆ay = − 1
τ∆ay + w∆ay

˙∆az = − 1
τ∆az + w∆az

(2.5)
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In equation 2.5 τ are time constants and typically chosen between 1 and 10. The
value 10 has been chosen for the current implementation. w∆ax , w∆ay and w∆az are
white noises associated with Markov processes. Modelling of accelerometer biases
as Markov process is motivated from observability or reconstructibility analysis. See
[21, 22] for the applicability of both linear and nonlinear observability analysis in
selecting the instrumentation errors.

Θ̇ = 0 (2.6)

The vector of constant instrumentation errors Θ contain biases related to angular
velocities ∆p, ∆q, ∆r, scaling factor for true airspeed KVa

and biases for angle of
attack and side slip angle ∆α and ∆β. All the instrumentation errors are included
in the measurement equations listed below.

Define y(t) = [um, vm, wm, pm, qm, rm, φm, θm, ψm, hm, Vam , αm, βm, axm
,

aym , azm ]T and consequently z(tk) = [uGPS, vGPS, wGPS, pIMU, qIMU, rIMU, φKF,
θKF, ψKF, hGPS, VaAP , αest, βest, axIMU , ayIMU , azIMU ]T . The Euler angles φKF,
θKF, ψKF are estimated using a Kalman filter (KF) where the inherent drawbacks
of accelerometer and gyroscope can be mitigated. The αest and βest are estimated
using their geometrical relation to body axes linear velocities assuming no wind.
The works presented in [23] can also be used for computing αest and βest. The
measurement model can be found in equations 2.7, 2.8 and 2.9.

um(t) = u(t), uGPS(tk) = um(tk) + vu(tk)
vm(t) = v(t), vGPS(tk) = vm(tk) + vv(tk)
wm(t) = w(t), wGPS(tk) = wm(tk) + vw(tk)
pm(t) = p(t) +∆p, pIMU(tk) = pm(tk) + vp(tk)
qm(t) = q(t) +∆q, qIMU(tk) = qm(tk) + vq(tk)
rm(t) = r(t) +∆r, rIMU(tk) = rm(tk) + vr(tk)
φm(t) = φ(t), φKF(tk) = φm(tk) + vφ(tk)
θm(t) = θ(t), θKF(tk) = θm(tk) + vθ(tk)
ψm(t) = ψ(t), ψKF(tk) = ψm(tk) + vψ(tk)
hm(t) = h(t), hGPS(tk) = hm(tk) + vh(tk)

(2.7)

Equation 2.8 assumes zero atmospheric disturbances. Additionally the biases and
scaling factors are on the measurements of airdata probe (AP), estimated angle of
attack and side-slip angle.

Vam(t) = Kva

√
u(t)2 + v(t)2 + w(t)2

VaAP(tk) = Vam(tk) + vva(tk)

αm(t) = arctan w(t)
u(t) +∆α

αest(tk) = αm(tk) + vα(tk)

βm(t) = arctan va(t)√
u(t)2+v(t)2+w(t)2

+∆β

βest(tk) = βm(tk) + vβ(tk)

(2.8)

In equation 2.9 the accelerometer measurements are expressed. The bias terms are
included and the offset in the location of IMU (xIMU, yIMU and zIMU) with respect
to the center of gravity is corrected.
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axm
(t) = Fx(t)

m − (q(t)2 + r(t)2)xIMU + (p(t)q(t)− ˙r(t))yIMU

+(p(t)r(t) + q̇(t))zIMU +∆ax
axIMU(tk) = axm(tk) + vax(tk)

aym(t) =
Fy(t)
m − (p(t)q(t) + ṙ(t))xIMU + (p(t)2 + r(t)2)yIMU

+(q(t)r(t) + ṗ(t))zIMU +∆ay
ayIMU

(tk) = aym(tk) + vay (tk)

azm(t) = Fz(t)
m − (p(t)r(t)− q̇(t))xIMU + (q(t)r(t) + ṗ(t))yIMU

+(p(t)2 + q(t)2)zIMU +∆az
azIMU(tk) = azm(tk) + vaz (tk)

(2.9)

The state equations are presented where x(t) ∈ R37×1 and y(t) ∈ R16×1.

2.2.2 Forward and backward extended Kalman filter

A weighted combination of estimates from forward and backward Kalman filter
results in smoothed estimate. In this way signals are both filtered and smoothed
while reducing the inherent bias of the forward EKF estimates [24, 25]. An algorithm
to combine both filtering and smoothing using EKF is addressed here. For the
interested readers more details about optimal filtering and smoothing in the context
of path reconstruction can be found in [10] and references therein.
In Kalman filter and smoothing the terms a priori and a posteriori refer to the
estimation step k before the measurement and after the measurement k respectively
in the context of forward passing. The term smoothed here refers to the backward
pass estimation from the step N to 1. The following variables are defined.

1. A priori estimate of the states x̄(k) ∈ R37×1.

2. A priori covariance P̄ (k) ∈ R37×37.

3. A posteriori estimate of the states x̂(k) ∈ R37×1.

4. A posteriori covariance P̂ (k) ∈ R37×37.

5. A smoothed estimate of the states xS(k) ∈ R37×1.

6. A smoothed covariance P S(k) ∈ R37×37.

The Kalman filter starts with initialization. Then a posteriori followed by a priori
is successively repeated at each time step k for all k from 1 to N. After completion
of forward Kalman filter, smoothed is executed backward for time step k from N to
1.

Initialization

At time step k=0 the estimate of the states and covariance is initialized with equa-
tion 2.10 where in the formulation of Bayesian tracking problems x0 is a stochastic
variable with an unknown probability density function.

x̂(0) =E[x(0)]

P̂ (0) =E
[
(x(0)− x̂(0))(x(0)− x̂(0))T

] (2.10)

In practice, initial measurements without any pre-filtering and averaging have been
used for the initialization of the EKF states. These initial measurements correspond



15 2.2. Nonlinear flight path reconstruction

to the first data point under the trim conditions for all the system identification
manoeuvres. Apart from aircraft states, the force and moment were initialized
using the aircraft equations of motion (see equation 2.2). Derivatives of the force
and moment, and all the measurement biases were initialized as zero. The initial
covariance matrix is given in equation 2.11.

P̂ (0) = diag (0.2I3, 0.01I3, 0.001I3, 1, 0.001I6, 0.01I6, 0.01I6, I12, ) (2.11)

A Priori

The dynamics of state estimate x̄ and error covariance P̄ at a priori is given by the
equations 2.12 and 2.13. See equation 2.13 for the definitions.

x̄(k + 1) = x̂(k) +

∫ k+1

k

f(x̂(t), um(t), θ, t)dt (2.12)

P̄ (k + 1) = Φ(k + 1)P̂ (k)ΦT (k + 1) +Ψ(k + 1)B(k)Q(k)BT (k)ΨT (k + 1) (2.13)

Typically the state and covariance dynamics at a priori is integrated from k to k+1
where the state and covariance estimate of a posteriori is used. MATLAB’s ode45
function is utilized for the numerical integration of state and covariance dynamics.
The function ode45 is based on an explicit Runge-Kutta of order (4,5) and is a
single step solver. Details on numerical integration methods can be found in [10]
and the references therein.

A(k) := ∂f(x(t),um(t),0)
∂x(t)

∣∣∣∣
x=x̂(k),um=u(k)

, Φ(k) := eA(k)∆t

B(k) := ∂f(x(t),um(t),0)
∂u(t)

∣∣∣∣
x=x̂(k),um=u(k)

, Ψ(k) :=
∫∆t
0

eA(k)τdτ

C(k) := ∂g(x(t))
∂x(t)

∣∣∣∣
x=x̂(k)

(2.14)

In equation 2.14 the matrix A(k) ∈ R37×37 is Jacobian matrix of the process model
which is linearized around x = x̂(k) whereas the matrix Φ(k) ∈ R37×37 is the
state transition matrix of the linearized model. The matrix B(k) ∈ R37×37 is
called noise input matrix and Ψ(k) ∈ R37×37 is integral of the state transition
matrix. MATLAB’s c2d function is utilized to compute Ψ(k) and Ψ(k) from A(k)
and B(k) with respect to the sample time ∆t. The matrix c(k) ∈ R16×37 is the
Jacobian matrix of the measurement model and is used to compute estimated state
and covariance at a posteriori.

A Posteriori

The measurements are updated at posteriori and the equation 2.15 can be used
to compute the EKF estimate and covariance. Kalman filter outputs the unbiased
estimates with minimum mean squared error. Intuitively Kalman Filter determines
the weight between its measurements and process model by solving an optimization
problem or Algebraic Riccati Equation where such weight is embedded in gain
matrix K(k) in equation 2.15. Since the process model assumes no process noise
for aircraft equation of motion and bias dynamics, the resulting EKF estimate x̂(k)
for k from 0 to N corrects for sensor biases. Lastly the optimal properties of the
Kalman Filter are lost in EKF. The linearization of the nonlinear system must
approximate the nonlinear system for EKF to resemble the optimal properties of
the Kalman Filter.
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K(k) =P̄ (k)CT (k)(C(k)P̄ (k)CT (k) +R(k))−1

x̂(k) =x̄(k) +K(k)(z(k)− g(x̄(k)))

P̂ (k) =(I −K(k)C(k))P̄ (k)(I −K(k)C(k))T +K(k)R(k)KT (k)

(2.15)

The process and measurement covariance matrices Q(k) ∈ R37×37 and R(k) ∈
R16×16 in equations 2.13 and 2.15 are the parameters of EKF where higher values
of Q(k) and R(k) damps the weight of the process and measurement models re-
spectively. The matrix Q(k) is defined positive semi-definite whereas the matrix
R(k) must be positive definite. In practice the noises are assumed decoupled and
diagonal matrices are used for Q(k) and R(k). See equations 2.16 and 2.17.

Q(k) = diag (010, 100I3,03, 100I3,03, 1000I3, 1000I3, 1000I3,06)
2

(2.16)

R(k) = diag
(

0.05I3, 0.2
π

180
I3, 0.3

π

180
I3, 2, 0.05, 5

π

180
I2, 0.03I3

)2
(2.17)

As rule of thumb, the matrix R(k) is set to the variances of the measurements us-
ing the standard deviations of the on-board sensors provided by the manufacturer.
Innovation and the sequence of normalized innovations squared metrics were used
to assist the tuning of the matrix Q(k) to avoid incorrect application of the process
and measurement noise co-variance that results in either underestimation or over-
estimation. Such metrics are used to check the consistency of the Kalman filter by
ensuring unbiasedness and correct error variation of the estimates. Read [26, 27]
for more details on normalized innovations squared testing.

Kalman smoothing

The smoothed state estimates and the error covariance matrix propagation can be
computed using the equation 2.18 which runs backward for k from N to 0. See
[10] and references therein for more information about the algorithm and their
derivation.

KS(k) =P̂ (k)ΦT (k + 1)P̄−1(k + 1)

xS(k) =x̂(k) +KS(k)(xS(k + 1)− x̄(k + 1))

P S(k) =P̂ (k) +KS(k)(P S(k + 1)− P̄ (k + 1))KT
S (k)

(2.18)

Similar to the optimal filtering which typically gives an estimate that maximizes
its conditional probability given the measurements up-to time step k, the optimal
smoothing results in estimates that maximizes its conditional probability given all
the measurements. Note that path reconstruction with EKF filtering and smoothing
is done offline in batch (the sequence of log data at different times stitched together).
Applying path reconstruction simultaneously for all the collected manoeuvres in
batch mode provides decoupled estimates of the scale factors and biases by avoiding
the correlations between these parameters [10].

2.2.3 Iterative extended Kalman smoothing - offline

One of the drawbacks of EKF is linearzation where significant nonlinearities can af-
fect the accuracy of the estimation. [22] and references therein presents an Iterative
Extended Kalman Filter (IEKF) which is based on local iterations of linearization
in each sample interval. These local iterations improves the reference trajectories
for linearization in the presence of nonlinearity. The iterator algorithm is presented
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in equation 2.19. Note that parenthesis for the time step k has been moved the
subscript (K(k) = Kk as an example) for the definitions provided in section 2.2.2.

ξi+1 =x̄k +Kk(ξi)[zm − gk(ξi)−Ck(ξi)(x̄k − ξi)]

P̂k =[I −Kk(ξl)Ck(ξl)]P̄k[I −Kk(ξl)Ck(ξl)]
T +Kk(ξl)QK

T
k (ξl)

(2.19)

Note the notations i = 1, 2, ..., l, ξ1 = x̄k and x̂k = ξl. In IEKF the iterator
algorithm presented above is repeated at each sample interval. The gain matrix
Kk, the measurement equation gk and its linearization matrix C are computed
during these iterations. The iterations are terminated when ‖ξi+1 − ξi‖2 < ε. In
this way the reference trajectory where the measurement equations are linearized
are updated in each iterations within the same sample interval. This improves the
estimation error resulting from linearization errors. The process covariance Q is
given in equation 2.20 whereas the measurement covariance R is given in equation
2.17.

Q(k) = diag (010, 100I3,03, 100I3,03, 1000I3, 1000I3, 1000I3,06) (2.20)

Furthermore IEKF is combined with backward Kalman smoothing presented in the
equation 2.18. Since the backward Kalman smoothing is an offline procedure this
algorithm is called offline iterative extended Kalman smoothing (offline IEKS).

2.2.4 Iterative extended Kalman smoothing - online

The offline IEKS algorithm reduces the effects of non-linearity present in the mea-
surement equations. In the online IEKS algorithm effects of non-linearity in the
process equations are also reduced by updating the reference trajectory for the lin-
earization of process equations. The online IEKS algorithm is presented in the
equation 2.21. [22] and references therein presents the online IEKS algorithm.

ξi+1 =x̄k +Kk(ξi)[zm − gk(ξi)−Ck(ξi)(x̄k − ξi)]
ζi+1 =x̂k−1 +Wk(ζi)[ξi+1 − x̄k]

(2.21)

Note the notations i = 1, 2, ..., l, ξ1 = x̄k and ζ1 = x̂k−1. Please refer to equation
2.22 for the definitions used in the equation 2.21.

x̃k(ζi) =ζi +

∫ tk

tk−1

f(x̃(τ), um(τ), τ)dτ

x̄k =x̃k(ζi) +Φk(ζi)(x̂k−1 − ζi)

P̄k =Φk(ζi)P̂k−1Φ
T
k (ζi) + Ψ(ζi)QΨ

T (ζi)

Kk(ζi, (ξi)) =P̄kC
T
k (ξi)[Ck(ξi)P̄kCk(ξi)

T +R]−1

Wk =P̂kΦ
T
k P̂

T
k

(2.22)

Within each time step k the equation 2.21 is iterated until ‖ξi+1 − ξi‖2 < ε and
‖ζi+1 − ζi‖2 < ε. Then the estimate and the covariance matrix are updated using
equation
2.23.

x̂k =ξl

P̂k =[I −Kk(ξl, ζl)Ck(ξl, ζl)]P̄k[I −Kk(ξl, ζl)Ck(ξl, ζl)]
T

+Kk(ξl, ζl)QK
T
k (ξl, ζl)

(2.23)

Note that the process covariance Q is given in equation 2.24 whereas the measure-
ment covariance R is given in equation 2.17.

Q(k) = diag (010,03,03,03,03, 10I3, 10I3, 1000I3,06) (2.24)
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Three different nonlinear path reconstruction methods have been discussed and
implemented as part of the local system identification tool chain. An advantage
of the online IEKS is its online capabilities. For example the online IEKS can be
used for online system identification. Yet it takes about 15 iterations to converge
which is computationally expensive. For the following sections offline IEKS will be
used as it only requires about 4 iterations in each time step while providing better
performance than EKS algorithm.

2.2.5 Results of flight path reconstruction

The results of flight path reconstruction are shown in figures 2.7, 2.8, A.1 and 2.9
where two phugoid manoeuvres are shown in batch. The vertical line separates
them. In figure 2.7 the measured longitudinal states of the aircraft are compared to
the IEKS estimates. The estimates of offline IEKS do not deviate from the measured
flight test data. Furthermore the x-axis and z-axis accelerations are smoothed. The
mean innovation for p,q,r are 4.8·10−6, 2.1·10−5 and 6.9·10−6 respectively while
the mean innovation for ax,ay,az show -0.022, 0.005 and -0.009 respectively. These
values indicates that the estimation is unbiased with given initialization and the
choice of process and measurement covariance matrices.
Figure 2.8 compares the IEKS estimate of longitudinal forces and moments to the
longitudinal force and moment constructed using the direct substitution of raw
measurements into the aircraft dynamics in equation 2.2. From visual inspection
the smoothed estimate of force and moment smooth the noise in measurements.
In figure A.1 the estimation of bias and scaling factors is shown. The bias from
inertial measurements are ∆ax = 0.012 m/s2, ∆ay = 9.72 · 10−5 m/s2, ∆az =
−0.0082 m/s2 for linear accelerations and ∆p = −1.21 · 10−4 rad/s, ∆q = −4.971 ·
10−4 rad/s, ∆r = −6.428 · 10−4 rad/s for angular velocities. The scaling factor for
true airspeed is estimated as Kva = 1.5 whereas the bias for angle of attack and
angle of side-slip are estimated as zero. In fact the difference between the magnitude
of ground speed from GPS and true airspeed from airdata probe in this experiment
is found to be the same as estimated scaling factor Kva = 1.5. Furthermore Elektra
1 is not equipped with wind sensors to measure the angle of attack and side-slip
and consequently no bias is found as their estimated values were derived under the
assumption of no wind and constructed from ground speed. Note that the angle of
attack and angle of side-slip could be removed from EKF. Their inclusion was to
make the tool chain universal.
To prove the validity of the aerodynamic force and moment estimation from EKF
longitudinal states of the aircraft namely u, w, q and θ are reconstructed using the
aircraft equations of motion. The input to the numerical integration is the time
history of longitudinal force and moment. Initial conditions are chosen as the trim
states.
The result is shown in figure 2.9 where the sensor measurements of the longitudinal
states are compared to the trajectories obtained from solving the aircraft equations
of motion using the IEKS estimate of the aerodynamic force and moment. In parallel
the longitudinal states were also reconstructed from the raw inertial measurements
and plotted. It can be seen that the direct substitution of the raw inertial mea-
surements into the aircraft equation of motion results in considerable drift whereas
reconstructed states using the IEKS estimates of force and moment show correction
for the drift. Such large drift can result from noise and biases present in the inertial
measurements. Note that the small drift in the dotted black line can be attributed
to a small mismatch in the initial values which were only roughly specified and held
fixed. Furthermore estimating a single set of biases for the two flight maneuvers
can also cause this drift.
Overall the objectives of data compatibility check have been met. The estimated
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Figure 2.7: A comparison between the measured and the IEKS estimated aircraft
responses.

states show good alignment with the ground truth. Measurement biases and scaling
factors for IMU and air data probe are determined. Finally, the smoothed estima-
tion of force and moment are computed. The validity of estimated biases, and the
smoothed estimation of force and moment have been checked through their substi-
tution into the numerical integration of the aircraft equations of motion. The main
differences to other applications of the two step method (e.g [9]) is the smoothing of
IEKF estimates in estimation-before-modelling approach with Kalman smoothing.
Its advantage becomes evident in applying the method of least squares which is
prone to noises [10].
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Figure 2.8: A comparison of the forces & moments reconstructed from inertial
measurements and forces & moments estimation from the offline IEKS.

2.3 Aerodynamic model identification

The second step of the two step method is identification of parameters. The aerody-
namic model identification involves (1) determination of aerodynamic model struc-
ture or parameters to be identified, and (2) identification of parameters through an
optimization.

2.3.1 Linear aerodynamic model identification

The identification of the linear aerodynamic model represents a grey box approach.
Linearizing the nonlinear equations of motion around a trim point (called also an
equilibrium) and assuming that the longitudinal states have a negligible influence
on the lateral force and moment, and vice versa, the state space representation for
the longitudinal states of an aircraft is shown in equation 2.25. The derivations of
the state space representation can be found in literature such as [10, 14, 19]

M ẋ =Ax+Bu

x =
[
u w q θ

]T
u =

[
de dt

]T (2.25)

The matrices M , A and B are shown in equations 2.26, 2.27 and 2.28 respectively.
Note that u0, w0 and θ0 correspond to equilibrium points.

M =


m 0 0 0
0 m 0 0
0 0 Iyy 0
0 0 0 1

 (2.26)
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Figure 2.9: Validation of offline IEKS estimation using aircraft equations of motion.

A =


Xu Xw Xq −mw0 −mgcosθ0
Zu Zw Zq +mu0 −mgsinθ0
Mu Mw Mq 0
0 0 1 0

 (2.27)

B =


Xde Xdt

Zde 0
Mde 0

0 0

 (2.28)

The elements of A and B are called stability and control derivatives and they
are derived by applying first order multivariate Taylor series approximation to the
aerodynamic force and moment around an equilibrium. The linear model structure
is shown in equation 2.29. The parameters X0, Z0 and M0 are biases and typically
cancelled out when deriving the state space representation shown in equation 2.25.

X = X0 +Xuu+Xww +Xqq +Xdede+Xdtdt
Z = Z0 + Zuu+ Zww + Zqq + Zdede
M = M0 +Muu+Mww +Mqq +Mdede

(2.29)

Using equation 2.29 the optimization problem can be formulated as a least squares
problem which is equivalent to a maximum likelihood estimate of the parameters.
Analytical solutions exist for least squares and convergence to global minimum is
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guaranteed. The MATLAB function mldivide can be used for the ordinary least
squares method. See [13] for details on the least squares method for system identifi-
cation. One of the challenges in system identification is finding the set of parameters
that can represent the physical phenomena in aircraft. Depending on the data set
the optimal solution that gives optimal value may not represent the physical phe-
nomena. To check the robustness of the data set, codes for the weighted least
squares, nonlinear least squares and constrained least squares have been imple-
mented. Here, the constrained least squares is applied using the priori knowledge of
the aerodynamic parameters (the sign and approximate magnitude). These meth-
ods must provide similar parameters and otherwise, the possible cause had to be
found. One can imagine a data set where the damped oscillations in phugoid is
perturbed by the wind. The parameters that result in a global minimum would
be incorrect as it would give positive signs for the stability parameters related to
the damping. In this case, the parameters obtained from the ordinary least squares
method would deviate from the parameters obtained from the constrained least
squares method.

Table 2.1: Aerodynamic parameters for the linear model
Term Value Term Value Term Value
X0 848.6782 Z0 -3.4686E3 M0 -335.9959
Xu -82.5606 Zu 12.6203 Mu 13.2402
Xw 8.3085 Zw -91.5232 Mw -1.5825
Xq 2.8088E3 Zq -1.0522E4 Mq -1.0818E3
Xde 4.8189E3 Zde -1.4559E4 Mde -4.0732E3
Xdt 1.2004E3

See table 2.1 for the identified parameters.

2.3.2 Nonlinear aerodynamic model identification

The identification of nonlinear aerodynamic models requires a selection of model
structure as the parameters of nonlinear aerodynamic model can vary depending
on the aircraft and data gathered. Essentially tools from linear regression can be
used to select the nonlinear aerodynamic model structure. The feature or regressor
selection was based on (1) correlation analysis and (2) significance testing. General
explanation about linear regression can be found in [28] whereas [9, 10, 8] explain
their extension to the aircraft system identification.
Correlation analysis is performed to quantify the association between two continu-
ous variables. Since significant dependencies between the features can perturb the
identification result to be non-meaningful (identified parameters to deviate from ac-
tual stability and control derivatives although the identified parameters fit the data
optimally with respect to certain cost function) correlation analysis is a crucial step
in linear regression. The correlation levels can be calculated using equation 2.30
with the equation 2.31 representing covariance between two random variables.

R(xi, xj) =
C(xi, xj))√

C(xi, xi), C(xj , xj)
(2.30)

C(xi, xj) = E[(xi − E(xi))(xj − E(xj))] (2.31)

Generally the value of R = 0.9 serves as a threshold. R values higher than 0.9
indicate significant correlation between two features and must be avoided.
The t-statistic is a form of significance testing for each features. This is used
to eliminate insignificant features in order to avoid over-fitting of the data. See
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equation 2.32 where θ̂i indicates a single model term and s(θ̂i) denote its standard
deviation which can be computed using the error residual and diagonal elements of
co-variance matrix.

t0 =
θ̂i

s(θ̂i)
(2.32)

Large values of t-statistics indicate high significance of the feature whereas low
values of t-statistics indicate low significance of the feature [9].

X = X0 +Xuu+Xww +Xqq +Xdede+Xdtdt
+ Xwqwq +Xwdewde+Xw2w2

Z = Z0 + Zuu+ Zww + Zqq + Zdede
+ Zwqwq + Zwdewde+ Zw2w2

M = M0 +Muu+Mww +Mqq +Mdede
+ Mwqwq +Mwdewde+Mw2w2

(2.33)

Following an extensive analysis and evaluations with various combination of features
the model structure shown in equation 2.33 has been selected as the nonlinear
aerodynamic model.

Table 2.2: Aerodynamic parameters for the nonlinear model
Term Value Term Value Term Value
X0 909.5517 Z0 -3.8864E3 M0 -338.7066
Xu -85.4185 Zu 22.9396 Mu 12.5911
Xw -121.5265 Zw 279.3562 Mw 28.2114
Xq 3.0593E3 Zq -1.1500E4 Mq -1.1159E3
Xde 7.151E3 Zde -2.3309E4 Mde -4.5261E3
Xdt 1.2982E3
Xwq -443.7352 Zwq 583.6403 Mwq 133.1528
Xwde -5.1432E3 Zwde 1.5717E4 Mwde 1.1687E3
Xw2 -18.9805 Zw2 52.707 Mw2 3.069

Using the method of least squares the parameters of the nonlinear aerodynamic
model parameters presented in table 2.2 have been found.

2.4 Aerodynamic model validation

The identified parameters must be validated. Note that the data set used for iden-
tification of parameters have been strictly separated from the data set used for
validation.
Figure 2.10 shows the time history of control inputs for the phugoid manoeuvre (a
pulse in elevator). In all the figures hereafter in this section the training data set is
plotted from 0s to 65s while the range from 65s to 110s depicts the validation data
set. In figure 2.10 rudder signal dr show a constant zero over time as there was no
encoder to measure rudder deflections and is also not used during the flight test.

2.4.1 Linear model validation

In figure 2.11 the offline IEKS estimate of the longitudinal force and moment (de-
pendent variable) is compared to the model prediction of the longitudinal force and
moment. The vertical black line at approximately 65 separates training set (left)
and validation set (right).
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Figure 2.10: Control inputs during an exemplary system identification manoeuvre

See table 2.3 for the quantitative assessment of the identified linear model. The
coefficient of determination (R2 value), the root mean square error (RMSE) and the
normalized root mean squared error (NRMSE) are presented for each longitudinal
aerodynamic force and moment. NRMSE is chosen as the ratio between RMSE
and range of the dependent variable. The coefficient of determination is defined in
equation 2.34 where yi is the dependent variable at the step i, fi is the prediction of
the dependent variable at the step i, and y is the mean of the dependent variable.
R2 is related to the fraction of unexplained variance or a ratio between unexplained
variance over the total variance of the data.

R2 = 1−
∑
i(yi − fi)2∑
i(yi − y)2

(2.34)

The RMSE is defined using equation 2.35 whereas the NRMSE is defined as shown
in equation 2.36. ymax and ymin are the maximum and minimum values of the
dependent variable y. The RMSE is a measure of accuracy while the NRMSE is an
indicative measure of prediction error with respect to the total range of the data in
percentage.

RMSE =

√∑n
i (yi − fi)2

n
(2.35)

NRMSE =
RMSE

ymax − ymin
(2.36)

All the statistical values presented in table 2.3 do not vary significantly between the
identification set and the validation set. As a significant increase in RMSE between
the two sets, for example, can infer over-fitting of the data it can be concluded that
identified model show no sign of over-fitting.
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Figure 2.11: Estimated and model predicted force and moment comparison for the
linear model.

Table 2.3: R-squared, RMSE and NRMSE for force and moment prediction of linear
model.

Identification Validation
Coef X Z M Coef X Z M
R2 0.69 0.79 0.30 R2 0.65 0.77 0.29
RMSE 41.89 153.7 15.89 RMSE 49.15 178.5 19.29
NRMSE 0.065 0.042 0.041 NRMSE 0.063 0.043 0.039

The identified parameters are further validated using forward simulation based on
the aircraft equations of motion. Initial conditions and time histories of the control
inputs from the measurements were used to simulate the longitudinal states where
the force and moment acting on the aircraft are computed at each time step using
the model parameters. Runge-Kutta of 4th order was the numerical integration
method found to be adequate and initial conditions here refer to the trim states.
Figure 2.12 show the results of the forward simulation. From visual inspection the
obtained model parameters show good alignment with the measurements.
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Figure 2.12: A comparison between estimated and simulated responses of aircraft
using the linear model.

The performance of the forward simulation is quantified using the goodness-of-fit
(GOF) as well as Theil’s inequality coefficient (TIC). These metrics have been
proposed in [10] to analyze the discrepancy between measurements and simulation.
The GOF is defined in equation 2.37. Note that the cost function is selected as
normalized mean square error and thus, is equivalent to R2 in equation 2.34. The
GOF value of 1 indicates a perfect match between the measurement and prediction
of the model whereas -Inf is an indication of bad fit. If the GOF is equal to 0, then
the prediction is no better than a straight line at matching the dependent variable.
Higher its value, better the performance of the model.

GOF =

√∑n
i (yi − fi)2

n
(2.37)

On the other hand, TIC ranges from 0 to 1 where the value of 0 indicate a perfect
match between the measurement and prediction. The TIC is defined in equation
2.38 where ym ∈ Rn is the measurements (dependent variable) and yp ∈ Rn is
its prediction. According to [10] TIC values between 0.25-0.3 is an indication of a
satisfactory model match in aircraft system identification. The computed GOF and
TIC values are reported in table 2.4.

TIC =

√
1
n (ym − yp)T (ym − yp)√

1
ny

T
mym +

√
1
ny

T
p yp

(2.38)
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Table 2.4: TIC and GOF values for forward simulation using identified linear model.
Nonlinear:
Identification Validation
State u w q θ State u w q θ
GOF 0.9037 0.5856 0.8959 0.9323 GOF 0.7156 0.5119 0.8765 0.8981
TIC 0.0094 0.2154 0.1660 0.0971 TIC 0.1872 0.2626 0.1753 0.1239

Based on the values reported in table 2.4, u, q and θ are represented well by the
identified model with GOF values between 0.7 and 0.94, and TIC values all below
0.2 which is a clear indication that the dynamic behaviors of the aircraft for both
training and validation set are reproducible by the model. Yet, w is the only longi-
tudinal state with relatively poor values of GOF and TIC. This might be attributed
to the discrepancies of the model during the initial phase of the excitation where
the error up-to 4m/s is found in figure 2.12. The cause for such discrepancies must
be thoroughly analyzed in future works.

Federal Aviation Administration (FAA) is an organization that regulate all aspects
of aviation [29]. FAA also defines the certification regulations for the flight simu-
lators which can be found in [30]. According to [30] a flight simulation is a high
fidelity if the tolerances for the pitch angle θ and the pitch rate q lies with the
tolerances of ±1.5 degrees and ±2 degree/s respectively.

Figure 2.13: FAA standards on high fidelity model.

Figure 2.13 is shown to check whether the obtained linear model satisfies the stan-
dards of high fidelity model set by FAA. The IEKS estimates (the green line) of θ
and q are compared against the model predictions (the black line) of θ and q. The
dotted blue and dotted red line indicate the upper bound and the lower bound to
satisfy the FAA standards of the high fidelity model. The bounds are computed
using the tolerances defined by [30]. From figure 2.13 the model predictions of θ
and q fall inside these tolerances and therefore, the model is of high fidelity.

2.4.2 Nonlinear model validation

The nonlinear model can be validated using the same approach where force and
moment between IEKS estimation and model prediction can be compared and
quantitatively analyzed for both the training and the validation sets. See figure
2.14.
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Figure 2.14: Estimated and model predicted force and moment comparison.

The nonlinear aerodynamic model is able to accurately predict the initial phases
of the system identification manoeuvre for the force X and Z. The initial phases
correspond to the time histories between 0s and 20s, and 65s and 80s approximately.
Please compare figures 2.11 and 2.14. Yet, no such improvements were found in
predicting the pitching moment M.

Figure 2.15: Linear model (left) and Nonlinear model (right).

For better visibility the pitching moment predictions with both linear and nonlinear
model are shown in separate figures (see figure 2.15). Perhaps the nonlinearities in
pitching moment derivatives were absent. It is recommended to thoroughly study
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the aerodynamics of Elektra 1 in order to quantify the regions or sets of states were
the linear approximation of stability and control derivatives would be valid.

Table 2.5: Statistical metrics on force and moment prediction of nonlinear model.
Identification Validation
Coef X Z M Coef X Z M
R2 0.921 0.937 0.443 R2 0.847 0.883 0.418
RMSE 21.01 82.56 14.11 RMSE 32.44 127.1 17.32
NRMSE 0.027 0.020 0.0292 NRMSE 0.042 0.031 0.036

The table 2.5 quantifies the statistical metrics on forces and model prediction using
nonlinear aerodynamic model. For the training data set the nonlinear model shows
high fidelity prediction capabilities with significant improvement with respect to the
linear model. The RMSE typically found to be twice as small while the R2 for forces
are above 0.9 which is an indication of high fidelity. Yet, the accuracy decrease in the
validation set. This is an indication of over-fitting although significant improvement
comparing to the linear model is still found.

Figure 2.16: A comparison between measured and simulated responses of aircraft
using nonlinear model.
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Table 2.6: TIC and GOF values for forward simulation using identified nonlinear
model.
Linear:
Identification Validation
State u w q θ State u w q θ
GOF 0.8821 0.5789 0.8834 0.9279 GOF 0.8569 0.5576 0.8507 0.9061
TIC 0.0104 0.2390 0.1764 0.1023 TIC 0.0133 0.2201 0.1985 0.1289

The results of the forward simulation for the nonlinear aerodynamic model is shown
in figure 2.16 whereas the statistical metrics are presented in table 2.6. In forward
simulations no significant differences are found between the linear and nonlinear
model. Improvements with respect to linear model has been found in fitting of forces
and moments for both training and validation set. The NRMSE has decreased from
0.063 to 0.042, 0.043 to 0.031, and 0.039 to 0.036 for X, Z and M respectively.
Figure 2.17 has been plotted to evaluate the model according to the FAA standards
of high fidelity. Again the nonlinear model satisfies the FAA standards of high
fidelity.

Figure 2.17: FAA standards on high fidelity model.

2.5 Limitations and future works

The two step method has been applied to obtain both linear and nonlinear aero-
dynamic model for the longitudinal dynamics of Elektra 1 aircraft. In summary
control inputs that excites the modes of aircraft has been designed and applied in
flight test. The criteria of parameter identifiability were applied to ensure that data
contains sufficient information about the stability and control derivatives. Tech-
niques from nonlinear reconstruction of path have been applied to process the data
for the parameter search based on the least squares method. With linear regression
the parameters of both linear and nonlinear aerodynamic model were found. Sta-
tistical metrics on validation set has shown that identified parameters represent the
aircraft dynamics in high accuracy. Furthermore the standards of FAA for certify-
ing flight simulators were compared and it is concluded that the model meets the
criteria of high fidelity.
One of the limitations of the current work is the data set limited to only phugoid
data. Currently two elevator pulse manoeuvre (phugoid) are used for identification
and validation. The data set with other control inputs such as DLR3211 elevator
and doublet with throttle have been collected. However, these data set have been
discarded after the quality check. Since the aircraft system identification and model
validation with various types of aircraft manoeuvres can add more reliability to the
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results, it is recommended to collect data set for not only DLR3211 elevator and
throttle doublet, but also chirp and PRBS elevator and throttle signals.
The local system identification presented in this chapter has been limited to lon-
gitudinal dynamics. Since the same methods can be applied to model the lateral
dynamics it can be one of the future works to perform system identification exper-
iments for lateral dynamics.
Further investigation is required for the overall identification procedures. The offsets
in magnitude and phase of the model prediction of longitudinal states, and the
discrepancies found in the simulation of z-axis velocity w must be mitigated. It
would require rigorous analysis to identify the causes and several iterations.
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Chapter 3

System identification tool
box and its application to
Penguin BE

In this chapter system identification tool box based on two step method is presented
and its exemplary application to Penguin BE UAV is demonstrated.

3.1 Overview of two step method

The figure 3.1 shows an overview of the system identification procedure using the
two step method. As shown in figure 3.1 the aircraft system identification overall
involves data gathering, parameter identification and model validation. For data
gathering, a priori model is used for the input design to guarantee the identifiability
of the parameters. In other words the multi-step input signals are designed with a
specific time step such that the contribution of all aerodynamic derivatives on force
and moment is maximized in the dynamic manoeuvre. The designed multi-step
input signals are used in flight test to collect the data.

An important first step in parameter identification is the flight path reconstruction
where the compatibility of the collected data is checked with the aircraft equations
of motion. The outputs of the first step are the reconstructed and smoothed forces,
moments and states of the aircraft where the biases and the scaling factors of
the sensors are removed from the measurements. The second step involves multi-
variable regression where the aerodynamic model structure can be selected based on
physical and statistical analysis and the method of least squares is applied to obtain
the values of aerodynamic parameters. In parallel to standard model validation
methods such as proof of match (including FAA standards of fidelity [29, 30]) and
residual analysis, the identified aerodynamic model can be validated through off-line
control synthesis (e.g. loop gain shaping) and testing the controller in real flight.

In this chapter detailed explanation about the methods are omitted and interested
readers can read chapter 2 for more information on the methods.

Overall explanation about the system identification tool box using the two step
method is presented in this chapter. Furthermore, its application to the Penguin
BE UAV for the system identification of the longitudinal model is addressed. The
differences in applying the two step method for identification of aerodynamic pa-
rameters between Elektra 1 and Penguin BE UAV are highlighted.

33
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Figure 3.1: Overview of two step method.

3.2 System Identification tool box

The system identification tool chain contains following folders where all the blocks
in the figure 3.1 are executed.

1. A priori model computation.

2. Input design (see table 3.1).

3. Flight test simulation.

4. Data extraction (see table 3.2).

5. Data consistency check or reconstruction of path (see table 3.3).

6. Parameter identification (see table 3.2).

7. Model validation (see table 3.5).

A priori model computation is based on the work presented in [3]. A linear state
space representation which contains aerodynamic derivatives is obtained using the
MATLAB’s linmod function. The flight test simulation software within flying robots
group is explained in [31, 32] and the step three (3. simulation of flight test) is
to check whether the designed input signals result in expected manoeuvre of the
aircraft (e.g maximum attitude and velocity range) which must result in safe flight
conditions.
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Table 3.1: Input design
m-file Remarks
Parameters.m Input to the code is linearized equation of motion from

AVL based simulation.
Identifiability.m Outputs the bode diagrams such as figure 2.3.
InputGeneration.m Outputs the input signals and their energy spectrum (see

figure 2.4). The time step and magnitude of the input
signals must be selected to maximize the information on
specific parameters as discussed in chapter 2.

Table 3.2: Data extraction and pre-processing
m-file Remarks
vis log.m Load the recorded data from flight test. The output is data

stored in workspace variable and .mat file which is named as
an example, E1 SYSID FE1.mat for the first system identi-
fication data set of elektra 1. Such data is used as an input
in DataExtraction.m.

DataExtraction.m Extraction of specific manoeuvres where index of each ma-
noeuvres must be found looking into the control inputs.
Required variables including the states of the aircraft are
selected and assigned. Necessary transformations are also
made.. The output is DATA ALL.mat file which is used as
an input data to data compatibility check or path recon-
struction.

Table 3.3: Data compatibility check
m-file Remarks
ekf calc f.m A function for the process model.
ekf calc h.m A function for the measurement model.
ekf calc Fx.m A function for the linearization process model.
ekf calc Hx.m A function for the linearization measurement model.
main.m EKF implementation with forward filtering and backward

smoothing. Input to the file is DATA ALL.mat and the out-
put of the file is EKF DATA ALL.mat. Figures are gener-
ated.

PlotThesis.m (a) Plots the comparison between measured and simulated
responses with bias corrections for the longitudinal states.
(b) Plots the comparison between force and moment com-
puted from direction substitution in the equation of motion
and EKFS implementation. (c) Plots the biases and scale
factors in the sensors.

PlotInnovation.m Plots the innovation for correct tuning of the EKFS.
PlotNIS.m Plots the normalized innovation squared for correct tuning

of the EKFS.
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Table 3.4: Parameter identification
m-file Remarks
ParaID.m The main script that computes the identified parameters.

The input is EKF DATA ALL.mat and the output is iden-
tified model parameters both stability and control deriva-
tives. Inside the script all the data are divided into identi-
fication and validation set. Least squares algorithm is exe-
cuted with sets of independent variables which represent the
aerodynamics model. Then, both identification and valida-
tion plots are given which compares the force and moment
from the model to the ones constructed from measurements.

ID VAL SET.m Division of all the data into identification and validation set.
ID VAL SET S.m Division of all the data into identification and validation set

with multivariate smoothing.
MDL L1.m Linear aerodynamic model in body frame. The script out-

puts A and b matrix (Ax = b) for least squares method.
MDL NL1.m Nonlinear aerodynamic model in body frame. The script

outputs A and b matrix (Ax = b) for least squares method.
Using the analysis of independent variables using correlation
and t-statistics, the selection of the model in body frame can
be performed.

LS TU.m Ordinary least squares algorithm.
LS mldivide.m MATLAB’s ordinary least squares algorithm.
WLS TU.m Weighted least squares algorithm.
NLS matlab.m MATLAB’s nonlinear least squares algorithm.

Table 3.5: Model validation
m-file Remarks
EOM Integrate.m A main script for a forward simulation of rigid body equa-

tions of motion. With initial states from the measurements
as its initial conditions and time histories of measured con-
trol inputs, the script computes the time histories of aircraft
states which is being compared to measured time histories
of aircraft states for validation.

MDL L1.m A function that contains the linear aerodynamic model in
body frame.

MDL NL1.m A function that contains the nonlinear aerodynamic model
in body frame.

Plot VAL.m Plots for comparison of measured aircraft states to estimated
aircraft states from the identified model. The data set con-
cerned is the validation set.

3.3 Penguin BE local system identification

This section describes the local system identification procedure for Penguin BE UAV
with the system identification tool chain described above. The differences found
with respect to the Elektra 1 system identification procedures are highlighted.
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3.3.1 Data gathering

Please find the general introduction and methodology on data gathering in chapter
2. The designed control inputs are presented in figures below together with their
energy spectrum. The bode plots based on a priori model that were used to design
these control inputs can be found in the section A.2, Appendix A.

Figure 3.2: Phugoid manoeuvre - elevator (left) and energy spectrum (right)

Figure 3.3: Short period manoeuvre - elevator (left) and energy spectrum (right)

Figure 3.4: Thrust variation manoeuvre - throttle (left) and energy spectrum (right)

One of the key difference are the use of an autopilot. The experiment was performed
by the manual pilot for Elektra 1 whereas the manoeuvres are activated by the
operator on the ground for Penguin BE. The autopilot for Penguin BE was ready
and could be used for the system identification experiments. In case the autopilot
(flight control system) is not available one can first reach the trim condition via
manual pilot, and then execute the system identification manoeuvres using a simple
code.
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One of the key advantages in using the autopilot for the data gathering can be
found in a better trim condition and consistency in the applied control inputs. A
key disadvantage with Penguin BE was the lack of measurements for the control
surfaces. Since there existed no measurements on control signals, a low pass filter
was used on commanded control signals during the system identification manoeuvres
so that no rate limit saturation and delay would be visible between commanded and
executed control signals. According to [12], the human pilot acts as a low pass filter
with the cut off frequency of 10 rad/s. Therefore, the cut off frequency for the
design of the low pass filter was also selected as 10 rad/s. In this way, possible
deficiency of the data due to the lack of faster dynamics in the coefficients were
avoided.

One of the other possible approach could have been manual calibration in the lab-
oratory and also including the actuator delays in the parameters to be identified.
Additionally, the actuators can be modelled as 2nd order systems. Of course, the
installation of encoders would have been the best option. It is recommended to
investigate further on solving the issues related to the lack of measurements for the
control surfaces.

Overall three system identification test campaigns have been performed where each
campaign had improvements in data gathering procedures. During the final flight
test 15 manoeuvres were performed with 5 elevator pulses, 5 elevator DLR-3211
manoeuvres and 5 throttle doublets. After the analysis of the data, 9 manoeuvres
were selected. Among them 3 manoeuvres were selected as the validation set (one
each for different input signals: pulse, DLR3211 and doublet) and the rest of the
manoeuvres were used for training or identification.

3.3.2 Reconstruction of path

The results of nonlinear reconstruction of path for Penguin BE UAV is included
in this section. Offline IEKS which combines a forward iterative extended Kalman
filter with backward Kalman smoothing have been used to (1) estimate instrumen-
tation errors, (2) obtain the smoothed estimates of aerodynamic force and moment
from noisy inertial measurements, and (3) check the consistency of the sensor mea-
surements using the 6DOF rigid body equations of motion for an aircraft. The
method for nonlinear reconstruction of path can be found in chapter 2 while results
of bias estimation and its validation can be found in appendix A.

The main difference to Elektra 1 flight path reconstruction lies in the choice of the
process and measurement covaraince matrices for the offline IEKS. The measure-
ment covariance matrix R and the process covariance matrix Q can be found below.
Following the rules of thumb, sensor specifications were used to select the values for
R. The initial states have been chosen as average of 50 measurements points that
correspond to the trim condition. The initial co-variance matrix P0 can be found
in the equation 2.11.

Q(k) = diag (010, 0I3,03, 0I3,03, 100I3, 1000I3, 0.1I3,06)
2

(3.1)

R(k) = diag
(

0.05I3, 0.25
π

180
I3, 0.3

π

180
I3, 2, 10, 10

π

180
I2, 0.02I3

)2
(3.2)

Furthermore a wind vane (WV) has been attached to the airdata probe for the last
two system identification flights of Penguin BE. Therefore measurements on angle
of attack and angle of side-slip have been obtained. The measurement equations
were changed as shown in the equation below.
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Vam(t) = Kva

√
u(t)2 + v(t)2 + w(t)2

VaAP
(tk) = Vam(tk) + vva(tk)

αm(t) = arctan w(t)
u(t) +∆α

αWV(tk) = αm(tk) + vα(tk)

βm(t) = arctan va(t)√
u(t)2+v(t)2+w(t)2

+∆β

βWV(tk) = βm(tk) + vβ(tk)

(3.3)

Figure 3.5: Measured vs estimated aircraft responses.

Figure 3.5 compares the IEKS estimation of aircraft responses with the measure-
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ments. From visual inspection, the IEKS estimates of aircraft responses are in good
alignment with the measurements. Figure 3.6 depicts IEKS estimation of aerody-
namic force and moment in solid black line. The force and moment reconstructed
from direct substitution of inertial measurements are shown in green line. Clearly
they are in good alignment and the IEKS estimation smoothed the noisy measure-
ments. In figure 3.5 the discontinuity of the signals can be found after the black
vertical line. This is because the flight path reconstruction is performed on the data
set which is comprised of different system identification manoeuvres from different
times combined together.

Figure 3.6: Force and moment reconstructed from inertial measurements vs force
and moment from offline IEKS estimation.

In figure 3.6 the IEKS estimate of force and moment is plotted with force and
moment reconstructed from the inertial measurements and their direct substitution
into the equations of motion. It can be observed that the IEKS estimate smoothed
the force and moment reconstructed from the inertial measurements. In comparison
to Elektra 1 the IMU seemed to give less noisy measurements. This might be
attributed to smaller engine which causes comparably less vibrations.
Overall the objectives of the data compatibility check have been met. Inclusion
of the wind vane is advantageous as both ground speed and true airspeed can be
known in 3 dimensions.

3.3.3 Parameter identification and validation

The second part of the two step method is the parameter identification step where
the least squares method is applied to the chosen aerodynamic structure. While
the linear aerodynamic model can be used for all conventional aircraft the non-
linear aerodynamic model structure must be selected using techniques from linear
regression such as correlation analysis and t-test for features [9, 8]. See chapter
2 for more detailed explanation. Note that the maximum values for αm and βm
during the flight test did not exceed ±10◦ and also, the designed input signals for
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the elevator did not exceed ±7◦. This indicates the aerodynamic phenomena could
have been restricted to the linear region and therefore, identification and validation
of a nonlinear aerodynamic model has not been necessary.
The validation and analysis of the identified aerodynamic model has been ap-
proached with (1) strict separation between training and validation data sets, and
(2) applying statistical metrics for evaluation. The determinant coefficient R2, root
mean squared error (RMSE) and normalized root mean squared error (NRMSE)
with the range (max - min) have been utilized to evaluate the prediction capabili-
ties of the aerodynamic model. The forward simulation with the linear model was
evaluated using Goodness-of-fit (GOF) and Theil’s inequality coefficient (TIC).
The key differences to the Elektra 1 local system identification are found to be in the
selected data-sets where several iterations of flight tests with improvements resulted
in (1) correction execution of DLR 3211 manoeuvres and (2) achievement of similar
trim conditions for all manoeuvres. In this section all the included plots show works
related to the validation set. As an example figure 3.7 shows the control inputs used
to obtain the validation data set where Pulse-elevator (t = 0s to t = 10s), DLR3211-
elevator (t = 10s to t = 18s) and doublet-throttle (t = 18s to t = 30s) are combined
in batch. For further plotting of results these different manoeuvres are separated
by a vertical black line.

Figure 3.7: Control inputs during the system identification manoeuvre.

The identified aerodynamic parameters for the linear aerodynamic model are pre-
sented in the table 3.6. The corresponding eigenvalues for phugoid and short period
are found as shown below.
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Short period: −1.95± 2.77i
Phugoid: −0.043± 0.42i

The values presented above are the dominant pole time constants and damping
ratios for the longitudinal dynamics.

Table 3.6: Aerodynamic parameters for linear model
Term Value Term Value Term Value
X0 9.2587 Z0 -0.4544E2 M0 -2.1589
Xu -2.2797 Zu -0.0474E2 Mu 0.0928
Xw 1.3422 Zw -0.0904E2 Mw -0.5579
Xq -1.3519 Zq -0.8821E2 Mq -6.8804
Xde 27.3732 Zde 3.3388E2 Mde -48.9397
Xdt 51.4792

Figure 3.8: Estimated Vs modelled force and moment comparison.

Figure 3.8 compares the IEKS estimate of force and moment to the output of the
identified linear aerodynamic model for the validation data set. The statistical
metrics for the linear regression on force and moment are presented in table 3.3.3.
Overall the R2 values of 0.848, 0.655 and 0.136 are found for X, Z and M respectively
with corresponding RMSE values of 4.1 N, 20.63 N and 1.239 Nm. Normalizing over
the entire range of the data results in the NRMSE values of 0.078, 0.067 and 0.053
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respectively. In conclusion the linear aerodynamic model produces sufficient fit with
small NRMSE.

Table 3.7: Averaged R-squared, RMSE and NRMSE for force and moment predic-
tion of linear model.

Identification Validation
Coef X Z M Coef X Z M
R2 0.868 0.616 0.422 R2 0.848 0.665 0.1359
RMSE 3.109 19.779 1.0899 RMSE 4.10 20.63 1.239
NRMSE 0.071 0.067 0.045 NRMSE 0.078 0.067 0.053

Figure 3.9: Measured vs simulated (linear) responses of aircraft.

In figure 3.9 the measured responses of the aircraft is compared to the simulated
responses of the aircraft for the validation data set. The simulated responses are
obtained using forward simulation and identified model where inputs were initial
conditions and the time history of control inputs. The relevant statistical metrics
are presented in the table 3.3.3. TIC values above 0.3 are found in simulation of
pitch rate q and z-axis ground velocity w for validation. These are the indications
of model deficiency.
Note that the large discrepancies are typically found during the thrust variation ma-
noeuvre where the time lag of the measured responses to the simulated responses
lead to an overall mismatch in the period of two signals. Possibly the representa-
tion of thrust with a single coefficient using first order Taylor series approximation
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Table 3.8: TIC and GOF values for forward simulation with linear model.
Identification Validation
State u w q θ State u w q θ
GOF 0.77 0.72 0.514 0.688 GOF 0.76 0.52 0.52 0.72
TIC 0.03 0.28 0.355 0.254 TIC 0.038 0.453 0.345 0.236

for the combination of different manoeuvres attribute to errors. In fact TIC and
GOF values without the thrust variation manoeuvre indicates a sufficiently accurate
model with all TIC < 0.3.

3.4 Limitations and recommendations

In summary the system identification tool-chain using the two step method is intro-
duced in this chapter. Additionally the application of the tool chain to the Penguin
BE UAV is presented while the differences to the Elektra 1 system identification
procedures are highlighted. The identified linear model for the longitudinal dynam-
ics of Penguin BE show adequacy in representing phugoid and short period excited
with the elevator. However, the identified aerodynamic model show deficiency in
fully representing the phugoid excited with thrust variation. Further analysis on
instrumentation during sudden changes in also throttle is required.
With direct measurements of angle of attack and side-slip the stability and control
derivatives could also be expressed in aerodynamic frame of reference. To the best
of author’s knowledge, model parameters expressed in the aerodynamic frame of
reference are widely used in the aerospace community. It could be one of the future
tasks to identify the aerodynamic model parameters using true airspeed, angle of
attack and side-slip instead of ground velocities.
Lastly the actuator and the thrust dynamics should be modelled. The actuator
dynamics can be modelled as the 2nd order transfer function whereas the thrust
dynamics from throttle can be modelled as a 1st order system with time delays.
The thrust can also be modelled using the data sheet from the manufacturer as
shown in [31].



Chapter 4

Global Aircraft System
Identification for Elektra 1

Detailed aerodynamic models play a crucial role for flight control systems design.
The application of the two step method for local aircraft system identification in
chapter 2 resulted in a model valid over a region in the flight envelope close to where
the data is collected for aerodynamic parameter identification. A natural further
step for modelling is an expansion of this region to the entire flight envelope. The
Identification process of such global model is called global aircraft system identifi-
cation. Note that within the context of the current project the flight envelope is
referred to as performance envelope of the aircraft in terms of only altitude and
mach number.

A typical global aircraft system identification program in the industry requires an
extensive flight test campaign for the collection of data at various points of the
flight envelope and repetition of parameter identification locally [10]. Yet, such
extensive flight test campaign for stratospheric flight can be costly and time con-
suming. Extensive wind-tunnel tests and high fidelity CFD based aerodynamic
database generation for the entire flight envelope is also not feasible both in cost
and time within the scope of the current master thesis project. Furthermore, numer-
ical estimates such as CFD suffer from validity and inadequate theory to represent
the complex aerodynamic phenomena while the model scaling, Reynold’s number,
dynamic derivatives, cross coupling, aero-servo-elastic effects are the typical chal-
lenges in producing highly accurate wind-tunnel predictions. Therefore, the method
of incremental model update has gained attention since the 1990s.

The incremental model update involves the modelling of correction factors by com-
bining available flight test data and an aerodynamic database where the functional
dependencies are mapped through the polynomial expressions. The aircraft model is
then updated using such correction factors. Some notable examples of such method
can be found in [33, 34]. In [33] the wind tunnel data base for the X-31A research air-
craft is supplemented with flight test data by increment to update the aerodynamic
coefficients depending on angle of attack and Mach number. The incremental model
update was also applied to the Phoenix RLV demonstrator in [34] where landing
gear effects was included in addition to the correction of wind-tunnel data. The key
idea underling incremental model update is data fusion between wind tunnel derived
aerodynamic database with available flight test data. Other works on the incremen-
tal model update scheme can be found in [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

However, the creation of an aerodynamic database for a flying vehicle is a time con-
suming procedure. As an example the generation of the aerodynamic data base for
the phoenix landing experiment required series of wind tunnel experiments which

45
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lasted from 1999 to 2003 [34]. Furthermore aerodynamic database generation us-
ing wind-tunnels and high fidelity CFD tools are often outside the expertise of the
robotics community. Therefore the aim of the current investigation is the prelimi-
nary study in applying the method of incremental model update using low fidelity
aerodynamic computation tools such as VLM and 3D panel. Note that the scope is
limited to low altitude flights in this master thesis project.
A description of incremental model update, collection of data, force and moment
estimation and comparison using VLM, correction factor modelling and global aero-
dynamic model identification using obtained correction model are presented in sec-
tions 4.1, 4.2, 4.3, 4.4 and 4.5. The limitations and recommendations for the future
work will presented in section 4.6.

4.1 Incremental model update scheme

The identification of globally aerodynamic parameters via the incremental model
update scheme requires modelling of correction factors (see figure 4.1) and then the
aircraft system identification with corrected synthetic or virtual data for various
points of flight envelope (figure 4.3). A scheme for computing the aerodynamic pa-
rameters from numerical aerodynamic computation tools by applying system iden-
tification tools is shown in figure 4.2. Note that aerodynamic data base for dynamic
manoeuvres have been developed by other student in the team.
In figure 4.1 the block diagram for modelling of correction factors is depicted. The
system identification of correction model involves the direct comparison of force
and moment or equivalently the aerodynamic parameters from the flight test data
and computed aerodynamic database (see the figure 4.1). The outputs of the block
Parameters from the flight test data are the aerodynamic parameters from the local
system identification and consequently, the model estimate of force and moment.
The block Parameters from the flight test data uses the available flight test data
to obtain the local aerodynamic parameters. In the block Parameters from VLM,
the VLM computed aerodynamic parameters and also, the VLM prediction of force
and moment are computed. Lastly, the block Identification of correction model
involves the modelling of discrepancies in force and moment from two different
above mentioned sources of aerodynamic models. The assumption here is that
the errors in VLM estimate of force and moment have deterministic nature which
is attributed to the use of potential theory and simplified mesh (a single line of
singularities). The main challenge in this method is the investigation of physical
parameters or snapshots for the correction model.

Figure 4.1: System identification of correction model.

The scheme for the simulation of system identification manoeuvre with the aerody-
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namic computational tools is shown in figure 4.2 where the key idea is an attempt to
reduce the computational effort by applying system identification techniques to dy-
namic CFD simulation. In other words the computation of aerodynamic force and
moment are restricted to the states that describe the virtual system identification
manoeuvre. In figure 4.2 the block rigid body equation of motion refers to the sim-
ulation of aircraft states via numerical integration of aircraft rigid body equations
of motion. For such simulation of the aircraft states the external force and moment
acting on the aircraft must be provided. The External force and moment due to
propulsion are computed using the performance data provided by the propeller’s
manufacturer which requires rotational speeds as an input to the look up tables of
CT and CP [31]. In parallel the aerodynamic force and moment can be computed
from either VLM, 3D panel or CFD where control inputs and aircraft states must
be provided. Overall the virtual system identification manoeuvre is generated using
such scheme where specific control inputs and initial aircraft states corresponding
to the trim conditions are provided and, computation of aerodynamic force and mo-
ment and numerical integration of rigid body equations are repeated in each time
step. More technical details and validation results of the proposed method can be
found in [47].

Figure 4.2: Simulation of system identification manoeuvre with the aerodynamic
computational tools and the aircraft equations of motion.

The global aircraft system identification can be performed with the scheme shown
in figure 4.3. The block VLM simulation refers to the scheme shown in figure
4.2 in which the simulation of the aircraft system identification manoeuvres are
generated. The outputs of the block VLM simulation are the aircraft state, and
aerodynamic force and moment. Parameter identification using the tools from the
linear regression theory can then be applied to obtain the aerodynamic parameters.
This step is performed in the block Parameter identification. With this method the
aerodynamic parameters over all the operating points of an aircraft can be obtained.
However, its drawback is the inaccuracy when the aerodynamic computational tool
is limited to VLM, 3D panel method or even low fidelity CFD. Therefore, the
correction model can be applied to increase the accuracy. The expected outcome is
a global aerodynamic model for different altitudes and speeds.

Figure 4.3: Scheme for global system identification.
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4.2 Flight test design and data gathering

The goal of flight testing is the implementation and validation of the new incre-
mental model update scheme presented in section 4.1. As a first step to achieving
the current goal, the scope of the data gathering campaign has been limited to low
altitude symmetric flight conditions at different trim settings with four different
velocities as shown in figure 4.4.

Figure 4.4: Selected flight envelope for the preliminary study on incremental update

The selected trim velocities were 22 m/s, 26 m/s, 28 m/s and 30 m/s whereas the
altitude was set to 1000 m above the mean sea level. This results in collection of
data at four different trim conditions. In this way the trim conditions (h,TAS) =
(1000,22) and (h,TAS) = (1000,28) can be used for modelling of correction factors
which are denoted as green dots in figure 4.4. On the other hand the trim conditions
(h,TAS) = (1000,26) and (h,TAS) = (1000,30) can be used for the validation of the
correction factors. These trim conditions are denoted as black dots in figure 4.4.
Consequently applying the schemes shown in figures 4.2 and 4.3 would result in
stability and control derivatives of the aircraft valid over the regions around the
selected trim points.

4.3 Parameter identification with VLM simulation

This section describes the results of parameter identification based on VLM simula-
tion. Again, the detailed information about VLM simulation can be found in [47].
Instead of using flight test data, the data from VLM simulation has been used for
parameter identification. In other words the linear regression tools were applied to
the AVL [48] generated aerodynamic force and moment using the simulated states
of the aircraft. The linear aerodynamic model structure has been used. The results
are shown below in figure 4.5.
The R2 values of 0.931, 0.98 and 0.94 have been reported which is an indication
of good fit. In comparison to an identification based on real flight test data, the
parameter identification with the simulated data produces better fit due to the
absence of noises and external disturbances. Note that the aerodynamic force and
moment shown in figure 4.5 is normalized using the equations below. ρ, V , S and
c are air density, true airspeed, wing surface area and mean chord respectively.

Cx =
Fx

1
2ρV

2S
(4.1)

Cz =
Fz

1
2ρV

2S
(4.2)

Cm =
My

1
2ρV

2Sc
(4.3)
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Figure 4.5: Aerodynamic force and moment from VLM compared to modelled aero-
dynamic force and moment where parameter identification is applied to the data
from VLM simulation.

Table 4.1: Identified model parameters using VLM based simulation data (ID)
compared to direct output of VLM software (AVL).
ID:
Term Value Term Value Term Value
Cxu

-0.004 Czu -0.036 Cmu
0.0105

Cxw 0.0405 Czw -0.231 Cmw -0.095
Cxq 0.0026 Czq -0.08595 Cmq -0.196
Cxde

0.00059 Czde -0.0097 Cmde
-0.047

AVL:
Term Value Term Value Term Value
Cxu

-0.004 Czu -0.04 Cmu
0.011

Cxw 0.045 Czw -0.25 Cmw -0.105
Cxq 0.0029 Czq -0.0955 Cmq -0.218
Cxde

0.00054 Czde -0.0088 Cmde
-0.0431

Lastly, the identified parameters have been verified using the AVL computed sta-
bility and control derivatives which are a direct output of the software. Good
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agreement has been found between the two (see table 4.1). In case of VLM soft-
wares such as AVL is available to output the state space equations of the aircraft,
from where stability and control derivatives could be extracted manually using the
corresponding trim conditions. Yet, the current method will reduce the computa-
tional effort and time when the software is not equipped to directly output the state
space representation of the aircraft.

4.4 Correction model identification

This section presents the identification of the correction model which must capture
the deficiency of VLM in a polynomial. The following steps are taken in correction
model identification.

1. Local system identification at each trim condition using the flight test data.
Note that moments are neglected due to bad quality of data (e.g, low signal
to noise ratio in pitch rate as the pilot executed elevator deflection less than
2 degrees and thermal up-draft during the test day).

2. Parameter identification using VLM simulation data. This step has to be
repeated at each available point in the flight envelope.

3. Comparison of stability and control derivatives between the parameters ob-
tained using flight test data (FD-ID) and the parameters obtained using VLM
simulation data (VLM-ID). The differences between FD-ID and VLM-ID pa-
rameters is being modelled.

4. Identification of correction model using the least squares method. The phys-
ical snapshots or independent variable chosen here is true airspeed.

Figure 4.6 shows the results of local system identification at each trim conditions
using the flight test data. The yellow line shows the IEKS estimate of forces whereas
the red line depicts the estimation of forces using the identified model. The figure
4.6 is separated by 4 vertical bars for 4 trim conditions (26m/s, 23m/s, 28m/s and
30m/s sequentially).
The RMSE values for each trim conditions (called V1, V2, V3 and V4 referring
26m/s, 23m/s, 28m/s and 30m/s respectively) to as well as combining all the trim
conditions (ALL). See table 4.2 Note that the reported RMSE values may depend
on the portion of the data used for computation and therefore, RMSE has been
used as a metrics to compare the accuracy of the different models.

Table 4.2: RMSE values corresponding to figure 4.6 or FD-ID.
V1 V2 V3 V4 ALL

RMSE Fx 62.2 89.8 76.5 38.1 71.5
RMSE Fz 146.5 225.0 175.2 212.8 204.3

Similarly figure 4.7 compares the IEKS estimate of forces to the estimation of forces
using VLM. The input to the VLM model is the time history of longitudinal aircraft
states for the linear aerodynamic model. The discrepancy found between the two
must be captured in the correction model.
In table 4.3 the RMSE values for VLM-ID model are presented. As expected larger
RMSE values are found when compared to FD-ID model which is shown in the
table 4.2.
These differences in RMSE values attribute to errors in the stability and control
derivatives estimated from VLM-ID. These errors in the stability and control deriva-
tives can result from various assumptions made in the potential flow theory. The
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Figure 4.6: Comparison of IEKS forces and force estimation using identified model
with flight test data.

Table 4.3: RMSE values corresponding to figure 4.7 or VLM-ID.
V1 V2 V3 V4 ALL

RMSE Fx 1.4504E2 1.651E2 1.421E2 1.263E2 1.468E2
RMSE Fz 7.616E2 1.0827E3 7.818E2 8.879E2 9.329E2

stability and control derivatives obtained from FD-ID are the maximum likelihood
estimates for the given data-set. Figures below shows the comparison of VLM-ID
and FD-ID derivatives and also, their discrepancies in the function of velocity.

One of the critical assumptions of the current method is the validity of flight test
data and methods in local system identification that were applied to estimate and
model the aerodynamic forces and moments. In other words the IEKS estimate of
forces and moments are assumed to be accurate and local parameter identification
is performed correctly. Additionally the corrected VLM-ID parameters will not
outperform the FD-ID parameters.

It can be seen that VLM-ID parameters scale linearly with velocity. In most of
the cases, the error between VLM-ID and FD-ID coefficients are also linear with
respect to the true airspeed. Note that Xde and Xq are negligible due to their small
contribution to Fx. The error on Zde are quadratic with respect to true airspeed.
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Figure 4.7: Comparison of IEKS forces and force estimation using identified model
with VLM simulation.

Figure 4.8: FD-ID (blue) vs VLM-ID (black) for Xu and Xw.

Figure 4.9: FD-ID (blue) vs VLM-ID (black) for Xq and Xde.
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Figure 4.10: FD-ID (blue) vs VLM-ID (black) for Zu and Zw.

Figure 4.11: FD-ID (blue) vs VLM-ID (black) for Zq and Zde.

Figure 4.12: Difference between FD-ID and VLM-ID parameters for Xu and Xw.

Figure 4.13: Difference between FD-ID and VLM-ID parameters for Xq and Xde.
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Figure 4.14: Difference between FD-ID and VLM-ID parameters for Zu and Zw.

Figure 4.15: Difference between FD-ID and VLM-ID parameters for Zq and Zde.

Note that V1 and V3 were used to compute the correction model whereas V2 and
V4 were used for validation. The least squares method were applied to fit the error
between FD-ID and VLM-ID parameters with only true airspeed using the training
set. Equation 4.4 shows the resulting correction model.

∆Xu = 0.083 · Vm + 29.088
∆Xw = −3.790 · Vm + 246
∆Xq = −57.9 · Vm + 462
∆Xde = −4.3 · Vm + 248
∆Zu = 4.4 · Vm − 201.3
∆Zw = −36 · Vm + 156
∆Zq = −552 · Vm + 1729.8
∆Zde = −1.39 · V 2

m − 17.82 · Vm

(4.4)

The correction model presented in equation 4.4 can be used to correct the VLM-ID
parameters by using them as biases.

4.5 Correction model validation

In figure 4.16 comparison between IEKS estimates of forces and force estimation
using the corrected VLM-ID parameters are presented whereas their RMSE values
are shown in table 4.4.
Note that the bias terms have not been modelled in VLM-ID parameters. The
bias terms are chosen by matching the first point of the force estimation from the
corrected VLM-ID parameters to the first point of the IEKS estimation. The bias
term can also be corrected. However, the bias term was not corrected in this master
thesis project. This is because the trim conditions were not maintained by the pilot
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Figure 4.16: Comparison of IEKS forces and force estimation using corrected VLM-
ID parameters.

for a long enough time and therefore, the author was uncertain about the exact trim
force and moment. Figure 4.16 shows clear improvement of the VLM-ID parame-
ters by adding the correction model. See figures and 4.6 and 4.7 for comparison.
Improvement in corrected VLM-ID parameters can be quantified by comparing ta-
bles 4.4 and 4.3. The overall RMSE has significantly decreased for both Fx and Fz.
Furthermore the RMSE values for V2 demonstrates interpolation capabilities of the
correction model whereas the RMSE values for V4 dictates extrapolation capabili-
ties. By comparing tables 4.2, 4.3 and 4.4 it can be concluded that the correction
model improves the VLM-ID parameters both at interpolation and extrapolation
points.

Table 4.4: V1 and V3 as the training set and V2 and V4 as the validation set.
RMSE values reported.

V1 V2 V3 V4 ALL
RMSE Fx 86.6 97.9 74.2 43.0 75.4
RMSE Fz 169.7 238.4 188.4 209.1 212.8

This method of incremental model update scheme can be further tested by using
different combinations of training and validation sets as listed below.

1. V2 and V4 for training the correction model and V1 and V3 for
validation. This is to verify the direction of the correction model. (Case
study A)

2. V1 and V2 for training the correction model and V3 and V4 for val-
idation. This is to verify the pure extrapolation capabilities of the correction
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model. (Case study B)

3. V2 and V3 for training the correction model and V1 and V4 for
validation. This is to verify the pure extrapolation capabilities and direction
of the extrapolation. (Case study C)

4. V1 and V4 for training the correction model and V2 and V3 for val-
idation. This is to verify the pure interpolation capabilities of the correction
model. (Case study D)

The results are summarized in table 4.5 and comparison plots can be found in figures
4.17, 4.18, 4.19 and 4.20.

Table 4.5: Case studies with various choice of training and validation set.
Case A V1 V2 V3 V4 ALL
RMSE Fx 81.6 90.6 73.8 37.2 70.8
RMSE Fz 227.3E 226.2 205.7 204.5 215.1
Case B V1 V2 V3 V4 ALL
RMSE Fx 80.8 99.3 78.7 50.7 77.4
RMSE Fz 169.7 226.2 223.6 240.6 225.7
Case C V1 V2 V3 V4 ALL
RMSE Fx 86.8 97.7 74.2 37.2 74.1
RMSE Fz 371.0 235.9 188.4 204.5 232.9
Case D V1 V2 V3 V4 ALL
RMSE Fx 83.7 99.4 85.4 83.9 88.1
RMSE Fz 180.2 226.2 188.4 217.0 211.2

The results of the case study A should be compared to the results presented in
table 4.4 to analyze the direction of the incremental model update scheme. By
comparing the RMSE values presented in tables 4.5 and 4.4 it can be observed that
the RMSE values do not change significantly. Therefore, the correction model does
not depend on direction within this preliminary study of a new incremental model
update scheme.

The case study B is to study the pure extrapolation capabilities of the incremental
model update scheme. Overall RMSE has increased from 70.841N to 77.422N, and
2.151E2 N to 2.2257E2 N for Fx and Fz respectively (compared to case A). This
is expected as FD-ID stability and control derivatives do not always scale linearly
with velocity. The case study C can be compared to the case study B to analyze
the direction of the pure extrapolation. For V1 and V2 the correction model in case
B outperforms the correction model from case C slightly. At the same time, the
correction model in case B is outperformed by the correction model from case C
for V3 and V4. This is expected as the correction model is more accurate for trim
conditions used for its training. Yet, minimal differences are found in overall RMSE
and therefore, the direction does not largely influence the directional capabilities of
the correction model within this preliminary study.

Lastly the results of case D show that overall RMSE has increased to 88.115 N for
Fx while the RMSE value for Fz stayed relatively close to other cases. The results
of the current study show that the prediction capabilities of the correction model
in the pure interpolation deteriorate for Fx.



57 4.5. Correction model validation

Figure 4.17: Comparison of IEKS forces and force estimation using corrected VLM-
ID parameters. Case study A.

Figure 4.18: Comparison of IEKS forces and force estimation using corrected VLM-
ID parameters. Case study B.
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Figure 4.19: Comparison of IEKS forces and force estimation using corrected VLM-
ID parameters.Case study C.

Figure 4.20: Comparison of IEKS forces and force estimation using corrected VLM-
ID parameters. Case study D.
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4.6 Limitations and future works

This chapter presents a preliminary study on the global system identification meth-
ods based on incremental model update. Firstly the aerodynamic parameters are
estimated by applying system identification to VLM based simulation data which
constitutes of the aerodynamic force and moment which are a direct output of AVL,
and relevant states of the aircraft that represents multi-step based aircraft system
identification manoeuvres. The results of parameter identification using VLM sim-
ulation data have been verified using precomputed stability and control derivatives
from AVL. In the next step series of local system identification at 4 different trim
conditions was performed using the two step method. These data sets were used
to study the incremental model update scheme with low fidelity aerodynamic data
base. The scope of the study has been limited to low altitude flights with 4 different
true air speeds.
The stability and control derivatives from VLM were less accurate than the same pa-
rameters found from flight test data. A correction model were built assuming that
certain discrepancies of VLM derived parameters are systematic. Least squares
were applied to the errors between VLM and flight test derived parameters. The
obtained correction model were used to correct VLM derived aerodynamic param-
eters. The corrected aerodynamic derivatives were evaluated using the flight test
data and improvements on prediction accuracy have been reported. The interpo-
lation and extrapolation capabilities of the proposed scheme was further analyzed
and evaluated by choosing various combinations of training and validation set. The
study has shown that the proposed scheme can be used to improve the aerodynamic
model outside the point where flight test data were collected for variations of true
airspeed in the region of low altitude flights.
The magnitude of the control inputs used for collection of flight test data was insuf-
ficient to clearly detect the modes of the aircraft. Furthermore significant thermal
up-drifts were present during the flights. It is recommend to improve the flight test
procedures for Elektra 1 system identification experiments. Larger deflections of
control surfaces are required to strongly excite the modes of the aircraft. Lastly
short period and thrust variation manoeuvres can be collected at each velocity and
used to further study the proposed scheme at low altitude.
It is highly recommended to find existing data set to further validate the scheme,
not only at low altitude but also for stratospheric flights. With vast amount of data
with variations in flight condition the scope of the method can be expanded.
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Chapter 5

Conclusion

The local aircraft system identification based on the two step method has been
implemented and validated for Elektra 1. For data gathering the multi-step con-
trol inputs that excites the longitudinal modes of aircraft have been designed and
executed in flight. The obtained data were processed with the iterative extended
Kalman filter with backward Kalman smoothing (flight path reconstruction). This
ensured that (1) the instrumentation errors are determined and (2) the smoothed
estimate of the aircraft states, forces and moments are obtained. Then the method
of least squares was applied to the processed data and the aerodynamic parameters
could be identified. The obtained parameters and consequently, the aerodynamic
model were validated by comparing their prediction capabilities of the aerodynamic
forces and moments. The identified parameters were further validated using the
forward simulation of the aircraft states. Evaluating the results with relevant sta-
tistical metric on the validation set, it has shown that the identified parameters
represent the aircraft dynamics in high accuracy.

One of the initial goals were the development of a system identification procedure
that can be applied to various fixed wing platforms in the Flying Robots Group of
the Robotics and Mechatronics Center. The algorithms for the two step method
have been implemented as the system identification tool chain and its applicability
to Penguin BE UAV has been demonstrated. The available avionics, instrumen-
tation and technical readiness of the system made the system identification for
Penguin BE differ from Elektra 1 in practice. These differences to the local air-
craft system identification for Elektra 1 were documented and therefore, a technical
know-how could be accumulated.

The output of the global system identification is a model which is valid at all
the operating points of the flight envelope. As High Altitude Long Endurance
platforms exhibit the vast ranges of the operating points, the development of the
global system identification procedures was an obvious next step. In order to reduce
the cost and time associated with the conventional approaches, an incremental
model update based scheme for the global system identification has been devised
and implemented. The method involved the use of Vortex Lattice Method (VLM)
instead of the wind-tunnel experiments and the Computational Fluid Dynamics
for the prediction of the aerodynamic phenomena. Furthermore the parameter
identification was applied to the data obtained from the VLM based simulation of
aircraft system identification manoeuvres. As VLM lacks the accuracy, the available
flight test data were used to correct the aerodynamic parameters derived using VLM.
Within the scope (low altitude flights at 4 different velocities) the method proved
to work with improvements in the Root Mean Squared Error values by factor 2 and
5 for forces along the x-axis and z-axis in body frame.

One of the key future work is the development of a validation method for the
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Figure 5.1: Elektra 2 - maiden flight [2].

controller synthesis. Perhaps, the flight experiments involving the step responses
of the aircraft can be performed and further compared to the model predicted step
responses of the aircraft. Furthermore the level of fidelity can be defined specifically
for the control architecture being used in the Flying Robots Group.
The high fidelity modelling activities can be extended further. One of the possibility
is the high fidelity modelling for Elektra 2 in figure 5.1 by applying the system
identification tool chain based on the two step method. In case the the effects of
the aero-elasticity is found to be dominant the system identification methods for
the flexible aircraft could be implemented.
The aerodynamic phenomena in the stratospheric flight is characterized by a low
Reynolds number and also, a high Mach number. Furthermore, VLM is based
on the assumption of incompressible flow. Therefore, the method for the global
system identification must be further studied by expanding the scope. It is highly
recommended to further develop methods with the wider ranges of velocity and
altitude.
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Appendix A

Supplementary materials

This appendix includes more results.

A.1 More results on Elektra 1 path reconstruction

This section includes the supplementary materials from Elektra 1 path reconstruc-
tion. The bias estimation from offline IEKS is shown in figure A.1.

Figure A.1: Bias estimation from offline IEKS.
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A.2 Penguin BE UAV local system identification

This section includes the supplementary materials from Penguin BE local system
identification.

Figure A.2: Pitching moment derivatives w.r.t elevator (left) and throttle (right)

Figure A.3: X-axis force derivatives w.r.t elevator (left) and throttle (right)

Figure A.4: Z-axis force derivatives w.r.t elevator (left) and throttle (right)
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Figure A.5: Bias estimation from offline IEKS.

Figure A.6: Validation of offline IEKS estimation using aircraft equations of motion
- nonlinear aerodynamic model.
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Appendix B

Project definition

Within flying robots group at Institute of Robotics and Mechatronics(DLR), re-
search has been focusing on fixed-wing solar electrical platforms capable of per-
petually flying in stratosphere. These platforms, often called high altitude pseudo
satellites (HAPS) have a wide range of applications ranging from mobile communi-
cation networks to long term observations and environmental measurements. This
master thesis will involve aircraft system identification for such solar electrical plat-
forms both at low and high altitude. Note that the table B.1 contains formal
information about the current external master thesis.

Table B.1: General information
Type External master thesis
Start date 01-10-2016
End date 15-04-2017
Internal institute Autonomous Systems Laboratory - ETH Zurich
External institute Institute of Robotics and Mechatronics - DLR
Student Jongseok Lee
Internal supervisor Oettershagen Philipp

Thomas Statsny
External supervisor Dr.-Ing. habil. Konstantin Kondak

Tin Muskardin
Supervising lecturer Prof. Roland Siegwart
Tutor Prof. Raffaello D’Andrea

Thesis description

The flying robots group is currently working in close cooperation with Elektra UAS
GmbH and SolarXplorers SA (Solarstratos project) on highly efficient drives, avion-
ics components, as well as payloads and autonomy functionalities for autonomous
and optionally piloted solar high-altitude platforms and missions. Currently, these
autonomy functionalities use flight dynamics model from geometry based approach
where the aerodynamic database is created using the vortex lattice method(VLM)
[3]. However, low fidelity of such flight dynamics model limits its usage for control
synthesis and other developments of autonomy functionalities. Therefore, the top
level requirement of the project is the high fidelity modelling of aircraft dynamics
with the following goals.

TR1 The aircraft model shall allow for the control synthesis.
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TR2 The aircraft model shall allow for the simulation of entire stratospheric mission
(optional).

In line with above mentioned requirements the scope of the current project is defined
to following work packages.

WP1 Local aircraft system identification for three manned/unmanned aircraft -
Penguin and Elektra 1 (bonus).

WP2 Global aircraft system identification via incremental model update.

WP3 Development of adaptable aircraft system identification procedures and tool
chains for various platforms.

Note that local aircraft system identification refers to the identification of aerody-
namic parameters that is valid over one point in the flight envelope where the data
is collected whereas the global aircraft model is valid over the entire flight envelope.
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