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Collective modes of a two-dimensional one-component-plasma (2D OCP) with the repulsive logarithmic interaction between the particles are analyzed using the quasi-
crystalline approximation (QCA) combined with the molecular dynamic simulation of the equilibrium structural properties. It is found that the dispersion curves in the strongly 
coupled regime are virtually independent of the coupling strength. Arguments based on the excluded volume consideration for the radial distribution function allow us to 
derive very simple expressions for the dispersion relations, which show excellent agreement with the exact QCA dispersion over the entire domain of wavelengths. 

FORMULATION 
 The system considered in this paper represents a collection of point-like 
particles moving on a two-dimensional surface and interacting via a pairwise 
repulsive logarithmic potential of the form V(r)=-ε ln(r/a), where ε is the energy 
scale and r/a is the reduced distance between a pair of particles. This interaction 
potential  corresponds to the solution of the 2D Poisson equation and represents 
the interaction between infinite charged filaments. In the conventional notation 
𝜀𝜀 = 𝑄𝑄2 and 𝑎𝑎 = (𝜋𝜋𝜋𝜋)−1/2. The considered system has been employed to model 
vortices in thin-film semiconductors and has some relevance in the context of the 
anomalous quantum Hall effect. The system is characterized by ultra-soft 
interactions between the particles and is of interest from the fundamental point of 
view as an opposite limit of the celebrated hard sphere (hard disc in 2D) model. 
Below we apply the quasi-crystalline approximation (QCA) to obtain the 
dispersion relations of the longitudinal and transverse modes at strong coupling.  

IMPLEMENTATION OF THE QCA 
 The quasi-crystalline approximation was proposed by Hubbard and Beeby 
(1969). This theoretical approach can be regarded as a generalization of the 
phonon theory of solids. In the simplest version, the particles forming liquid are 
assumed stationary, but the system is characterized by a liquid-like order, 
measured in terms of the isotropic radial distribution function (RDF) 𝑔𝑔(𝑟𝑟). The 
linear response of such disordered system can be approximately calculated and 
related to the frequencies of the collective modes. The theory becomes exact in 
the special case of a cold crystalline solid.  In this sense, the term “quasi-
crystalline approximation” appears adequate, and we employ it here. In the 
context of plasma physics, similar approach is known as the quasilocalized 
charge approximation (QLCA).  In the QCA model, the dispersion relations are 
related to the inter-particle interaction potential V(r) and the equilibrium radial 
distribution function g(r) of strongly interacting particles. The compact QCA 
expressions for the longitudinal and transverse modes in neutral fluids are 

𝜔𝜔𝐿𝐿
2 = 𝑛𝑛

𝑚𝑚 ∫
𝜕𝜕2𝑉𝑉 𝑟𝑟
𝜕𝜕𝑧𝑧2

𝑔𝑔 𝑟𝑟 [1 − cos(𝑘𝑘𝑘𝑘)]𝑑𝑑2𝑟𝑟,     𝜔𝜔𝑇𝑇
2 = 𝑛𝑛

𝑚𝑚 ∫
𝜕𝜕2𝑉𝑉 𝑟𝑟
𝜕𝜕𝑦𝑦2

𝑔𝑔 𝑟𝑟 [1 − cos(𝑘𝑘𝑘𝑘)]𝑑𝑑2𝑟𝑟. 

Adopted to the 2D situation (particles are confined to the yz plane) and to the 
presence of the neutralizing background, these expressions yield for the 
logarithmic potential 
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Here, 𝜔𝜔𝑝𝑝=(2πQ2n/m)1/2 is the 2D OCP plasma frequency, 𝑥𝑥 = 𝑟𝑟/𝑎𝑎 is the reduced 
distance, ℎ 𝑥𝑥 = 𝑔𝑔 𝑥𝑥 − 1 is the pair correlation function, 𝑞𝑞 = 𝑘𝑘𝑘𝑘 is the reduced 
wave number, and 𝐽𝐽2(𝑥𝑥) is the Bessel function of the first kind. From these 
equations immediately follows that 
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which represents the two-dimensional version of the Kohn’s sum rule.  
  In the long-wavelength (small q) limit, we use the series expansion of 𝐽𝐽2 𝑥𝑥  
combined with the fist sum rules to obtain for the longitudinal mode 
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The first two terms coincide with the harmonic solid analysis by Alastuey and 
Jancovici (1981). Note that they are independent of Γ. This provides preliminary 
indication that the dispersion relations may not be very sensitive to Γ in this 
normalization, the point that will be further discussed below.  
 In the short-wavelength limit (large q), the longitudinal and transverse 
frequencies approach the common asymptote, the Einstein frequency 𝜔𝜔𝐸𝐸 =
𝜔𝜔𝑝𝑝/ 2. 

SIMULATIONS 
 Standard molecular dynamics simulations with the Verlet velocity 
algorithm and Langevin thermostat have been performed. Initially, 𝑁𝑁 = 4800 
pointlike particles are randomly distributed over the unit sphere (to eliminate the 
periodic boundary conditions), and equilibrated (at a given Γ) configurations are 
then used to calculate  g(x) [and hence h(x)] and to provide the Voronoi 
tessellation. Some results of the simulations are presented in Fig. 1, where 
typical configurations of particles (color-coded via the number of nearest 
neighbors) are shown for the three values of Γ (Γ = 40, 80 and 150). The ground 
state of the 2D OCP with the logarithmic interaction is well known to be 
hexagonal, so that blue (five-fold) and red (seven-fold) particles are the 
topological defects. The defects abundance, 𝛿𝛿𝑑𝑑 = (𝑁𝑁5fold + 𝑁𝑁7fold)/𝑁𝑁 , drops 
down as Γ increases. For the configurations shown in Fig. 1, these abundances 
are about 0.41 (Γ = 40), 0.30 (Γ = 80), and 0.22 (Γ = 150).   
 
 Using the obtained RDFs g(x) (plotted in the inset of Fig. 2), the dispersion 
curves of the longitudinal and transverse modes, within the QCA approach, have 
been calculated. The results are shown in Fig. 2 by symbols. It is evident that in 
the considered regime of strong coupling, the dispersion relations are very 
insensitive to the exact value of Γ, although the variations in RDFs are significant. 
The symbols are all falling on the two distinct curves (L-mode and T-mode), and 
no signature of any systematic deviations can be detected. The black curves 
correspond to the simplified version of the QCA. The agreement between these 
curves and the location of the symbols is excellent. 

Fig. 1. Structure of the 2D OCP 
with the logarithmic interaction 
for different coupling values 
(indicated on the plot) as 
modelled on a sphere. Particles 
are color-coded via the number 
of nearest neighbors  defined 
from the Voronoi analysis: five-
fold (blue), six-fold (green), and 
seven-fold (red).  

Fig.2. Dispersion relations of the longitudinal (L) and transverse (T) waves in strongly coupled 2D OCP. The solid 
black curves correspond to the simplified QCA. Symbols correspond to the conventional QCA with g(r) obtained via 
the direct MD simulations: red, green, and blue colors correspond to coupling parameter Γ = 150, 80, and 40. The 
corresponding RDFs are shown in the inset. The cumulative functions N(<r) of g(r) are also plotted in the inset.  

SIMPLIFIED QCA 
 Recently, we have proposed a useful simplification of the QCA (or, 
equivalently, QLCA) formalism for 3D OCP. In this simplified version, the 
excluded volume arguments suggest to use a simplest toy step-wise model of 
RDF: g(x) = θ(x-R), where θ(x) is the Heaviside step function. The distance R 
(measured in units of a) characterizes the radius of an excluded sphere 
around each particle due to a strong (repulsive) inter-particle interaction. To 
estimate this quantity, energy and pressure equations have been used, which 
are also expressed as certain integrals over g(x), or h(x) in the present case. 
For the single component Yukawa systems, it was demonstrated that the 
results are not particularly sensitive to whether the energy or pressure 
equation is used to determine R. The obtained dispersion relations are in very 
good agreement with the conventional QLCA in the long wavelength regime 
and correctly predict the approach to the Einstein frequency in the short-
wavelength limit. 
 In the present case, there is a natural way to determine R, by requiring 
the perfect screening condition to be satisfied (in this way, we also get the 
exact result for the excess pressure, but not for the excess energy). This 
results in R = 1 and, hence, 
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This shows excellent agreement with the conventional (full) QCA (or QLCA) 
formalism in the entire domain of q (see Fig. 2), much better than in the case 
of 3D Yukawa systems. The agreement is too impressive that one may think of 
a mathematical identity involved. This is, however, not the case, because the 
low-q limit of the conventional QCA does contain some (although vanishingly 
small) dependence on Γ, while the first of these equations does not. 
 

ONSET OF NEGATIVE DISPERSION 
 The QCA (QLCA) approach, describing elastic waves in fluids in a manner analogous to phonons in 
solids, is the theory for the strongly coupled state. It neglects the kinetic effects and, as a result, cannot 
reproduce the transition from positive to negative dispersion (which refers to dω/dk < 0 at k -> 0; note that 
the dispersion is always negative within QCA) at moderate coupling. Recently, it was suggested that in the 
long-wavelength limit the kinetic and correlational effects appears in the dispersion relation as a simple 
superposition and, hence, the OCP dispersion relation can be written as  
    
 
 
Here ∆K∞ is the high-frequency or instantaneous bulk modulus (taking into account the character of plasmon 
dispersion). For the considered 2D OCP system                      and                       , which results in  
 
 
 
The transition from negative to positive dispersion occurs at Γ = 12, which is close to the condition derived 
previously by Hansen (1981) using different arguments. In the limit Γ >> 1 this yields 𝜔𝜔𝐿𝐿
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different from the QCA result, but coincides with the conventional fluid approach.  
CONCLUSION 

 To summarize, we have discussed the collective modes behaviour in the 2D OCP fluid with the 
logarithmic interaction between the particles. The dispersion relations in the strong coupling regime were 
obtained using the QCA (or QLCA) method coupled to the MD simulations on a sphere, to get information 
about the system structural properties. The simplified QCA approach based on a toy model for the RDF, 
which accounts for the excluded volume effects, yields analytic expressions which are in excellent 
agreement with those from the conventional QCA. The condition for the onset of negative dispersion has 
been estimated. This work was supported by the A*MIDEX project (No. ANR-11-IDEX-0001-02) funded by 
the French Government “Investissements d’Avenir” program managed by ANR. 
  
Further details can be found in Phys. Plasmas 23, 052115 (2016)   and Phys. Plasmas 23, 104506 (2016). 


	Slide Number 1

