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Abstract

Recent developments made portable embedded systems cheaper, even smaller, and also enor-
mously increased their computing power. But performance in a system itself cannot only
be gained by using faster and better hardware or simply utilizing multiple general purpose
processor cores, it can also be enhanced by adaption for special auxiliary hardware and op-
timization of time-critical software parts. Especially when large amounts of data have to be
processed, as in image processing algorithms, the benefits of parallel data processing can
exceed the additional optimization effort. This thesis will show how to take advantage of the
additional processing power of the TI DM3730 processor in the use case of a feature detector
based on the Accelerated Segment Test. Two ways of unburdening the CPU by using either
SIMD extensions on the CPU itself or by transferring the task to the on-chip DSP were im-
plemented and validated. The evaluation of several ideas and possibilities for optimizations
led to the final implementations that reduced processing times by more than 25% on both
units.
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1 Introduction

1 Introduction

1.1 Motivation

Computer vision is already used throughout many different applications in industry, medicine,
automotive, retail, surveillance and authentication [25]. For example in object detection [12,
15], tracking [33], or localization and mapping [13] it is often important to "[d]etect [ . . . ]
and match [ . . . ] specific features across different images" [16]. From these three steps, which
are detection, description and matching [16], detection, as the first step, is very important,
because the following steps are based on the information gathered in this step. One kind of
these feature detectors are so called corner detectors, which respond to corners in images.

Recent research has helped to increase efficiency, robustness and repeatability of corner de-
tectors in general, e.g. in [22]. But not every system can provide that much computing power,
especially when it comes to lightweight embedded systems like small drones, multicopters
or small planes where weight and available energy is limited. They are often designed to be
autonomous and so necessary tasks, e.g. to prevent damage to the system itself or persons in
reach, have to be done on-the-fly and sometimes even with real-time requirements. Therefore,
it is crucial to design these systems as a whole in a way, that every smallest part is efficient
and uses available resources with care.

Furthermore, hardware performance improvements on low energy platforms (mostly ARM
based) (Advanced RISC Machines) (Reduced Instruction Set Computing) help to take a step
towards these aims and offer the possibility to let more complex tasks be handled on such
devices. Typically, highly integrated SoCs (systems on chips) with numerous and specialized
on-chip hardware exceeding a single core are predestined for weight-critical applications. But
software needs to be adapted to special hardware at the expense of development time and
costs when it is necessary to increase overall performance at the same energy consumption
level, or simply to increase efficiency.

At the German Aerospace Center (DLR) the target platform on a multicopter for a feature
detector is a SoC including a processor with vector extensions and also an on-chip DSP
(digital signal processor), which was not used at the time of writing.
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1 Introduction

1.2 Goals

As there are more tasks on a flying drone than to detect corners in images captured from
on-board cameras, the detection should require as little time as possible, no matter where or
how the calculations are done. A popular, fast and reliable corner detector is Edward Rosten’s
FAST (Features from Accelerated Segment Test) [21, 20], which is capable of corner detection
at video rate on desktop computers [14]. For this detector a reference implementation and
a vectorized version using Intel’s Streaming SIMD (single instruction multiple data) Exten-
sions 2 (SSE2 ) are available. The first goal is the transferring and further optimizing of the
vectorized version for the internal multimedia vector extension, which uses the comparable
ARM NEON instruction set in order to profit from the parallel execution of some parts of
the algorithm.

The second aim is to outsource the corner detection. Therefore the optimized code will be
ported to the on-chip DSP that implements a different instruction set, and the base frame
will be adapted to work with an available API (application programming interface) for the
DSP.

Finally, a comparison of the achieved results, a detailed analysis of calculation times on the
different processing units, as well as a comparison of power consumptions and a conclusion
with an outlook on future work will be presented.

2



2 Project Environment

2 Project Environment

This chapter will present a description of the target platform with all important components,
as well as a summary of the FAST algorithm and a description of a sample application at
the DLR.

On small multicopters every gram of weight is crucial, but on highly automated systems
computational power is important to fulfill necessary tasks on the fly. Some multicopters
at the DLR are equipped with Gumstix Overo® FireSTORM modules weighing only 5.6 g,
which contain a DaVinci DM3730 SoC from Texas Instruments (TI ) as the centerpiece to
accomplish the arising tasks [9]. These boards are tiny and have to be mounted on exten-
sion platforms to allow easy development and so an even cheaper solution was found in the
Beagleboard-xM, which implements the same main chip.

2.1 Beagleboard-xM

The Beagleboard-xM features the TI DaVinci DM3730, containing a superscalar ARM Cortex-
A8 core, which is capable of running up to 1 GHz. The ARM core is connected to the on-
board 512 MB low power mobile-DDR RAM (double data rate random access memory) via
two cache levels of 4-way 32 KB Level-1 (L1) for data and instructions each and 256 KB 8
ways associative L2 cache [30].

Besides some specialized hardware as a display interface and a camera image signal processor
the SoC features an on-chip TMS320C64x+ DSP and a PowerVR SGX530 GPU (graphics
processiung unit) [30]. The graphics unit will not be included in further discussions of this
work because it is not that powerful when executing algorithms that are highly memory
dependent. In [18] is was shown that data transfers, especially from the GPU back to main
memory, are very slow.

The DSP is embedded in the IVA2.2 (TI video and audio accelerator) mega-module including
local caches, a dedicated memory management unit (MMU ), a video hardware acceleration
module and some more [30]. It uses 32 KB direct mapped L1 cache for instructions and 80 KB
2-way associative L1 data cache expanded by 64 KB unified 4-way L2 cache [28]. The C64x+
is a fixed-point DSP based on the TMS320C6000 CPU (central processing unit) using the
VelociTI™ architecture [29].

3



2 Project Environment

The Beagleboard additionally features four USB (universal serial bus) ports, Ethernet, RS232,
audio in/out, S-Video and DVI (digital visual interface) interfaces. It comes with headers for
easy connection of LCDs (liquid crystal displays) and camera modules.

On the Beagleboard, Ubuntu precise 12.04.1 LTS is running as an operating system (OS)
with a 3.0.0 kernel including the realtime preemption patch.

2.1.1 NEON Co-Processor

ARMv7 architecture introduced an optional advanced SIMD extension to the ARMv7-A and
ARMv7-R profiles called NEON. This add-on extends the already existing small set of SIMD
instructions of the ARMv6 architecture by defining groups of instructions operating on vectors
of 64 and 128-bit vector registers. The NEON instructions support 8-bit, 16-bit, 32-bit, 64-
bit signed and unsigned integers, as well as 32-bit single-precision floating point elements
and 8-bit and 16-bit polynomials. The register bank, added for the extension, consists of 32
64-bit doubleword registers, which can also be used as 16 128-bit quadword registers. The
NEON instructions can be utilized directly by writing assembly code or by using intrinsics in
C/C++ with compilers that support them. Intrinsics look like function calls, but are replaced
by (a sequence of) low-level instructions at compilation, providing efficient usage of NEON
instructions in high-level languages. (Cf. [3].)

"The NEON unit is decoupled from the main ARM integer pipeline by the NEON instruction
queue (NIQ). The ARM Instruction Execute Unit can issue up to two valid instructions to the
NEON unit each clock cycle. NEON has 128-bit wide load and store paths to the Level-1 and
Level-2 cache, and supports streaming from both. The NEON media engine has its own 10
stage pipeline that begins at the end ARM integer pipeline. [ . . . ][It] has three SIMD integer
pipelines, a load-store/permute pipeline, two SIMD single-precision floating-point pipelines,
and a non-pipelined Vector Floating-Point unit (VFPLite)" [1].

The implemented instructions can be grouped in logical and compare operations, general data
processing and arithmetic instructions, as well as shift, multiply and load/store instructions.
Generally speaking, the NEON instruction set is very similar to other multimedia extensions
like Intel’s Streaming SIMD Extension (SSE) in version two and three, which could be seen
as a minimal common ground for scientific and media applications today within the large
variety of available vector extensions in the desktop (x86) environment [10]. For a complete
reference see [2].
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2.1.2 TMS320C64x+ DSP

The C64x+ DSP has its own clock and runs at a maximum frequency of 800 MHz, implements
an eleven stage pipeline and is separated into two data paths. Each path contains a general-
purpose register file with 32 32-bit registers and four functional units. The "register files
support data ranging in size from packed [ . . . ][8-bit] data [(vectors)] through 40-bit fixed-
point and 64-bit [fixed-/]floating-point data. Values larger than 32 bits, such as 40-bit long
and 64-bit [ . . . ][non-integers] are stored in register pairs" [26].

The total of eight functional units (.L1, .S1, .M1, .D1, .L2, .S2, .M2, .D2) are shared equally
among the data paths, from which two are multipliers and six are arithmetic units with slightly
different feature characteristics and supported instructions. So in a best-case scenario eight
instructions can execute in parallel. If an instruction can only be performed on one specific
unit at a certain cycle, it is also possible to use data from the other path’s register file via
two data cross paths. Additionally, each path has its own load and store path to memory, as
seen in Figure 2.1.

Compared to the NEON extension, the DSP approach to parallel (multimedia) data pro-
cessing is a bit different. The DSP features more functional units, but it keeps the 32-bit
register width. With multiple units executing the same instruction in parallel it may result
in the same processing speed, but dependent on the implementation it may also result in
slower or faster execution. For example, logical operations on 32-bit data can be executed
on two functional units on each path, which can result in four instructions being executed
at the same time, which is exactly the same as one operation on a 128-bit vector (cf. [27]).
Many algorithms can profit from instruction parallelism as it can be used here, especially
when they cannot be easily parallelized or not at all. For implementations that are capable
of vectorized data processing it is also often possible to reach the same performance as with
larger data vectors, as in the NEON architecture.

Although the DSP has its own peripherals, it has no direct means of communication to the
host CPU except the main memory. Therefore, control mechanisms are needed in order to
be able to move certain tasks to the DSP and unburden the host processor. A popular DSP-
OS, which manages tasks on the DSP, is the DSP/BIOS operating system from TI, which
is loaded by the host CPU onto the DSP. Once this is accomplished, so called nodes, which
implement the user applications, can be loaded dynamically into the DSP/BIOS. Although
there are other possibilities to control the DSP/BIOS from the host side, here DSP-Bridge,
also from TI, is used together with a lightweight DSP API from [18]. This interface includes
host-side bridge logic and easy access to common tasks that are necessary when working with
an co-processor. The DSP API and its sublayers implement a mailboxing-system between the
two processors through the main memory. Through these messages nodes can be launched,
parameters can be passed or status messages can be exchanged. (Cf. [31].)

5
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Figure 2.1: TMS320C64x DSP block diagram. The data paths 1 and 2 each contain a register file of
32 registers and four of the total eight functional units.

An important aspect concerning the usage of the DSP is the fact that both processors do
not share their caches and both have their own MMUs with own virtual address spaces. This
must be kept in mind when transferring data between them, because it must be ensured that
the cache is invalidated before the first read access and written back to RAM after the last
writing step, and that addresses are mapped to the other address space before exchange.

2.2 FAST Feature Detector

Figure 2.2: Abstract FAST
algorithm flow.

The FAST (Features from Accelerated Segment Test) feature
detector was published by Edward Rosten et al. in 2005 [20]
and is a relaxed version of the SUSAN [23] corner detector as it
uses the brightness of its surrounding pixels to decide whether
a corner candidate is a corner or not. The FAST algorithm
uses a Bresenham circle, which is a discretized circle, of radius
3 as a test mask around the center pixel p. The center pixel is
also called nucleus and is marked green in Figure 2.3, whereas
the circle is highlighted in red. This specifically means that
the values of these 16 pixels on the test pattern have to be
compared to the brightness of the nucleus p. According to the

test criterion there have to be at least n contiguous pixels on the test pattern circle which
are all brighter or all darker than the nucleus by more than a threshold t. The intensities of
the other 16 − n pixels are ignored. The parameter n describes the length of the arc, which
indirectly defines the angle at which corners are detected and thus it has great influence on

6
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Figure 2.3: The 16 pixel segment test pattern is colored in red and is used to determine a corner. The
green center pixel p is the corner candidate, whereas the dashed line indicates an arc of 12 contiguous
pixels which are all brighter than p by more than a threshold t [20, 21].

repeatability and robustness of the detector. In [22], n = 9 was shown to have unmatched
processing speed and a very high repeatability. Within this work only n = 9 will be used and
other possible test-shapes as in [14] will not be examined either.

The described Detection is followed for each detected corner by a calculation of the Corner
Score (see also Figure 2.2), which represents the strength of a corner. Looking at the nucleus
the score value equals the maximum threshold at which it will still be a corner [22]. These
scores are later used in the NMS (non-maximum suppression) to reduce the number of locally
equal features. The NMS compares each pixel with its 8 surrounding neighbors and rejects
all pixels for which a neighbor reaches a higher score [20, 21, 22, 14, 23].

2.3 Sample Application

At the DLR in the XRotor-Group for UAVs (Unmanned Aerial Vehicles), where this work
was supported, a possible use-case of the FAST feature detector is in a visual compass
application. To implement this, a camera equipped with a circular fish-eye lens is mounted
top down under an UAV, through which it is able to see the horizon in almost every situation
(see Figure 2.4). By detecting feature points along the horizon and tracking them during the
permanent movement of the UAV it is possible to calculate a rotation angle. There are of
course conventional magnetic field sensors available for this purpose, but they may drift after
a while or may be jammed by electromagnetic fields in certain situations or environments. To
solve this problem, the magnetic sensor data can be fused with data from the optical rotation
sensor, where in the case of an error the information from one sensor can be discarded and a

7



2 Project Environment

Figure 2.4: Image Omni taken from a quadrocopter with a fisheye lens.

reliable navigation can be assured. This is just one out of many possible use cases for optical
sensors on UAVs for which this detector can be used.

8
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3 Existing and Non-Optimized Implementations

Edward Rosten, one of the authors of the FAST detector, maintains an open source library
called libCVD - computer vision library, which is a "high performance C++ library for com-
puter vision, image, and video processing" [19]. It contains the reference implementation to
the FAST detector [21]. A second source is another computer vision library: OpenCV [5]. In
the source files it is said that this implementation is also from the authors of FAST, but the
implementation is quite different, which will be clear after the following sections.

In order to examine and to evaluate the different implementations, a framework was created,
which incorporates routines (from [24]) to read binary data from, and write to Portable
Grey Map (PGM) images. A means of time measurement for comparing the efficiency and
generation of results, and several debugging and testing mechanisms were also added to help
with the verification process of later optimizations.

In the following, both implementations will be examined, and a third variation will be intro-
duced.

3.1 Code Analyses of Existing Implementations

3.1.1 libCVD Implementation

The libCVD implementation of the detection is auto-generated and consists of about 4500
lines of code of cascaded if-structures. The nested structure represents the full segment test
criterion, which tests all 16 pixels in the test pattern in a specific order. This order results from
an optimized decision tree which was generated from several test sequences by the authors,
as the "efficiency of the detector will depend on the ordering of the questions and [ . . . ][it]
is unlikely that this choice of pixels is optimal" [22]. This implies that the detector will not
likely represent the best variation of the tree for the images used in this test. Nevertheless
it will be included as a reference, because no learning or training will be used in the line of
this work and later on, as there is no unique adaption possible for mobile devices in general
at compilation time.

The corner score calculation is similarly constructed and also mechanically generated. The
same arguments as in the previous paragraph can be applied to this part.

9



3 Existing and Non-Optimized Implementations

3.1.2 OpenCV Implementation

The OpenCV implementation includes a generalized approach, which is not based on opti-
mized trees and is processor independent. But it also includes a partial vectorized (SIMD)
version for the multimedia extension SSE2 on x86 CPUs.

OpenCV Single Pixel Processing

Figure 3.1: Test pattern with offsets and
9 pixels marked in red.

The single pixel implementation, in contrast to the
vectorized one, makes use of the following fact: An
arc of 9 or more pixels on the test pattern contains
at least one single pair of opposing pixels that are
included in the arc. See pixels 0 and 8 in Figure 3.1
on the test circle.

At first the values of the pixels x ∈ {0 . . . 15} on
the circle are preprocessed with the help of a lookup-
table, where the intensity Ix is used as an index re-
sulting in one of three values Vx ∈ {0, 1, 2}, depen-
dent on the nucleus p and threshold t:

Vx =


1, for Ix < Ip − t (darker)

2, for Ix > Ip + t (brighter)

0, for Ip − t < Ix < Ip + t (similar)

With the help of this information a three step high-speed test can be implemented. See Figure
3.2 for the whole Detection program flow.

• V0 and V8 are checked; if both are 0 (similar) then p cannot be a corner anymore and
it will be discarded.

• Evaluate all remaining pixel pairs on the circle with even offset (V2/10, V4/12, V6/14). If,
for one of these pairs, both Vx are 0, then the maximum count will be 7 and no corner
will be possible.

• Test all odd pairs of pixels (V1/9, V3/11, V5/13, V7/15) in the same manner.

If the nucleus is still not rejected after the high-speed test, then I0...15 will have to be examined
again. Not all information is lost due to the fact that searches for darker or brighter values can
be omitted dependent on 1 ∈ {V0 . . . V15} and 2 ∈ {V0 . . . V15}. The test pattern is examined
counterclockwise and all contiguous pixels with intensities brighter or darker than the nucleus,

10
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Figure 3.2: Program flow of single pixel Detection (OpenCV ).
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by more than the threshold, are counted. When the arc is interrupted by pixels, which do
not belong to the same class of brighter or darker, the counter is reset to 0. If the counter
exceeds 8, then a valid corner is found.

After the detection of a corner, the Corner Score is calculated immediately. The score value
is the maximum threshold at which the corner candidate is still a feature point. The Corner
Score routine is designed in a way that it does not use any information whether a positive
(where the pixels on the circle are brighter than the center pixel) or a negative corner was
detected. Both the positive and the negative score is calculated. Therefore all pixels on the
test pattern are stored in an array as shown in Figure 3.3. For each of the 16 possible positions
of the 9-pixel-arc on the pattern, which could determine the corner, the minimum is selected
(for the positive score). Out of these minima the maximum is selected and compared to the
negative Corner Score value, which is calculated in the same way, except that minimum and
maximum functions are inverted. The score with the greater distance to the nucleus’ intensity
represents the (Corner Score + 1), because the pixels on the test pattern must exceed the
threshold by one at least. To obtain the Corner Score, 1 is subtracted and the result is
returned.

Corner Scores from three image lines are buffered in an array, where after every completion
of a single row the NMS is applied. Coordinates from corners which do not have a neighbor
with a higher score are appended to the feature-point list. A neighbor which was not declared
a feature point beforehand is treated as a corner with score 0.

OpenCV SIMD Processing

When compiling the OpenCV implementation for a CPU that supports the SSE2 instruction
set, there is an alternative implementation included that makes use of the multimedia exten-
sion. Of course the code is not suitable for the ARM CPU, but as NEON is very similar, an

0 4 752 81 3 6 9 013 414 511 210 115 612 3

MIN MINMINMINMIN MIN MINMINMIN MINMINMIN MINMIN MINMIN

MAX

7

Figure 3.3: Corner Score calculation: Test pattern pixels with offsets in an array; the minima of all
possible 9-pixels-arcs are calculated and the maximum from these results is tmax + 1 for the upper
threshold. For the lower threshold the search for minimum and maximum are exchanged.
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adapted NEON version will be created in the next section. In the following paragraphs the
SIMD version will be analyzed and explained.

The program flow itself remains the same as without vectorization, but the Detection part
is a bit different, as Figure 3.4 shows: The algorithm uses SIMD instructions for each line in
the given image until a complete vector cannot be filled with values anymore. The remaining
pixels of the row are processed one by one by the single-pixel approach. The Detection itself
can be divided into two subparts: The Abort Criterion and the Vector-Detection. Both parts
use vectors to process 16 pixels in parallel in 128-bit vectors. (See Figure 3.5 for a vectorized
version of the test pattern.) The Corner Score calculation uses SIMD instructions for a
single score, as they do not have to be calculated for all pixels, and the ones which have to
be calculated are not necessarily immediately consecutive pixels in memory.

Figure 3.4: Vectorized FAST algorithm
flow. The yellow parts are vectorized.

Figure 3.5: Vectorized test pattern with
offset-vector 0 marked in red.

The Abort Criterion replaces the high-speed test and
is adapted for a whole vector. It would not make
sense to keep the three-stages test, as the calcula-
tion for the whole vector has to be done anyway if
a single element is a corner. Instead of calculating
anything concrete, which can later be used in the
Vector-Detection, it tries to get a general overview
of the vector’s content. Therefore, it uses a variation
of the original high-speed test for the n = 12 FAST
detector [20], which checks the 90°-pixels on the test
pattern (offsets 0, 4, 8, 12 in Figure 3.5). To obtain
an arc of 9 or more contiguous pixels, at least two
of these four pixels are included. So the Abort Cri-
terion examines all possibilities of two neighboring
90°-pixels. If for none of these pairs both exceed the
nucleus p by at least the threshold t, then this ele-
ment cannot be a corner. In the next step the decision
is made whether the Vector-Detection is skipped for
this vector or not. If none of the vector’s elements
can be a corner, then the detection is skipped and
the next vector is loaded from memory. If only the
second half of the vector can contain one or more
corners, then the Abort Criterion is repeated with a
new 16 elements vector loaded with 8 pixels offset to
the previous. This results in a second run of the Abort Criterion, but the Vector-Detection
runs on a vector, which can contain more corners with the same effort.

13
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...

...

00000001 000000010000000000000011 ...

SUB SUB SUB SUB
c0

m0 11111111 000000000000000011111111

00000000 000000010000000000000010

...

00000001 000000000000000000000011 ...

AND AND AND AND

m0

c0

11111111 000000000000000011111111

Figure 3.6: Vectorized counter example. c0
is the counter and m0 contains the compari-
son results. The first and the fourth element
are incremented, whereas the second is reset
and the third stays at 0.

The Vector-Detection counts the maximum length
of a contiguous arc of pixels on the test pattern,
which are all greater or lower than the nucleus ±
the current threshold, for 16 elements in the vec-
tor at the same time by comparing the test pat-
tern pixels with the absolute threshold values p± t.
The counting is done by subtracting the result of
the comparison from the current counter value. As
a comparison of two elements results in 0x00 or
0xFF, and 0xFF has a decimal value of −1, when
interpreted as two’s complement, the signed sub-

traction results in −0 or +1. If the arc is interrupted, the counter must be reset to 0. To
implement this feature, the counter is AND-combined with the comparison result as the last
step of one counting cycle. For a graphical illustration of an example counting sequence see
Figure 3.7 and for the instructions used in one counting step, see Figure 3.6 as an example.

Figure 3.7: Counting pixels on the contiguous arc on the
test pattern. The red pixel exceed the threshold and c is the
counter with the initial value c0 = 0. 24 counting steps are
performed, because it is the worst case to count a 9 pixel
arc. The illustration shows a slice of the vectorized imple-
mentation. At c19 the maximum count is reached and saved
as maximum count.

The Corner Score is also avail-
able as a vectorized implementa-
tion. Here it is not realized as par-
allel processing of multiple scores,
but as a calculation of a single Cor-
ner Score with the means of vec-
tor instructions. Therefore the ar-
ray of test pattern pixels is gener-
ated as in the non-vector approach.
The algorithm itself stays also the
same, except that multiple mini-
mum/maximum extractions are ex-
ecuted parallel on a vector. At the
end a serialization has to be per-
formed on the vector to obtain a
single result from the results in
the vector elements. In Figure 3.8
the NEON implementation is illus-
trated.
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3.2 Porting of the OpenCV SIMD Implementation

The algorithm was already implemented with the help of SIMD-extensions to increase the
performance. Because SSE2 and NEON share large parts of their instruction sets and their
possible vector lengths, it is likely that a NEON version would also be faster on the ARM
CPU. Therefore it would be nice to have a working and comparable NEON implementation
before starting to analyze the different approaches in terms of performance, because the
porting itself is not expensive in terms of effort. The SSE-implementation uses intrinsics that
look like standard C function calls, but they are usually replaced by the compiler with a
single corresponding SIMD assembler instruction. So in the first step the given code was
ported without any optimizations to the NEON architecture.

1 2 3 4 ...x1

2 3 4 5 ...x2

MIN(0..8) MIN(1..9) MIN(2..10)MIN(3..11) ...min0

3 4 5 6 ...x3

0 1 2 3 ...x0

x8

...

...

...

...

8 9 10 11 ...
MIN MIN MIN MIN

minmax1_r ...

min0

min0_r

minmax1

minmax2

MIN(0..8) MIN(1..9) MIN(2..10)MIN(3..11) ...

MIN(2..10)MIN(3..11) MIN(0..8) MIN(1..9) ...
MAX MAX MAX MAX

...

MAX MAX MAX MAX

...

Step 1: Minimum

Step 2: Maximum and serialization 

rotate left (1 element)

rotate left (2 elements)

Figure 3.8: Vectorized Corner Score calculation
for positive thresholds. In step one, the parallel
search for the minimum is outlined. The numbers
in vectors x0 through x8 represent the pixels’ off-
sets on the pattern. The rotation in the second
step is implemented with an extract-instruction.
The example is simplified, as it only shows a four-
elements-vector. The double vector size, as used in
the implementation, requires a third application of
rotation and maximum selection in step two, ac-
cording to Listing 3.3. In the end minmax2 contains
the maximum of all elements from min0.

In the Abort Criterion and the Vector-
Detection only the intrinsics in Table 3.1
were used and most of them are available
in both instruction sets. The SSE intrin-
sic _mm_movemask, which generates an 16-bit
mask of the vector elements’ MSBs, could
not be represented with a single instruction
and was substituted for the first implementa-
tion with code that was proposed in [6] (see
Listing 3.1).

The Corner Score calculation also uses in-
trinsics from Table 3.1 and works with 16-bit
signed integers, because 8 bit cannot cover
the possible range −255 ≤ (Ip − Ix) ≤ 255.
The serialization phase, where the maximum
vector element is extracted (for the posi-
tive threshold), contained the SSE intrinsics
_mm_unpackhi_epi64 and _mm_srli_si128.
The first instruction unpacks and interleaves
the high halves of two given vectors and the
second shifts the vector right by a number
of bytes, but NEON does not feature direct
complements. So the code was modified to
serialize the vector slightly differently, but
with the same logical result and the same
amount of intrinsics. The two code fragments
are shown in Listing 3.2 and 3.3. vextq_s16
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extracts a specific number of 16-bit elements from the first vector and takes the remaining
elements from the second, which makes it a logical rotation of elements for the whole vector
when used with the same vector. In Figure 3.8 the vectorized Corner Score implementation
is shown.

Listing 3.1: Movemask equivalent [6]

1 uint16_t movemask ( uint8x16_t input){
2

3 const uint8_t __attribute__ (( aligned (16))) _Powers [16] =
4 { 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128 };
5

6 //~ Set the powers of 2 (do it once for all , if applicable )
7 static uint8x16_t powers = vld1q_u8 ( _Powers );
8

9 //~ Compute mask from input
10 uint64x2_t _Mask = vpaddlq_u32 ( vpaddlq_u16 ( vpaddlq_u8 ( vandq_u8 (input ,

powers ))));
11

12 //~ Get resulting bytes
13 uint16_t mask;
14 vst1q_lane_u8 (( uint8_t *)&mask + 0, ( uint8x16_t )_Mask , 0);
15 vst1q_lane_u8 (( uint8_t *)&mask + 1, ( uint8x16_t )_Mask , 8);
16

17 return mask;
18 }

Listing 3.2: Corner Score serialization: SSE implementation

1 q0 = _mm_max_epi16 (q0 , _mm_unpackhi_epi64 (q0 , q0));
2 q0 = _mm_max_epi16 (q0 , _mm_srli_si128 (q0 , 4));
3 q0 = _mm_max_epi16 (q0 , _mm_srli_si128 (q0 , 2));
4 threshold = (short) _mm_cvtsi128_si32 (q0) - 1;

Listing 3.3: Corner Score serialization: NEON implementation

1 q0 = vmaxq_s16 (q0 , vextq_s16 (q0 , q0 , 4));
2 q0 = vmaxq_s16 (q0 , vextq_s16 (q0 , q0 , 2));
3 q0 = vmaxq_s16 (q0 , vextq_s16 (q0 , q0 , 1));
4 vst1q_lane_s16 (( int16_t *) &threshold , q0 , 0);
5 threshold --;

The resulting code was validated by detecting the same corners in the same test images on
both a CPU capable of executing SSE instructions and the CPU on the Beagleboard, on
which the NEON implementation was executed. Also, a test was successfully completed in
which a random vector including its environment was generated and then analyzed by the
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Table 3.1: SIMD implementation intrinsics overview

Description SSE Intrinsic NEON Intrinsic
load a 16x8-bit vector from memory _mm_loadu_si128 vld1q_s8
load a 8x16-bit vector from memory _mm_loadu_si128 vld1q_s16
bitwise AND _mm_and_si128 vandq_u8
bitwise XOR _mm_xor_si128 veorq_s8
bitwise OR _mm_or_si128 vorrq_s8
subtract unsigned 8-bit integers with
saturation

_mm_subs_epu8 vqsubq_u8

add unsigned 8-bit integers with
saturation

_mm_adds_epu8 vqaddq_u8

subtract signed 8-bit integers _mm_sub_epi8 vsubq_s8
subtract signed 16-bit integers _mm_sub_epi16 vsubq_s16
compare two signed 8-bit integers _mm_cmpgt_epi8 vcgtq_s8
select the maximum of unsigned
8-bit integers

_mm_max_epu8 vmax_u8

select the maximum of signed
16-bit integers

_mm_max_epi16 vmaxq_s16

select the minimum of signed
16-bit integers

_mm_min_epi16 vminq_s16

generate 16-bit mask of the elements’
MSBs

_mm_movemask_epi8 not available

set all elements to the same value _mm_set1_epi16 vdupq_n_s16
set all elements to 0 _mm_setzero_si128 not available

use vdupq_n_s16(0)
unpack and interleave 64-bit integers
from the high halves

_mm_unpackhi_epi64 not available

shift a number of bytes right and
insert zeros

_mm_srli_si128 not available

vectorized version itself and compared to a simple implementation which examined one pixel
after another on the test pattern for each element on the vector. Finally, the implementation
was successfully validated.
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3.3 Profiling of the Available Implementations

In order to get an overview of the efficiency of the different implementations and to find the
parts and sections of the code that are worth optimizing, a profiling was done. Details on
how these measurements were performed are described in Chapter 5. Figure 3.9 and 3.10
show the results of all three implementations for two different images at realistic thresholds.
Both charts show similar results at different scales. The SIMD implementation is the fastest
version, whereas the libCVD implementation is even faster than the OpenCV version without
SIMD support. Inside the NEON port over 85% of the whole calculation time is spent in the
Detection, whereas the Corner Score calculation already profited from its vectorization and
does not carry much of a weight any more.
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Figure 3.9: Profiling results from test image Lena. Other includes the NMS, initialization and the
basic loops inside the algorithm.
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Figure 3.10: Profiling results from test image Omni. Other includes the NMS, initialization and the
basic loops inside the algorithm.
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4 Optimization

4.1 NEON Optimizations

In Section 3.3 it was shown that the OpenCV basic NEON port was the fastest of the
reviewed implementations and it will be further optimized in this section. There is no way
of vectorization or pipeline optimizations in the libCVD implementation because of the high
amount of conditional branches, which interrupt the program flow enormously. Also, the
OpenCV implementation without NEON intrinsics will not be optimized because the NEON
port is already a kind of optimization from this version. So in this section, it will be tried to
optimize the NEON port in respect of code, algorithm and cache with focus on the Detection,
as it consumes the most time and therefore offers the highest potential of optimization.

4.1.1 Code Optimizations

Although gprof [8], a profiling tool, was not able to generate exact timing information due to
its sampling resolution, it was able to show in the first tests that the movemask equivalent
from Listing 3.1 was called quite often. It occurs once in the Abort Criterion and once at the
end of the Vector-Detection for every vector. It was clear from the beginning that it was not
necessarily the fastest replacement and would consume quite a bit of the whole calculation
time, but it was a simple and fast solution for a quick porting of the code. Finally, both cases
were exchanged with some modified code in order to avoid the mask exactly as generated by
movemask.

For the Abort Criterion it is only important to know whether there are possible corners in
the first and in the second half of the vector. Thus, a saturated narrowing of each half is
performed, which results in a 64-bit vector. This vector is stored in an array of two 32-
bit integers, because there are no instructions for a narrowing down to 32-bit or less. The
detection whether the whole vector or the half is empty can now be checked by only comparing
the two integers with zero. Listing 4.1 shows the code before, and the bottom section of 4.2
shows it after the optimization. The code does not seem to be more efficient on the first sight,
because three lines replace a single line in the listing, but the old implementation contains
a function call to the even longer movemask routine. All in all the execution time could be
reduced by this modification.
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Listing 4.1: Movemask (Abort Criterion) before optimization

1 uint16_t mask = movemask (( uint8x16_t ) m0);
2

3 if (mask == 0)
4 continue ;
5 if (( mask & 255) == 0)
6 {
7 j -= 8;
8 ptr -= 8;
9 continue ;

10 }

Listing 4.2: Abort Criterion (and movemask replacement) after optimization

1 uint8x16_t m0 , m1;
2 uint8x16_t v0 = vld1q_u8 (( const uint8_t *) ptr);
3 uint8x16_t v1 = vqsubq_u8 (v0 , t);
4 v0 = vqaddq_u8 (v0 , t);
5

6 uint8x16_t x0 = vld1q_u8 (( const uint8_t *)(ptr + pixel [0]));
7 uint8x16_t x1 = vld1q_u8 (( const uint8_t *)(ptr + pixel [4]));
8 uint8x16_t x2 = vld1q_u8 (( const uint8_t *)(ptr + pixel [8]));
9 uint8x16_t x3 = vld1q_u8 (( const uint8_t *)(ptr + pixel [12]));

10 m0 = vandq_u8 ( vcgtq_u8 (x0 , v0), vcgtq_u8 (x1 , v0));
11 m1 = vandq_u8 ( vcgtq_u8 (v1 , x0), vcgtq_u8 (v1 , x1));
12 m0 = vorrq_u8 (m0 , vandq_u8 ( vcgtq_u8 (x1 , v0), vcgtq_u8 (x2 , v0)));
13 m1 = vorrq_u8 (m1 , vandq_u8 ( vcgtq_u8 (v1 , x1), vcgtq_u8 (v1 , x2)));
14 m0 = vorrq_u8 (m0 , vandq_u8 ( vcgtq_u8 (x2 , v0), vcgtq_u8 (x3 , v0)));
15 m1 = vorrq_u8 (m1 , vandq_u8 ( vcgtq_u8 (v1 , x2), vcgtq_u8 (v1 , x3)));
16 m0 = vorrq_u8 (m0 , vandq_u8 ( vcgtq_u8 (x3 , v0), vcgtq_u8 (x0 , v0)));
17 m1 = vorrq_u8 (m1 , vandq_u8 ( vcgtq_u8 (v1 , x3), vcgtq_u8 (v1 , x0)));
18 m0 = vorrq_u8 (m1 , m0);
19

20 uint32x2_t m_half = vqmovn_u64 (( uint64x2_t ) m0);
21 uint32_t mask_array [2];
22 vst1_u32 (mask_array , m_half );
23

24 if (( mask_array [0] == 0) && ( mask_array [1] == 0))
25 continue ;
26 if ( mask_array [0] == 0)
27 {
28 j -= 8;
29 ptr -= 8;
30 continue ;
31 }
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In the code at the end of the Vector-Detection the movemask routine was replaced by a
storage of the whole vector, because here the result from every element is needed. Of course
the storage itself is slower, but the subsequent comparisons are shorter, no shifting has to be
done and the movemask call is omitted. Listing 4.3 and 4.4 show the differences.

In further investigations it was discovered that the SSE version included a conversion of the
8-bit unsigned values to a signed representation. The conversion was implemented by a sub-
traction of the half range (128) in order to keep the whole range after converting to signed
values. Originally the values were compared with the intrinsic _mm_cmpgt_epi8 for signed
8-bit elements, because no unsigned counterpart exists in any SSE version. NEON features
such an unsigned comparison and can profit from the removal of the conversion, which is
needed for every vector. Listing 4.2 shows the code with already removed conversions.

Listing 4.3: Movemask (Vector-Detection) before optimization

1 int m = movemask ( vcgtq_u8 (max0 , K16));
2

3 for( k = 0; m > 0 && k < 16; k++, m >>= 1 )
4 if(m & 1)
5 {
6 cornerpos [ ncorners ++] = j+k;
7 if( nonmax_suppression )
8 curr[j+k] = ( uint8_t ) pastCornerScore (ptr+k, pixel , thr);
9 }

Listing 4.4: Movemask (Vector-Detection) after optimization

1 uint8_t m_array [16];
2 vst1q_u8 (m_array , ( vcgtq_u8 (max0 , K16)));
3

4 for( k = 0; k < 16; k++)
5 if( m_array [k] != 0)
6 {
7 cornerpos [ ncorners ++] = j+k;
8 if( nonmax_suppression )
9 curr[j+k] = ( uint8_t ) pastCornerScore (ptr+k, pixel , thr);

10 }

Another possible optimization was the usage of inline assembler in the three parts, where
parallelization is used. The Abort Criterion was implemented in assembler and it showed that
there are no pitfalls for the compiler to generate inefficient assembler code from the intrinsics,
and that there is no way to gain even more time. The assembler output of the other two parts
were examined and no improvement possibilities were found.
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4.1.2 Algorithm Optimizations

It was also tested whether the processing of single pixels at the end of each line could be
replaced by an additional vector processing loop with only a part of its content being valid
data. In some cases a rather small reduction of execution time could be reached, but no
universal improvement could be measured, as it depends on the actual line length and the
number of features found in each row. A benefit in some cases is definitely possible, but this
should be evaluated separately for each case.

The algorithm was also modified in a test to integrate the Corner Score calculation into
the Vector-Detection loop and to keep it really parallel. If the vector contained only feature
points, for which the score had to be calculated anyway, then the algorithm could profit
from calculating the score in parallel. In standard use cases, in which vectors do not contain
that many corners to justify the massive prolonging of the Vector-Detection, it is faster
to only compute the score for the really detected feature points. Another reason why this
implementation is slower than the original is the fact that the CPU features only 16 NEON
registers, but far more values have to be kept accessible to calculate the Corner Score within
the detection loop. Even an more optimized version with the whole Vector-Detection unrolled
manually was slower than the basic NEON port.

4.1.3 Cache Optimizations

A reason for different algorithms revealing a poor performance is an inefficient cache usage,
which causes pipeline stalls and waiting cycles. As the FAST algorithm only needs seven
image lines to be quickly accessible, images of moderate resolutions should fit into the CPU ’s
L1-cache, which features 32 KB. To prove this statement, a cache simulation was performed
with Dinero IV [7]. Therefore all read accesses to image data were logged including the
addresses, which were then used for the simulation. The simulation results for the tested
images showed only cold misses, which are obligatory and cannot be avoided.

4.2 DSP Implementation and Optimization

The CPU implementation was optimized up to a stage at which the optimization effort
slowly exceeds the resulting gain in performance, because the large improvements with big
impacts were already covered and only small non-optimal parts may be hidden somewhere.
To reduce the resource footprint a bit more on the CPU itself, an implementation for the
on-chip DSP will be created and adapted for the special needs of the co-processor. As many of
the optimizations done in the previous sections do not only apply for the NEON instruction
set, but are also applicable for the DSP, it was tried to keep as many as possible.
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On the host side implementation, a possibility to choose between execution on CPU and DSP
was added. Furthermore, the image data must be copied to an aligned buffer suitable for the
DSP. An output buffer must be allocated, and the buffers have to be mapped, too.

On the DSP side, the FAST source code was striped down to plain C and e.g. the use of
std::vector was removed. The C++ vector contained the results after completion and was
replaced by an array of configurable size, because the API only allows buffers with defined
sizes as exchange between the two units. Apart from that, the lookup-table used for the non-
vector detection at the end of the lines could not be stored inside the stack for some reason,
as it contained 511 32-bit integer values. Placing it in the stack frequently caused the DSP
to crash, and only a complete reboot could help. Storing this table in the heap solved the
problem. Of course, the parallel parts differ from their NEON counterparts, because of their
plain variation in vector length, but the algorithm stays the same. In Listing 4.5 the Abort
Criterion with DSP intrinsics is shown, whereas Listing 4.2 states the NEON version.

Listing 4.5: Abort Criterion (DSP)

1 uint32_t m0 , m1;
2 uint32_t v0 = _mem4 (( void *) ptr);
3 double v1_d = _mpyu4 (v0 , 0 x01010101 );
4 uint32_t v1 = _spacku4 (_ssub(_hi(v1_d), t2), _ssub(_lo(v1_d), t2));
5 v0 = _saddu4 (v0 , t);
6

7 uint32_t x0 = _mem4 (( void *)(ptr + pixel [0]));
8 uint32_t x1 = _mem4 (( void *)(ptr + pixel [4]));
9 uint32_t x2 = _mem4 (( void *)(ptr + pixel [8]));

10 uint32_t x3 = _mem4 (( void *)(ptr + pixel [12]));
11 m0 = _cmpgtu4 (x0 , v0) & _cmpgtu4 (x1 , v0);
12 m1 = _cmpgtu4 (v1 , x0) & _cmpgtu4 (v1 , x1);
13 m0 = m0 | ( _cmpgtu4 (x1 , v0) & _cmpgtu4 (x2 , v0));
14 m1 = m1 | ( _cmpgtu4 (v1 , x1) & _cmpgtu4 (v1 , x2));
15 m0 = m0 | ( _cmpgtu4 (x2 , v0) & _cmpgtu4 (x3 , v0));
16 m1 = m1 | ( _cmpgtu4 (v1 , x2) & _cmpgtu4 (v1 , x3));
17 m0 = m0 | ( _cmpgtu4 (x3 , v0) & _cmpgtu4 (x0 , v0));
18 m1 = m1 | ( _cmpgtu4 (v1 , x3) & _cmpgtu4 (v1 , x0));
19 m0 = m1 | m0;
20

21 if (m0 == 0)
22 continue ;

In the first part the threshold (t and t2, respectively a 8 and a 16-bit vector) is added to and
subtracted from the nucleus’ intensities with saturation to get the upper and lower boundaries
value without any overflow or underflow of the 8-bit range. The DSP features a saturated
addition on bytes but only a saturated subtraction on 16-bit integers. Here a trick is used
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to widen the data type via a multiplication with 1, which results in a double register. The
upper and the lower half of the double is taken for the subtraction, followed by a narrowing
with saturation of the results down to 8 bit per element.

In contrast to the other already mentioned multimedia instruction sets, the DSP implements
a compare instruction that implies the generation of a bit-mask. Additionally, an expand
command exists, which can generate the results matching the other instruction sets (0xFF or
0x00 for true or false). For the Abort Criterion in Listing 4.5 it does not matter which com-
parison is used, as only logical operations are performed on these values. But the expanding
instructions can be omitted because the mask was generated anyway in the original SSE-
implementation at the end. However, in the Vector-Detection the comparison result must be
expanded to implement the algorithm. (Cf. 4.6.)

The SIMD versions for logical operators like OR and AND can be replaced here by standard
bitwise operators as | and &, because they are not bound to any data type and work on 32-bit
integer as well as 32-bit vectors of any element length.

Remaining 128-bit NEON intrinsics were simply replaced with available 4-element DSP in-
trinsics shown in Table 4.1.

The option to step forward only half a vector was omitted on the DSP, because there was no
noteworthy difference in execution time in a short test. This results from the short vector, for
which two pixels are traded for another loop of the Abort Criterion and unaligned memory
accesses, as two pixels equal 16 bits.

Listing 4.6: Detection (DSP)

1 for ( k = 0; k < 24; k++ )
2 {
3 uint32_t x = _mem4 (( void *) (ptr + pixel[k]));
4

5 m0 = _xpnd4 ( _cmpgtu4 (x, v0));
6 m1 = _xpnd4 ( _cmpgtu4 (v1 , x));
7

8 c0 = _sub4(c0 , m0) & m0;
9 c1 = _sub4(c1 , m1) & m1;

10

11 max0 = _maxu4 (max0 , c0);
12 max1 = _maxu4 (max1 , c1);
13 }
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Table 4.1: SIMD DSP implementation intrinsics overview

Description NEON Intrinsic DSP Intrinsic
load vector with signed 8-bit elements
from memory

vld1q_s8 _mem4

load vector with signed 16-bit elements
from memory

vld1q_s16 _mem4

bitwise AND vandq_u8 &
bitwise OR vorrq_u8 |
subtract unsigned 8-bit integers with
saturation

vqsubq_u8 not available

subtract signed 8-bit integers vsubq_s8 _sub4
subtract signed 16-bit integers vsubq_s16 _sub2
add unsigned 8-bit integers vqaddq_u8 _saddu4
compare two unsigned 8-bit integers vcgtq_u8 _xpnd4(_cmpgtu4())
select the maximum of unsigned
8-bit integers

vmaxq_u8 _maxu4

select the maximum of signed
16-bit integers

vmaxq_s16 _max2

select the minimum of signed
16-bit integers

vminq_s16 _min2

The Corner Score vectorization was translated with the intrinsics in Table 4.1, with the se-
rialization realized as a left rotation (_rotl) by 16 bit and a masking of the lower 16 bits as
shown in Listing 4.7. (Cf. SSE and NEON implementations in Listing 3.2 and 3.3.)

Listing 4.7: Corner Score serialization: DSP implementation

1 q0 = _max2(q0 , _sub2 (0, q1));
2 q0 = _max2(q0 , ( int32_t ) _rotl (( uint32_t ) q0 , 16));
3 threshold = q0 & 0 x000000FF ;
4 threshold --;

The version which was tested for NEON with the Corner Score calculation inside the Vector-
Detection was tested again on the DSP, because it features more registers and could have
profited from the difference in architecture. But it turned out that the additional costs inside
the Vector-Detection are much larger than the benefits from not having to calculate every
Corner Score separately. The rather small 4-element vectors exacerbate the situation on the
DSP even more and renders the proposal redundant.
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5 Experimental Results

In this chapter the execution times of the different implementations as well as several sub-
parts will be examined and compared. The results will show the reduction of calculation time
or the performance boost through various optimizations. Additionally, a comparison of the
power consumptions on both units will be presented.

5.1 Test Settings

The time measurements in this chapter were performed by an internal means of time mea-
surement, as external tools as gprof [8] or callgrind [32] do not offer the necessary resolution.
gprof, for example, provides a resolution of 0.01 s, which is too inaccurate for these fast im-
plementations to generate plausible results. In order to get preciser results, the relevant code
parts were measured with the internal system clock and the system call clock_gettime().

For all measurements only stream relevant code parts were measured, which must be executed
for every single picture. Initialization, reading the picture from a file and printing results were
omitted, as well as allocation of page-size aligned buffers in case of the DSP. These tasks will
have to be performed only once in an use case, where thousands of pictures are processed in a
stream. To get runtime information from subroutines or parts of the algorithm, sections were
removed from the implementations and the specific times were calculated by subtraction of
consecutive measurements. The measurements concerning the consumed time on the CPU in
case of the algorithm running on the DSP were generated with the same technique. Here, the
blocking time after the node was launched from the host side until the results are available to
the CPU, was measured to get the pure DSP-time. These values might not be 100% accurate,
as there are system calls deep inside the kernel involved, but they mark a dimension which
can be calculated with. To generate representative results, all values given in this chapter are
the average of 100 iterations.

All experiments were made with two different test images: Omni (Figure 2.4 converted to
8-bit gray-scale) as a real-world scenario measuring 1280 x 960 pixels and the smaller picture
Lena (see Figure 5.2), featuring a resolution of 512 by 512.

27



5 Experimental Results

Figure 5.1: Dependence between the number of detected corners and the threshold.

As it is shown in Figure 5.1, the number of detected corners can vary a lot when the threshold
is changed. The Figure only shows the corners up to a number of 2500. In fact, the feature
point count rises for Lena up to 18574 and 46887 for Omni at a threshold of 1.

Figure 5.2: Test image Lena (512 x 512) with
324 detected corners at a threshold of 40.

To generate reasonable measurements and
comparisons, a target area of a required
amount of corners had to be specified. Differ-
ent applications and environments need some-
times more and sometimes less feature points.
For example in [11] the range of about 100 −
1500 was used in experiments with different
detectors. The requirements from the DLR de-
manded 300 − 500 corners per image, so this
was selected as the target area. The lower
scaled image Lena was chosen to be measured
nearer to the lower boundary at a thresh-
old of 40, which generates 324 detected cor-
ners. (Cf. Figure 5.2.) Omni, which features a
higher resolution, was selected to be examined
at a threshold of 70 resulting in 433 feature
points.
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5.2 Optimization Results

Figures 5.3 and 5.4 show the results in comparison to the profiling information gathered
before the optimization phase and Table 5.1 shows the calculation times of the fastest imple-
mentation on both units. Six different implementations were examined:

• libCVD: Original libCVD implementation.

• OpenCV (no NEON intrinsics): Original implementation compiled without SSE2 sup-
port.

• OpenCV NEON basic port: SSE SIMD intrinsics ported to ARM NEON without fur-
ther optimization effort, as described in Chapter 3.2.

• NEON optimized: Ported and optimized OpenCV implementation.

• DSP / OpenCV (no intrinsics): Original OpenCV implementation without DSP intrin-
sics.

• DSP optimized: OpenCV implementation after optimization for the DSP.
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Figure 5.3: Comparison of execution times before and after the optimization based on image Lena.
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Figure 5.4: Comparison of execution times before and after the optimization based on image Omni.

The results for both images show the same trend and point out that optimization helped
to reduce the calculation time. For the image Lena the overall execution time was reduced
by 38.9% when compared to the libCVD implementation or 25.8% when compared to the
basic OpenCV NEON port. For Omni these values are even higher : 47.9% and 30.3% re-
spectively.

When outsourcing the algorithm to the DSP, there are two possible comparison modes. First,
the whole calculation time can be used as a criterion. Or second, the pure CPU time can be
taken into account, because the CPU is not occupied by the detection after the launch of the
node on the DSP and is available to other processes. When comparing the complete execution
time, the optimized DSP implementation is 23.8% (55.4%) slower than the optimized NEON
version, but 8.2% faster (8.3% slower) than the basic NEON port for image Lena (Omni). If
only the CPU time is taken into account, there is a gain of 82.4% (78.0%) compared to the
NEON basic port and still 76.3% (68.4%) compared to the optimized NEON implementation
for image Lena (Omni).

The differences between both test images can be explained by the difference in homogeneity
in the image content. Whereas in Lena the inhomogeneous areas are rather small and smooth,
Omni features a large center area, where sharp edges and many corners are located. Of course
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Table 5.1: Minimum calculation time overview

Image Threshold Calculation Unit Processing Time
Lena 40 CPU 4.03 ms
Lena 40 DSP 4.98 ms
Lena 40 CPU-time @ DSP 0.95 ms
Omni 70 CPU 12.68.03 ms
Omni 70 DSP 19.70 ms
Omni 70 CPU-time @ DSP 4.00 ms

the amount of data also influences the speed, because the internal parts do not all scale well
in the same extend with the image resolution and the numbers of pixels.

5.3 Comparison between CPU and DSP

As already mentioned in the previous section there are efficiency differences on both plat-
forms. These can be seen quite clearly in Figure 5.5, which shows the absolute total time
consumptions in comparison.

The interesting point in this comparison is the fact that the DSP outperforms the CPU at
higher numbers of detected corners or, indirectly speaking, at lower thresholds. Of course this
is not of any interest for the outcome of the optimization, as this change in performance is
outside the required target region of corners, but it is possible to learn something about the
performance of different parts from some additional measurements, which are represented in
Figures 5.6 and 5.7.

At first, one can see the reason why the DSP is faster than the CPU at high numbers of
detected features: It is especially the slow Corner Score calculation, which consumes less than
half of the time on DSP, although the CPU runs at a higher frequency than its opponent. At
very low thresholds, at which the scores have to be calculated for many corners, this function
clearly carries weight. The fact that this routine scales linearly with the amount of detected
feature points, combined with the results in Figures 5.6 and 5.7, leads to the conclusion that
the Corner Score is always faster on the DSP.

Additionally, the Abort Criterion on DSP underbids its counterpart for both pictures by
more than 50% regardless of the threshold, because the Abort Criterion seems to fit very well
into the DSP’s architecture and it is not dependent on the threshold. The Abort Criterion’s
implementation uses many logical instructions, which can be processed by four subunits on the
DSP resulting in a very fast execution, although the implementation includes a multiplication
and the vector contains four times less elements than a NEON vector. Furthermore, it can
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Figure 5.5: Comparison of execution times on CPU and DSP based on test image Omni.

profit from the implicit generation of the bit-mask compared to NEON. Refer to Chapter 4.2
for more information about the bit-mask on the DSP.

For a decreasing number of detected corners the decision maker for the CPU is the efficiency
of the Vector-Detection, which compensates the low performing Abort Criterion and the
declining fraction of the Corner Score calculation. The Vector-Detection can be so fast on
the CPU because of its simple vector length and the resulting data throughput.

Considering realistic thresholds, the limiting factor is the Vector-Detection on the DSP and
the Abort Criterion on the CPU, which should be addressed first in case of further optimiza-
tions.

Power Consumption Measurement

Although the CPU and DSP are on the same chip, the different usage and hardware imple-
mentation might influence the overall power consumption, which is a crucial factor on battery
powered devices. To compare both implementations, a possibility to measure the power con-
sumption as close to the SoC was needed and found. The Beagleboard-xM features a two-pin
header for current measurements of the SoC [4], at which an oscilloscope was connected via a
differential amplifier. On these pins the voltage drop over a 0.1 Ω resistor in the power supply
can be measured. In theory the consumed energy would be in proportion to the integral of
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Figure 5.6: Absolute time consumption of test image Lena at different thresholds.
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Figure 5.7: Absolute time consumption of test image Omni at different thresholds.
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the measured voltage drop. To indicate the start and the end of the algorithm, the code was
modified to toggle a GPIO-pin, which was used to trigger the measurement. Of course no
exact values were supposed to be the results of this measurement, also because of missing
equipment with a higher resolution, but a visual comparison is possible. In Figures 5.8 and 5.9
the image Omni was processed at a threshold of 20, which results in a longer execution time
and a better measurement. The yellow rising edge displays the start of the stream-relevant
part of the implementations and the falling edge represents the end. The blue graph is the
measured voltage drop after the difference amplification with factor 20.

The results from this measurements show that less energy is consumed when executing the
corner detection on the CPU. This can be explained by a shorter execution time and by the
fact that the DSP must be waken up from a power-saving state, which cannot be compen-
sated by the CPU through saving the same amount of energy at the same time.

Figure 5.8: Power consumption measurement of image Omni on CPU.

Figure 5.9: Power consumption measurement of image Omni on DSP.
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6 Conclusion and Outlook

6.1 Conclusion

The FAST feature detector was successfully ported to the TI DaVinci DM3730 SoC platform
consisting of an ARM Cortex-A8 core and a TMS320C64x+ DSP. The algorithm was further
examined and optimized to fulfill the needs of mobile devices and battery powered robots,
trying to archive a low performance footprint to be able to run other important tasks on the
same system and to reduce the overall power consumption.

Before optimization a framerate of 54 images per second (fps), at a resolution of 1280 x 960,
would have been possible on the CPU with the NEON basic port, but now 78 fps, 30%
more, are reachable. When outsourcing the algorithm to the DSP 50 fps are possible with
the optimized implementation. When looking at lower resolutions, the maximum framerate
would have been 184 fps at a resolution of 512 x 512, which was increased by 25% up to
248 fps on the CPU and up to 200 fps on the DSP.

Because the CPU is only occupied for about a fifth of the whole processing time when running
the detection on the DSP, it is advisable to transfer the calculation to the DSP if the co-
processor is available and the marginally reduced processing speed can be accepted. In this
case, the CPU is free and available for other important tasks in the system. This of course
results in an increased power consumption of the system, because a second calculation unit
is running. If the system is not running on its limits and power consumption is preferred over
the additional processing resources, then the optimized NEON implementation should be the
choice.

This, once again, shows that optimization is important and necessary on efficient embedded
devices, and often the result outweighs the invested development time and effort. Of course
not every algorithm can gain from SIMD and parallel executed instructions and there are a lot
of difficulties along the way. Time-critical parts have to be spotted, sections of the algorithm
have to be parallelized, tests and analyses have to be made to evaluate the optimizations.
But not every time the whole optimization process down to hand written assembler has to
be undergone, as for example in the FAST algorithm usage of intrinsics generated about as
good output as the hand written inline assembler.

35



6 Conclusion and Outlook

In the context of this work, additionally a census descriptor was implemented and optimized
for the NEON architecture by the author for the DLR to make up a fully applicable module,
which is able to cover the first two steps of the three steps of detection - description - matching.
A short summary and description is included in Appendix A.1.

6.2 Outlook

At the time of writing a new generation of multicopters is designed at the DLR, for which
vision based sensors will be even more important than in preceding models. Time will tell
whether and where exactly they will use the FAST detector in one of the sensors, or for
one of their tasks in the subject of navigation, tracking, object recognition or other purposes
relying on optical information.

The fully tested and optimized implementation can now be used on UAVs or other (mobile)
devices featuring an ARM processor providing the NEON instruction set or a SoC with
the on-chip DSP. Even applications in the field of augmented reality are possible on embed-
ded devices as phones or tablets. To make it publicly available and to give something back
to the open source community, an attempt will be made to supply the optimized NEON
implementation back to the OpenCV library.

For future works, of course the third step of matching could be a point of interest, or the
integration of the implementations into the robot operating system (ROS) [17], which is
widely used among the multicopters.

In case of additional investigations on optimizations for the FAST feature detector the follow-
ing points should be addressed first: The part with the highest time consumption for the case
of 300 − 500 detected corners per image is the Vector-Detection on the DSP and the Abort
Criterion on the CPU. An idea would be to skip the second run of the Abort Criterion in
case of a half-vector step, because the vector was not completely rejected in the first pass and
therefore there must already be a possible corner in the first half of the vector. This would,
of course, require some additional code, but the whole second run could be omitted.
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A Appendix

A Appendix

A.1 Census Descriptor

A.1.1 Binary Census Descriptor

"A very robust patch representation, the Census Operator, was introduced by Zabih and
Woodfill [34]. [ . . . ] The Census Transform [ . . . ] is a non-linear transformation which maps
a local neighborhood surrounding a pixel [ . . . ][p] to a binary string representing the set of
neighboring pixels[’ intensities]" [11]. Originally it mapped eight surrounding pixels darker
than the nucleus to the digit 1 and brighter ones to 0, but this was changed in the im-
plementation to improve understandability. This change does not matter in case only this
implementation is used and no compatibility to other implementations must be ensured, but
it should be kept in mind for such cases. The implementation now maps pixels to signature
S as follows:

Sx =

0, for Ix ≤ Ip − t (darker or equal)

1, for Ix > Ip + t (brighter)

Figure A.1 shows an example and also illustrates the ordering of the pattern pixels in the
signature vector, which also differs from the original. It was changed due to the vectorization.
The signature vector is a 8-bit integer that can now be used to describe a feature point, which
can then be matched against other feature points e.g. in the following images or the like.

The implementation was optimized to use NEON vectors again. There were two possibilities
of vectorization: Firstly, process one descriptor with means of SIMD instructions, or second,

12 39 65

4 19 22

76 11 20

0 1 1

0 X 1

1 1 1

intensity values census digits signature vector

11110110

012

34

567

0

Figure A.1: Census descriptor (binary).
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A Appendix

collect data from multiple feature points, because they are not stored consecutively in mem-
ory, and process multiple descriptors at once. Both implementations were created and tested,
and the second version performed better, although the data has to be collected in the first
place.

A.1.2 Ternary Census Descriptor

Because it was said in [11], that the descriptor would profit from a ternary representation, a
second version was created in the same way. Now pixels are mapped to signature S, consisting
of two bits, as follows:

Sx =


0, for Ix < Ip − t (darker)

1, for Ip − t ≤ Ix ≤ Ip + t (similar)

2, for Ix > Ip + t (brighter)

t represents a given threshold which pixels must exceed to be brighter or darker. Pixels in
between are marked as similar. Figure A.2 shows the mapping to a 16-bit signature, which
must be doubled to store the increased information.

12 39 65

4 19 22

76 11 20

1 2 2

0 X 1

2 1 1

intensity values census digits signature vector

11210221

012

34

567

0

t = 10

(0101 1001 0010 10012)

Figure A.2: Census descriptor (ternary).
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A.2 Content of the CD

The attached CD contains additional content.
Besides the work in PDF format, all source files and compiled executables created in the
context of this work are stored on the medium.

./sources/

Source code directory

./README

Information about the content on the CD

./Thesis_Peter_Fink_924547.pdf

Thesis in PDF format

c
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