
August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

To appear in Advanced Robotics
Vol. 30, No. 21, Nov. 2016, 1380–94

FULL PAPER

Iterative Path-Accurate Trajectory Generation for Fast Sensor-Based Motion

of Robot Arms

Friedrich Langea∗ and Alin Albu-Schäfferab

aInstitute of Robotics and Mechatronics, German Aerospace Center (DLR), Wessling, Germany;
bDepartment of Informatics, Technical University Munich, Garching, Germany

(received October 2015, revised March 2016, June 2016, accepted July 2016, online August 2016)

Sensor-based trajectory generation of industrial robots can be seen as the task of, first, adaptation of
a given robot program according to the actually sensed world, and second, its modification that complies
with robot constraints regarding its velocity, acceleration, and jerk. The second task is investigated in
this paper. Whenever the sensed trajectory violates a constraint, a transient trajectory is computed that,
both, keeps the sensed path, and reaches the sensed trajectory as fast as possible while satisfying the
constraints. This is done by an iteration of forward scaling and backtracking. In contrast to previous
papers a new backtracking algorithm and an adaptation of the prediction length are presented that
are favorable for high-speed trajectories. Arc Length Interpolation is used in order to improve the path
accuracy. This is completed by provisions against cutting short corners or omitting of loops in the given
path. The refined trajectory is computed within a single sampling step of 4 ms using a standard KUKA
industrial robot.

Keywords: Trajectory Generation, Industrial Robots, Motion Generation, Path Accuracy

1. Introduction

1.1. Problem Formulation

In this paper, trajectory generation is considered for sensor-based motion of robot arms. We assume
a reference trajectory xr(k + κ), which at time step k is defined for the current and several future
sampling steps k + κ with κ ≥ 0, together with the desired sensor values sd(k + κ). Whenever
the measured sensor values s(k) do not coincide with the desired values, the reference trajectory
is converted online to a sensed or desired trajectory xd(k + κ) in order to adapt to a changed
environment, as in [1]. However, this sensed trajectory might violate constraints of the robot that
are given by the robot manufacturer. Therefore, the trajectory undergoes an additional adaptation
step, where the result is denoted as commanded trajectory, whose current position xc(k), or its
representation in the axis space qc(k), is sent to the servo controller that is designed by the robot
manufacturer (see Fig. 1).

The conversion from the sensed trajectory to the commands is denoted as trajectory generation.
The conversion is fundamental since industrial controllers do not tolerate any exceeding of the given
constraints and, in that case, execute an emergency stop. The constraints are usually ignored, e.g.
in [2, 3], which is tolerable in the presence of sufficiently small control gains that are computed in
a control design aiming at smooth signals. Previous sensor-based control methods of the authors
[1, 4] used simpler methods for trajectory generation, which is not suitable for fast motion at high
sampling rates. Then a more refined trajectory generation method has to be chosen.

∗Corresponding author. Email: Friedrich.Lange@dlr.de

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

computation

of the sensed

trajectory

generation

of a feasible

trajectory

environment x

sxd

task description x , s

x

er d

sensor
qd

position

controlled

robot
q qc

xxc

Figure 1. Sensor-based control

In addition to constraints on the position, the velocity, and the acceleration, we assume that
the jerk, i.e.,the rate of changes of the acceleration, is limited. The consideration of the jerk is
preferable for limited voltage of the motors, reduced wear on the robot, and minimum excitation
of oscillations [5, 6]. It is therefore present in today’s industrial robot controllers. A trajectory that
complies with these constraints is called feasible.

In most papers a feasible trajectory is computed in such a way that the execution of the resulting
trajectory takes minimal time. Alternatively, a trajectory is generated that is feasible without a
reduction of the programmed speed, as in [7]. Instead, our goal is to keep the geometrical path of
the sensed trajectory where path comprises position and orientation. Depending on the application,
path accuracy is fundamental for performance and for safety reasons.

It should be noted that, in contrast to the offline generation of a whole trajectory, it is not
always possible to generate a feasible, path-accurate trajectory from a given state. For example, it
may be impossible to inhibit overshooting. In contrast to acceleration phases, the path-accuracy is
at risk whenever the desired deceleration exceeds the constraints, even more when some axes are
decelerated whereas others are accelerated. This is discussed in more detail in [8, 9].

We consider the accuracy of the commanded path, not of the actually executed path. The differ-
ence owing to the robot dynamics is not yet implemented. Thus we do not need to know the robot
dynamics nor the industrial controller.

As a further criterion besides feasibility and path accuracy, the commanded trajectory hangs
the sensed motion as fast as possible, i.e., it is synchronized with it. The sensed trajectory, on its
part, will have only small temporal deviations from the reference trajectory. It is crucial to keep
the timeline instead of the time-optimal motion of a single robot, at least for applications with
multiple robots or conveyor belts.

Challenging applications of trajectory generation feature fast motion with high accuracy require-
ments, e.g. when approaching an object, where the sensed path abruptly changes when a contact
force is measured. In such cases, in order to avoid excessive forces as well as a loss of contact after
the first overshooting, the robot should decelerate the normal motion as fast as possible while per-
forming the desired tangential motion, e.g. polishing. Another critical task for trajectory generation
is stopping during constrained motion without exerting undesired forces, i.e., without leaving the
previously defined path. This has been investigated in [10].

Sudden changes of the desired trajectory can also be present before sensing a contact, e.g. in
pick-and-place operations or during assembly, when the exact gripping pose is not known until it is
sensed (e.g. by an eye-in-hand camera of limited field of view). A significant change of orientation
may then be needed in a very short time. This path correction should be executed without colliding
with the object to be gripped, i.e., without deviations from the sensed path.

1.2. Previous Work

There is a lot of previous work on trajectory generation, beginning in the eighties, e.g. [11, 12].
Nowadays the Reflexxes Motion Library [8, 13, 14] is widely used. It provides a useful trajectory

2

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

generator that considers the full current state. A new trajectory can be computed on-the-fly, i.e.,
without stopping the robot. However, the goal is only to reach a target pose with a given velocity
and acceleration. The executed path is usually not considered, besides a straight line [15].

In order to keep a desired path, Refs. [5, 16–22] generate a trajectory through several points,
usually by polynomial interpolation or by splines. However, it is not assumed that the given points
represent all sampled positions. A closer following of a desired path is achieved by [6, 9, 12, 23–35]).
Ref. [36] combines trajectory generation and feedback control in order to reduce the deviations from
the desired path. Mostly, the execution time is minimized (Time-Optimal Path Parameterization or
TOPP). Synchronization with a given trajectory, as requested here, is the goal only in [26, 27, 32].

Trajectory generation along a desired path is also denoted as generating a velocity profile for the
given path. The path is typically represented with the arc length s as a parameter. The task is to
compute the scalar velocity ṡ(s) in the phase space that satisfies the constraints. Early papers as
[12, 24, 25] did not consider constraints on the jerk. Ref. [6] uses forward and backward computation
and smoothing at the meeting point. Ref. [9] only computes from the beginning of the trajectory,
but switches before entering a trapped area, since otherwise the path will be lost later on. Ref. [27]
locally restricts the given velocity limits in order to satisfy the constraints on the acceleration and
the jerk. Ref. [29] assumes 4th order functions for s. Ref. [33] defines a maximum velocity curve
that, besides the other constraints, serves as an upper limit for ṡ.

Unlike the other methods, Ref. [35] does not convert the kinematic constraints or the shape
of the path to constraints on s, which then result in a velocity profile. Instead, it is proposed to
predict future constraints and in doing so to modify the trajectory at the preceding time steps. The
computation does not assume a differentiable desired trajectory. The strategy will be summarized in
Sect. 2. In contrast to [35], here the view is generic, i.e., independent from the type of interpolation.

The motion is predominantly divided into a limited number of phases with given characteristics
as a constant jerk or a constant acceleration (see e.g. [6, 8, 9, 25, 32]). New phases are introduced
depending on the path where the task is to find the appropriate switching points [6, 9, 25], if the
number of phases is not given a priori. The latter implies assumptions about the shape of the
desired path, e.g. linear or circular [32].

In addition to the above task requirements, Refs. [9, 37–39] allow to optimize further degrees
of freedom (dof). In this way, collisions of the robot arm may be inhibited while tracking the
pose of the tool center point (tcp). However, such a computation is not applicable for usual 6-axis
industrial robots.

1.3. Organization of the Paper

Sect. 2 explains the proposed iterative trajectory generation. Sect. 3 then reviews the Arc Length
Interpolation (ALI) from [35]. New aspects for improving the performance are presented in Sect. 4.
This includes a new backtracking algorithm (Sect. 4.1), an adaptation of the prediction length
(Sect. 4.2), and provisions against cutting short corners or omitting of loops in the given path
(Sect. 4.3). Their contributions, especially for high speed trajectories, are demonstrated in experi-
ments with a KUKA industrial robot in Sect. 6. Before, performance, stability and convergence of
the method are discussed in Sect. 5. Finally the paper is concluded in Sect. 7.

2. Iterative Forward Scaling and Backtracking

The following considerations are formulated in the axis space (joint space) of the robot, since the
constraints are defined there. Vectors of all axes are denoted by bold face letters whereas single
axes are in normal face with the index as last subscript, e.g. q = (q1, · · · , q6)T . Without loss of
generality, in this paper we omit the sampling time by assuming T0 = 1 which means that the
time is expressed in steps instead of in seconds. The velocity v, the acceleration a, and the jerk j

3

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

yes

no

Direct Scaling
of qd(k)

yes

no

forward scaling
of qd(k+)

backtracking of
qd(k+)

qc(k+ -1)
(qc(k+ -2))

qd(k+)
feasible?

= +1 < max
yes no

yes

l = l +1

≥ min
l < lmax

execution of qc(k)
„success“

= 0
l = 0

no

execution of qc(k)
„error“

= – min

no

forward
scaling of qd(k+)

possible?

no

Figure 2. Simplified flow chart. Scaling and backtracking only apply for the constraints that are otherwise violated. Accordingly

κmin is 1 or 2 for violations on the acceleration limit or the jerk limit, respectively.

are expressed by backward differences. This results in the notation shown in Appendix A, similar
to [32]. The respective limits of an axis i are denoted as ±v̄i, ±āi, and ±j̄i, and may be time
dependent as the signals themselves.

The current command qc(k) that is sent to the servo controller coincides with the position qd(k)
of the sensed trajectory as long as the sensed trajectory is feasible. If any of the constraints

|vdi(k)| = |qdi(k)− qci(k − 1)| ≤ v̄i (1)

|adi(k)| = |qdi(k)− 2qci(k − 1) + qci(k − 2)| ≤ āi (2)

|jdi(k)| = |qdi(k)− 3qci(k − 1) + 3qci(k − 2)− qci(k − 3)| ≤ j̄i (3)

is violated, the following subsections have to be considered, replacing the sensed positions qdi(k)
by commanded positions qci(k) that satisfy the constraints, as in Fig. 2. If an iteration is required,
preliminary qci(k) will be renamed by qdi(k) in order to serve as input for the next iteration step.1

1In an analogous manner to (1)-(3) the differences of the qci are denoted by vci, aci, and jci.

4

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

t

q

sensed trajectory
commanded trajectory

+ + +

++

+ +
x

x x

+x

x x

x

x

Figure 3. Modification of a 1 dof path by scaling the velocity at the discontinuity of the sensed path in order to satisfy a
velocity constraint.

t

q

sensed trajectory
commanded trajectory

+ + +

+

+

+

+

x x

x

x

xx
+

xx

Figure 4. Modification of a 1 dof path by scaling the velocity at the corner of the sensed path in order to satisfy an acceleration

constraint.

2.1. Forward Scaling of the Velocity

If a constraint of axis i is violated, the first option is to scale the velocity vdi(k) of this axis,
since in this way the velocity, the acceleration, and the jerk may be reduced. Figs. 3 and 4 show
simple examples. Equal scaling of the velocities of all axes was considered first, as in [40], since it
seems not to compromise the path accuracy. Strictly speaking, a suitable implementation of this
forward scaling has to be found that modifies the positions of all axes such that path accuracy is
maintained. This is explained in Sect. 3.

However, it is not always possible to reduce an acceleration adi(k) or a jerk jdi(k) by reducing
the velocity vdi(k). For example, if the desired acceleration is against the direction of the velocity,
i.e., if the robot is decelerated, a reduction of the velocity will increase the absolute value of
the acceleration. Therefore, in order to get a feasible trajectory, i.e., a qci(k) that satisfies the
acceleration limit, the desired velocity cannot be further reduced. Thus |vci(k)| < |vci(k − 1)| can
be reached, but not |vci(k)| ≤ |vdi(k)|, i.e., the robot will overshoot by exceeding qdi(k). This may
result in an oscillation around the sensed position.

Furthermore, it can be noted that a reduction of the velocity that is requested by an axis i1 may
result in an intolerable deceleration for another axis i2 that, for its part, would be feasible without
the scaling. Therefore, a violation of the constraints may exist not only during deceleration.

2.2. Backtracking from Predictions

Overshooting or other problems of forward scaling may be inhibited by predictively checking the
constraints, i.e., |vdi(k + κ)| ≤ v̄i, |adi(k + κ)| ≤ āi, and |jdi(k + κ)| ≤ j̄i, for 0 ≤ κ ≤ κmax with a
prediction length κmax that is sufficient. Its adaptation will be investigated in Sect. 4.2.

Note that the signals are defined as the differences between the sensed, desired positions qdi(k+κ)
and the preceding executed positions qci(k+κ− · · ·), as in (1)-(3), since the latter may already be
scaled by a preceding step.

Whenever a constraint cannot be resolved by forward scaling, the error will be processed by
backtracking in order to inhibit the violation. A violated constraint on jdi(k + κ) will result in a

5

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

modification of qdi(k + κ), qci(k + κ − 1), and qci(k + κ − 2). On the other hand, if |adi(k + κ)|
exceeds the limit āi, only qdi(k + κ) and qci(k + κ − 1) are modified. A violation of the velocity
limit v̄i does not need backtracking since it can always be resolved by forward scaling. A suitable
implementation of this type of backtracking will be explained in Sect. 3. It always generates a
feasible qci(k + κ), but not necessarily a feasible qci(k + κ− 1) or qci(k + κ− 2).

After backtracking, the computed qci(k + κ) to qci(k + κ− κmin) are copied to qdi, and forward
scaling is continued from the first modified position, i.e., qdi(k + κ − κmin), with κmin = 1 or
2 for acceleration or jerk constraints, respectively. If, perhaps after forward scaling at time step
k+κ−κmin, a signal aci(k+κ−κmin) or jci(k+κ−κmin) does not satisfy the constraint, further
backtracking is immediately required. Otherwise forward scaling is performed for the next time
step in order to get a feasible qci(k + κ − κmin + 1). In this way the axis positions are iteratively
modified by forward scaling and backtracking until a feasible trajectory is found for all time steps
k ≤ k + κ ≤ k + κmax. Fig. 2 summarizes the procedure.

2.3. Direct Scaling (DS)

There are two reasons to abort the iteration before the solution is found:

• If the backtracking reaches κ = 0, the modification of qci(k + κ) · · · qci(k + κ− κmin) at time
step k is not possible anymore.
◦ For κmin = 2 the backtracking is impossible even for κ = 1. A modified backtracking

might then help. In most cases this does not result in a feasible trajectory.
• Since no upper limit for the number of iteration steps can be given, it is possible that the

available computing time is exceeded. This is prevented by stopping the iteration whenever
the number of iteration steps l reaches a threshold lmax. Then there are two cases:
◦ The so far computed qci(k) is feasible. Then it can be executed. However, it may be

impossible to maintain the given path in a later time-step.
◦ The so far computed qci(k) is not feasible.

Whenever qci(k) is not feasible, still there is a way to get a feasible trajectory by Direct Scaling
(DS), but the trajectory is not path accurate anymore.

Direct Scaling directly reduces the constrained signal by ac(k) = αaad(k) or

qc(k) = qc(k − 1) + vc(k − 1) + αaad(k) (4)

and by jc(k) = αjjd(k) or

qc(k) = qc(k − 1) + vc(k − 1) + ac(k − 1) + αjjd(k), (5)

as explained in Appendix A.
In (4) and (5) all axis accelerations or jerks are reduced by the same factor αa or αj respectively.

These factors are computed as the maximum values that satisfy the constraints, i.e.,

αa = min
i, |adi(k)|>āi

(āi/|adi(k)|) (6)

and

αj = min
i, |jdi(k)|>j̄i

(j̄i/|jdi(k)|). (7)

This results in 0 < α∗ < 1 with ∗ ∈ {a, j}, if the constraints are violated before. Thus Direct
Scaling always gives a feasible commanded trajectory. Fig. 5 shows the effect of Direct Scaling of

6

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

q

q sensed trajectory

commanded trajectory

1

2

+ +

x

+

+

+

+

+ +

x
xx x

x x

+x

x

Figure 5. Modification of a 2 dof path by Direct Scaling of the acceleration at the corner of the sensed path in order to satisfy

the acceleration constraints. Further steps might be found by forward scaling.

the acceleration. The computed positions qc(k) are between the sensed, desired positions qd(k)
that cannot be reached and the positions that would result from zero acceleration, i.e., qc(k− 1) +
vc(k − 1). Direct Scaling of the jerk results in a position between qd(k) and the position which
would be reached with zero jerk, i.e., qc(k − 1) + vc(k − 1) + ac(k − 1).

Direct Scaling is typically required whenever the sensed trajectory conflicts with physical limits,
e.g. when the sensed trajectory is recomputed because of unexpected sensor data and this new
trajectory implies a sudden stop or even a step back at the current time step. An overshooting is
then unavoidable. This has been shown in [35] where a force-sensor detects an unexpected contact
during high speed motion. The chance of a path-accurate solution that meets all requirements
increases with the span of time for which big accelerations or jerks can be predicted.

There are further cases in which the normal backtracking fails. For example, an oscillating
sensed trajectory may require too many iteration steps. Furthermore, once the velocity is reduced
too much, it will not be increased again. This is the motivation for the refined backtracking that
will be presented in Sect. 4.1.

3. Arc Length Interpolation (ALI)

An interpolation scheme is required for the implementation of both, forward scaling according to
Sect. 2.1 and backtracking according to Sect. 2.2. Instead of the direct position interpolation (DPI)
used in [40], we now prefer the Arc Length Interpolation (ALI) as presented in [35].

3.1. Interpolation for Forward Scaling

Whenever a constraint (1)-(3) is violated, the constrained component is set to the limit, i.e.,

qfvi(k) = qci(k − 1)± v̄i (8)

qfai(k) = qci(k − 1) + vci(k − 1)± āi (9)

qfji(k) = qci(k − 1) + vci(k − 1) + aci(k − 1)± j̄i, (10)

where the sign of the limit is such that the modification with respect to qdi(k) is minimum.
Then, in order to preserve the shape of the sensed path, for each qf∗i(k) with ∗ ∈ {v, a, j} a scalar

parameter s∗i is computed which, roughly speaking, represents the traveled path. This parameter
is usually called the arc length. Here it is defined by the time parameter of the original trajectory,
i.e., s∗i = k points to the position qd(k).

7

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

s∗i(k) is computed from qf∗i(k) for s∗i(k) = k, k − 1, · · · , s(k − 1) + 1 by

s∗i(k) = s∗i(k) +
qf∗i(k)− qdi(s∗i(k))

qdi(s∗i(k) + 1)− qdi(s∗i(k))
, (11)

where s(k − 1) is the biggest integer that is not greater than s(k − 1). Computing (11) with the
different values of s∗i(k) is stopped whenever an s∗i(k) fits to the interval

s∗i(k) ≤ s∗i(k) < s∗i(k) + 1. (12)

If in this way no solution is found,

s∗i(k) = s(k − 1) +
(qf∗i(k)− qci(k − 1))·(s(k − 1) + 1− s(k − 1))

qdi(s(k − 1) + 1)− qci(k − 1)
(13)

is computed. Then it is checked whether s∗i(k) satisfies

s(k − 1) ≤ s∗i(k) < s(k − 1) + 1. (14)

Otherwise backtracking or Direct Scaling is required.
The smallest value s∗i(k) of all axes and constraints is taken as s(k), meaning that the most

restricting constraint has to be satisfied. If no constraint (1)-(3) is violated, s(k) is not modified
from its initial value of s(k) = k.

qc(k) can be computed from s(k) by

qc(k) = qd(s(k)) + (s(k)− s(k)) · (qd(s(k) + 1)− qd(s(k))), (15)

or by

qc(k) = qc(k − 1) +
(s(k)− s(k − 1)) · (qd(s(k − 1) + 1)− qc(k − 1))

s(k − 1) + 1− s(k − 1)
, (16)

if s(k) < s(k − 1) + 1. This results in qc(k) = qf∗i(k) for the most limiting constraint.
Then the constraints (1)-(3) are checked with qc(k) instead of qd(k) since the modification from

qd(k) to qc(k) may have affected them. The procedure is repeated, if a constraint is violated,
disregarding all results with s∗i(k) > s(k) where s(k) is the result of the previous iteration step.
A feasible solution is found whenever all constraints are satisfied. The sequence is summarized in
Fig. 6.

When forward scaling is used after backtracking, s(k) is not initialized by k, but (11) is first
executed with s∗i(k) = s(k), with s(k) from a previous step of the main iteration.

Fig. 7 shows an example of a curved trajectory that, because of the acceleration constraints,
cannot be executed as sensed. The generated trajectory leaves the sensed path when computed
with DPI, whereas it exactly tracks the path when ALI is used. Jerk constraints are not considered
in this example.

8

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

for all axes i

check all

constraints *

for qc(k)

qci(k) does not satisfy *

s*i(k) > s(k-1)+1

compute qf*i(k)

(8)-(10)

compute s*i(k)

(13)

s(k-1) ≤ s*i(k)

 ≤ s(k-1)+1, s(k)

s*i(k) = floor(s(k))

yes

compute s*i(k)

(11)

s*i(k) ≤ s*i(k)

 ≤ s*i(k)+1, s(k)

s*i(k) = s*i(k)-1

 s*i(k) is not yet appropriate

s(k) = s*i(k)

qc(k) is updated

compute qc(k)

(15)

compute qc(k)

(16)

s(k) = s*i(k)

s*i(k) is feasible

s(k) = k

all axes are

feasible

no

s*i(k) is feasible

no solution

found

yes

yes

Figure 6. Flow chart of ALI during forward scaling.

3.2. Interpolation for Backtracking

For brevity, in the sequel we denote k + κ as k′. If the acceleration limit cannot be resolved by
forward scaling, we use

qbai(k
′) = qci(k

′ − 1) + αai
(qdi(k

′)− qci(k′ − 1)) (17)

qbai(k
′ − 1) = qci(k

′ − 2) + (1 + αai
)(qci(k

′ − 1)− qci(k′ − 2))/2, (18)

where (1 + αai
)/2 is selected as scaling factor for (18) such that

αai
= āi/|adi(k)| (19)

9

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

q

q

trajectory with DPI q

trajectory with ALI q

1

2

+

k+1

kk-1

kstart

current section

k+1

k+2

+
x

+
x

x x +
c

c

sensed trajectory q
d

#

k+2

k+1
x#+x

k

k+4

k+2+

#

#

x

x

k+3
x

k+3+#

#

Figure 7. Example with forward scaling along a curved sensed path (black): The robot is started in time step k − 1. Then

qc(k) is computed because qd(k) violates the acceleration constraint. This is identical with DPI and ALI. In the next step,

scaling the line from qc(k) to qd(k + 1) (DPI) computes the red qc(k + 1). Then scaling between qc(k + 1) and qd(k + 2)
results in the red qc(k+ 2) (DPI). Instead, ALI computes the orange qc(k+ 1) from (13) and (16), i.e., between the previously

executed position qc(k) and the next sensed position qd(k) (not qd(k + 1)). This differs from the computation of qc(k + 2) in

(11) and (15), i.e., between two sensed positions qd(k) and qd(k + 1) (without considering qd(k + 2)). With ALI there is no
path error at the sampled positions qc.

gives |abai(k′)| = āi for the most constrained axis, whereas αai
= 0 results in abai(k

′) = 0.2

The effect of different values of αai
in (17)-(18) is illustrated in Figs. 8 and 9. Fig. 8 also shows

that ac(k
′−1) may still be nonzero even after a modification of qc(k

′) and qc(k
′−1) with αai

= 0.
Fig. 9 shows that each step of backtracking with 0 < αai

< 1 smoothes corners of the sensed path.
The approach for a violation of the jerk limit is

qbji(k
′) = qci(k

′ − 1) + αji(qdi(k
′)− qci(k′ − 1)) (20)

qbji(k
′ − 1) = qci(k

′ − 2) + (1 + 2αji)(qci(k
′ − 1)− qci(k′ − 2))/3 (21)

qbji(k
′ − 2) = qci(k

′ − 3) + (2 + αji)(qci(k
′ − 2)− qci(k′ − 3))/3, (22)

where the factors (1 + 2αji)/3 and (2 + αji)/3 are chosen because

αji = j̄i/|jdi(k)| (23)

results in |jbji(k′)| = j̄i for the most constrained axis.
Fig. 10 illustrates backtracking of the jerk. As a side effect the accelerations ac(k

′) and ac(k
′−1)

are reduced. With αji = 0 the acceleration ac(k
′) = ac(k

′ − 1) = 1/3 ad(k
′ − 1) is constant.

Equations (17)-(18) and (20)-(22) provide a feasible trajectory, but path accuracy is not guar-
anteed. Therefore, as with forward scaling, the arc length is computed from the qb∗i(k

′′) with
k′′ = k′, · · · , k′ − κmin and ∗ ∈ {a, j}. Then, instead of s(k′′ − 1) ≤ s∗i(k′′) ≤ s(k′′), the conditions
s(k′ − 2) ≤ s∗i(k

′ − 1) ≤ s∗i(k
′) ≤ s(k′) and s(k′ − 3) ≤ s∗i(k

′ − 2) ≤ s∗i(k
′ − 1) ≤ s∗i(k

′) ≤ s(k′)
have to be satisfied for (17)-(18) and (20)-(22) respectively. With k− = k′−1−κmin this results in

s∗i(k
′′) = s∗i(k

′′) +
qb∗i(k

′′)− qdi(s∗i(k′′))
qdi(s∗i(k

′′) + 1)− qdi(s∗i(k′′))
(24)

2abai(k
′) and jbji(k

′) are defined analogously to (2) and (3), by using the just computed qb∗i(k
′) to qb∗i(k

′ − κmin) and

qci(k
′ − κmin − 1) with ∗ ∈ {a, j}.

10

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

t

q
sensed trajectory

backtracking with

o

+

a = 0.0
a = 0.5
a = 1.0

#

o
#
+

+

k´k´-1k´-2k´-3

+

#

#

#
+ +

o o

o

o

Figure 8. Effect of different values of αai with backtracking of the acceleration.

q

q

backtracking with

1

2

+

+

sensed trajectory

a = 1.0
a = 0.5
a = 0.0

#

k´

k´

k´k´-1
k´-1

k´-1

k´-2

k´-3

+ +
#
o o

o+
#

o

+
o#

o#

Figure 9. Resulting path after backtracking of the acceleration.

t

q
sensed trajectory

backtracking with

o

+
a = 0.0
a = 0.5
a = 1.0

#

+

+

k´k´-1k´-2k´-3

+

#

#

#

+ +

o o

o

o

#
o

Figure 10. Effect of different values of αji with backtracking of the jerk.

and

s∗i(k
′′) = s(k−) +

(qb∗i(k
′′)− qci(k−)) · (s(k−) + 1− s(k−))

qdi(s(k−) + 1)− qci(k−)
(25)

instead of (11) and (13), and in

qc(k
′′) = qd(s(k

′′)) + (s(k′′)− s(k′′)) · (qd(s(k′′) + 1)− qd(s(k
′′))) (26)

and

qc(k
′′) = qc(k

−) +
(s(k′′)− s(k−)) · (qd(s(k−) + 1)− qc(k

−))

s(k−) + 1− s(k−)
, (27)

instead of (15) and (16). (24) is computed with s∗i(k
′′) = s(k′′), s(k′′) − 1, · · · , s(k−) + 1, where

11

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

s(k′′) is initialized by the minimum of s(k′′) from a previous step of forward scaling or backtracking
and s(k′′+1), if available. (25) is used if (24) does not result in a s∗i(k

′′) ≤ s∗i(k′′) < min(s∗i(k
′′)+

1, s(k′′)). (27) is required instead of (26) if s(k′′) < s(k−) + 1.
When computing qc(k

′′) as proposed, path accuracy is given, but the constraints of other axes
are not always satisfied. Therefore, as with forward scaling, an iteration may be required within a
backtracking step until all constraints are satisfied.

However, if a feasible solution is not reached within few iteration steps, convergence will be
achieved by several backtracking steps with α∗ = 0, as α∗ = 0 definitely satisfies the corresponding
constraint of ∗ = {ai, ji}. A solution after ALI is found at the latest with s(k−) = s∗i(k

′−κmin) =
· · · = s∗i(k

′), since then the interpolation concerns only a single interval of qd.

4. Extensions

In this section alternative realizations are presented that mitigate apparent disadvantages of the
previously explained method. Among many possible heuristics for improving the convergence, two
methods are explained in more detail. In Sect. 4.1 convergence problems with high-speed motion are
reduced by a new backtracking approach. Sect. 4.2 estimates the prediction length κmax. Sect. 4.3
then considers that a corner may not be executed properly or an (almost) closed loop will be cut
short.

4.1. Minimum Backtracking for Fast Target Motion

When a modification of the sensed trajectory is required to reach feasibility, the motion is decel-
erated first. Then the tcp passes the critical position, e.g. a corner of the sensed path. Thereafter
the robot is accelerated to a velocity that is higher as originally sensed, since otherwise the sensed
trajectory will not be reached. This high-speed period ends by backtracking in order to avoid over-
shooting. The problem is that, for high-speed trajectories, backtracking easily decelerates too much
such that the sensed trajectory is not reached anymore. This results in a permanent delay, which
has not been considered in [35]. Fig. 15 in Sect. 6 gives an example where the normal backtracking
algorithm results in a path-accurate but delayed motion.

Fig. 11 shows the details disregarding a jerk limit. For k′ = 20, the approach of (17)-(18), which
is now denoted as normal backtracking qb∗, modifies both, qd(k

′) = qd(20) and qc(k
′ − 1) = qf (19)

and thus decelerates significantly. If this happens repeatedly, then, the sensed trajectory will not
be reached.

A less rigorous backtracking keeps the sensed position, i.e., qb(k
′) = qd(k

′), if this is possible,
and only modifies qc(k

′ − 1). Three variants are displayed in Fig. 11 using ab(k
′) = ā, ab(k

′) = 0,
and ab(k

′) = −ā. With the smallest modification of qc(k
′ − 1) this kind of backtracking results in

minimum distance to qd(k
′ − 1). Unfortunately, in this way the convergence is quite slow.

For a violation of an acceleration constraint |adi(k′)| < āi,

qbai(k
′ − 1) = (qdi(k

′) + qci(k
′ − 2)∓ cbāi)/2 (28)

is set with a convergence factor of −1 ≤ cb ≤ 1, where the sign of ∓āi is contrary to the sign of
adi(k

′).
Correspondingly,

qbji(k
′ − 1) = (qdi(k

′) + 3qci(k
′ − 2)− qci(k′ − 3)∓ cbj̄i)/3, (29)

12

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

17 18 19 20

ax
is

 p
o

si
ti

o
n

time (steps)

qd qf+ qf- qb*

qb+ qb0 qb-

Figure 11. Reaching the sensed trajectory after a slowdown, disregarding jerk limits: qd is the sensed trajectory, qf+ is the

trajectory that is generated by forward scaling with a variant qf− in which the sign of the acceleration is changed when
exceeding the sensed trajectory. Nevertheless, the system will overshoot, such that backtracking is required. qb∗ shows the

normal backtracking of (17) and (18) whereas the other curves display alternative backtracking.

or

qbji(k
′ − 2) = (−qdi(k′) + 3qci(k

′ − 1) + qci(k
′ − 3)± cbj̄i)/3 (30)

are computed whenever backtracking is required because a jerk constraint is not satisfied.
In (29) the sign of ∓j̄i is contrary to the sign of jdi(k

′) whereas in (30) the sign of ±j̄i is the
same as that of jdi(k

′). Only one of these equations shifts the corresponding position to the past.
Therefore, (29) is used when jdi(k

′)vci(k
′ − 1) < 0 since then the absolute value of the velocity

vci(k
′−1) is reduced because of (29) with j̄i < |jdi(k′)|. Otherwise it is increased which is accounted

for by modifying qci(k
′ − 2).

Backtracking using (28)-(30) and qb∗i(k
′) = qdi(k

′) is denoted as minimum backtracking. In
contrast to the normal backtracking of (17)-(18) and (20)-(22), with minimum backtracking,
qb∗i(k

′ − 1) and qb∗i(k
′ − 2) are not always in the respective interval (qci(k

′ − 2), qci(k
′ − 1)) or

(qci(k
′ − 3), qci(k

′ − 2)). In these cases the normal backtracking algorithm is used.
Independently from this, the Arc Length Interpolation (24)-(27) is executed as before, resulting

in path-accurate positions.
Other than in Fig. 11, the required deceleration is fundamental with high-speed and spans sev-

eral sampling steps. Therefore a significant deceleration as that of the normal backtracking or
of minimum backtracking with cb � 1 speeds up the convergence, as long as the sensed trajec-
tory is reached. Minimum backtracking with cb = 0 turns out to be suitable whereas the normal
backtracking may prevent from catching up the sensed trajectory.

4.2. Adaptation of the Preview

The required number of future time steps κmax that have to be used for backtracking depends on
the velocity and on how close the sensed trajectory is to the limits. Since the preview is limited,
its maximum value κ̄max is given by the leftmost block of Fig. 1.

But it is not yet investigated whether a violation of a constraint at a time step k + κ̄max has
to be solved at time step k. Therefore a required deceleration might be initiated too early. For
example the orange plot in Fig. 16 in Sect. 6 seems to be shifted too much. This can be prevented
by adapting the preview κmax ≤ κ̄max as a function of the current and the future accelerations and

13

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

velocities.
Therefore, first the time κmax(k) is roughly estimated, which is needed to reach the current goal

position qd(k+ κ̄max), goal velocity vd(k+ κ̄max), and goal acceleration ad(k+ κ̄max) from qd(k),
vd(k), and ad(k), respectively. If the goal can be reached in less than κ̄max sampling steps, the
preview for trajectory generation is reduced from κ̄max to κmax(k) sampling steps. Then qd(k+κ)
with κ > κmax(k) is not used for the computation of qc(k) anymore.

This rule of thumb is not always correct because e.g. the time to reach qd(k + κ̄max − 2) from
qd(k) may be larger than that to reach qd(k + κ̄max). But in this case κmax(k − 2) was probably
big enough and thus initiated the appropriate modification of the trajectory.

In contrast to the preceding sections, for roughly estimating κmax we assume phases with con-
stant jerk. Unlike [8] however, we assume only up to three phases as we are close to the goal. At
time step k the phases for axis i are

• ji1 = ±j̄i for t = k, · · · , k + ti1(k),
• ai2 = ±āi for t = k + ti1(k), · · · , k + ti1(k) + ti2(k),
• ji3 = ±j̄i for t = k + ti1(k) + ti2(k), · · · , k + ti1(k) + ti2(k) + ti3(k).

With given initial and final conditions (vdi(k), adi(k), jdi(k), vdi(k + κ̄max), adi(k + κ̄max), jdi(k +
κ̄max)) the phases result in 3 equations for ti1(k), ti2(k), and ti3(k).

ai2 = adi(k) + ti1ji1 (31)

adi(k + κ̄max) = ai2 + ti3ji3 (32)

vdi(k + κ̄max) = vdi(k) + ti1adi(k) + ti1(ti1 + 1)/2 ji1

+ti2(adi(k) + ti1ji1) (33)

+ti3(adi(k) + ti1ji1) + ti3(ti3 + 1)/2 ji3

If no solution with ti1 ≥ 0, ti2 ≥ 0, and ti3 ≥ 0 can be found, the second phase is probably not
required. Then

• ji1 = ±j̄i for t = k, · · · , k + ti1(k),
• ji3 = ±j̄i for t = k + ti1(k), · · · , k + ti1(k) + ti3(k)

is assumed, where (31)-(33) with ti2 = 0 give 3 equations for ti1(k), ai2(k) and ti3(k).
This system of equations is singular if ji1 = ji3. Then only a single phase exists and either

adi(k + κ̄max) or vdi(k + κ̄max) can be reached by

• ji3 = ±j̄i for t = k, · · · , k + ti3(k).

Otherwise, whenever no solution with ti1 ≥ 0, |ai2| ≤ āi, and ti3 ≥ 0 can be found with ti2 = 0,

ti1 = 0 (34)

ti2 = |vdi(k + κ̄max)− vdi(k)|/āi (35)

ti3 = |adi(k + κ̄max)− adi(k)|/j̄i (36)

is used as a last resort.
Fig. 12 shows the different approaches for estimating the required prediction length.
Finally,

κmax(k) = max
i
ceil(ti1(k) + ti2(k) + ti3(k)) + 1 (37)

is computed where ceil(·) denotes the smallest integer that is not less than the argument. This
is required since, strictly speaking, the jerk cannot change within a sampling step. Therefore in

14

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

ai

ti1+ti2+ti3ti1+ti2ti1

ti1 ti1+ti3

_

t

a

a

ai

_

t

ai

ti2+ti3ti2ti3

_

t

aa

ai

_

t

0

0 0 0

Figure 12. Approaches with one, two, or three phases for estimating the time required to reach the goal position, depending
on the initial and the final values of the position, the velocity, and the acceleration.

reality, during the phases 1 and 3, a smaller value |ji∗| ≤ j̄i is applied for a larger time ceil(ti∗) ≥ ti∗.
κmax(k) is cut back to the range

κmax ≤ κmax(k) ≤ κ̄max (38)

with κmax = 5 and κ̄max = 21.
Though this assessment implies some heuristics, Sect. 6 proves that the procedure is useful.

4.3. Execution of Corners and Closed Loops in the Path

If the sensed path shows closed loops (as in Fig. 17 in Sect. 6), it is not guaranteed that the loops
are executed. Instead, if the trajectory was substantially decelerated before, the algorithm might
try to skip the loop and continue with the following segment of the path. The same applies when
a future position is close to a another one, without representing a proper loop.

Similarly, a corner in the path may be blended. Though ALI from Sect. 3 inhibits sampled posi-
tions distant from the sensed path, it is not assured that a corner of the sensed path is represented
by a sampling step of the commanded trajectory, see Fig. 7.

Cutting short of loops or corners can be inhibited by starting the iteration for s(k′) close to
s(k′ − 1), e.g. at sstart = min(k′, s(k′ − 1) + ∆s) with ∆s = 5, instead of at k′. This implies that
qd(sstart) instead of qd(k

′) is checked for feasibility and taken as the first attempt of (11) or (24).
Similarly, during the iteration, s(k′) will be replaced by s(k′−1)+∆s whenever the latter is smaller,
e.g. when s(k′ − 1) has been reduced by backtracking after s(k′).

As a result all sampled positions of the commanded trajectory qc(k
′) have a temporal distance

of at most ∆s steps of qd. Thus, as a rule of thumb, the position error is not more than qd(k
′ +

∆s) − qd(k
′), i.e., the path of the sensed trajectory executed within ∆s. This limits the distance

of a sensed corner from the commanded path. Due to the kinematic constraints the distance of
sampled commanded positions to a corner is already largely restricted by the reduced velocity (see
Sect. 6). However, for pointed corners a small ∆s will be more restrictive than that.

A closed loop is executed without fail if it lasts at least ∆s sampling steps of the sensed trajectory.
There is no cut short between two positions whose temporal difference in the sensed trajectory is
more than ∆s.

The drawback is that the catch up after a significant deceleration may be delayed in the case

15

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

that the iteration for s(k′) begins too close to s(k′ − 1). Sect. 6 shows the effect of different values
of ∆s.

5. Discussion

The presented method is different with respect to most existing algorithms insofar as no con-
tinuous or differentiable sensed trajectory is assumed, which means that e.g. the acceleration is
computed at each time step from sampled positions. This results in features of the method that
will be outlined in this section.

5.1. Performance

First of all, the presented method considers the discrete-time constraints (1)-(3) exactly, i.e.,
it accounts for each sampled position of the sensed desired trajectory. Furthermore, there is no
linearization between sampled positions of the sensed and the commanded trajectory, as e.g. be-
tween qc(k − 1) and qd(k) in [40]. However, in general the iteration does not result in an optimal
trajectory, meaning that the constraints are not always fully utilized. But they are definitely not
violated.

This does not only apply as long as the iteration is successful, i.e., as long as a path-accurate
trajectory is found. The computed trajectory is still feasible whenever Direct Scaling is used as a
fallback position.

But there are desired trajectories for which no feasible modification is possible at all. This may
happen if the robot has accelerated until the maximum velocity is reached. But then the robot
continues to accelerate because the constraints on the jerk do not allow zero acceleration in the
next step. This is called a forbidden point in [6]. In this case for a short time a slight violation of
the maximum speed is unavoidable. Alternatively, the maximum jerk may be exceeded.

5.2. Stability

The robot’s stability is not affected when modifying a sensed trajectory to a feasible one, since
the modification of the desired trajectory does not change the servo control loop. On the other
hand, it has been shown in [1] that the two feedback signals of the position and the sensor data
(see Fig. 1) cancel each other out so that no other feedback loop is present. Instead, qd represents
a trajectory that is given by the task definition and not by the robot pose. In this way, stability
would only be at risk if the trajectory generation itself would be unstable. This, however, is BIBO
(bounded input - bounded output) stable with respect to the position since,
• for a path accurate trajectory, each component of the commanded trajectory is bounded by

the extremal values of this component of the sensed trajectory,
• otherwise, the difference with respect to the sensed trajectory is bounded by Direct Scaling.

The worst case is an overshooting from maximum velocity v̄i and maximum acceleration āi,
that needs at most κj = maxi ceil(2āi/j̄i) sampling steps to attain the maximum deceleration
and then at most κa = maxi ceil(v̄i/āi) sampling steps to come to a stop. According to (A3)
and (A1) this results in a upper bound for the deviation of δi = κj v̄i + κj(κj + 1)/2 āi +
κj(κj + 1)((κj + 2)/6 j̄i + κav̄i + κa(κa + 1)/2 āi.

Thus, if |qdi(κ)− qdi(0)| < δ ∀κ = 0, · · · , k, then |qci(κ)− qdi(0)| < δ + δi ∀κ = 0, · · · , k.
In addition, since the trajectory is feasible, the derivatives are bounded by the constraints. But

this does not exclude that the resulting velocity |vc(k)| = |qc(k) − qc(k − 1)| of the commanded
trajectory may temporarily be higher than the input velocity |qd(k) − qd(k − 1)| of the sensed
trajectory. It is only assured that |vc(k)| ≤ |qd(k)− qc(k − 1)|.

16

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

5.3. Convergence

During the modification of the trajectory, it is slowed down in each step of path accurate forward
scaling or backtracking because with (17)-(23) and s(k) ≤ k or with (28)-(30) the positions are
shifted towards positions at previous time steps. This inhibits an oscillation of vc(k) around vd(k).
But it does not guarantee convergence. Convergence to a path-accurate trajectory cannot be assured
since, as noted, a path-accurate solution does not always exist.

Beyond that, it is possible that a modification is too big. This is due to (17)-(18), (20)-(22), or to
the method of Sect. 4.1, which heuristically reduce the problem of computing two or three positions
to a single α or to qb(k

′) = qd(k
′) and (28)-(30). These approaches have been selected for the online

computation in order to save computing power. Consequently the performance may be sub-optimal,
more than ever since, once the arc length is reduced in iteration step l to sl(k) ≤ k, it is not intended
to compute an sl+1(k) > sl(k) in a further iteration step l+ 1. Therefore the convergence with the
minimum backtracking of Sect. 4.1 is significantly better than with the method of [35].

6. Experiments

The experimental setup is similar to that in [35]. Similarly, a KUKA KR16 robot is controlled by
RSI Ethernet to overlay a horizontal and a vertical motion, where the vertical motion is stopped
by a (simulated) sensor at a minimum distance to the table (see Fig. 13). The table pose is
detected in advance, as with a distance sensor. In this way, the sensed path can be executed path-
accurately. However, the velocity is reduced temporarily before the corner in order to account for
the constraints of Table 1.

Figs. 14 to 16 repeat the fastest experiment from [35] with twice as much speed, i.e., 200 mm/s.

Figure 13. KUKA robot at the minimum distance to the table.

Table 1. Assumed limits of the individual axes (before filtering). The units for velocity, acceleration, and jerk are
rad/(sampling step), rad/(sampling step)2, and rad/(sampling step)3, respectively.

i v̄i āi j̄i j̄′i
1 14 · 10−3 74 · 10−6 60 · 10−6 24 · 10−6

2 14 · 10−3 37 · 10−6 30 · 10−6 12 · 10−6

3 14 · 10−3 85 · 10−6 69 · 10−6 28 · 10−6

4 30 · 10−3 250 · 10−6 204 · 10−6 82 · 10−6

5 30 · 10−3 252 · 10−6 206 · 10−6 82 · 10−6

6 56 · 10−3 450 · 10−6 368 · 10−6 147 · 10−6

17

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

687

688

689

690

691

692

693

555 560 565 570 575 580 585 590

z-
p
o

si
ti

o
n

 (
m

m
)

y-position (mm)

sensed

ALI

without backtracking DPI

normal backtracking DPI

Figure 14. Sensed and generated paths in the y-z-plane (twice as fast as in [35]).

Regarding the path accuracy, Fig. 14 shows that the method without backtracking exhibits over-
shooting whereas the other one with DPI blends the corner. In contrast, path accuracy is not an
issue for the versions of backtracking with ALI.

Regarding the plots over time, the normal backtracking with j̄ (orange dotted curve) copes with
the corner, but in contrast to the reduced speed of [35], with 200 mm/s there is a delay such that
the sensed trajectory is not reached before the end of the horizontal motion (Fig. 15). Using the
more restrictive jerk limit j̄′, the normal backtracking (orange dashed curve) fails. In contrast, the
experiments with the minimum backtracking of Sect. 4.1 (green and red curves) easily catch up,
even with reduced limits (Fig. 15).

Figs. 15 and 16 also show that with minimum backtracking the delay is less than with normal
backtracking. An even smaller delay is reached with the adapted preview of Sect. 4.2 (red curves).
Without adapting κmax, a feasible trajectory is also reached, but not the one with the smallest
delay.

Figs. 17 and 18 show the effect of sstart (Sect. 4.3) with a modified path that includes a closed
loop of 10 sampling steps. With ∆s ≤ 5 the loop is executed, whereas with ∆s = 10 (or the
procedure without the approach of Sect. 4.3) the loop is skipped (Fig. 17). This is because the
commanded trajectory is delayed by 15 sampling steps when passing the corner.

Fig. 18 further shows that it is easy to catch up the sensed trajectory after a cut short of the
loop. Otherwise a further slowdown is required before the loop. Thereafter, the smaller ∆s, the
later the sensed trajectory is reached. With ∆s = 2 the slope is only twice as high as that of the
sensed trajectory, with ∆s = 1 the delay cannot be reduced at all. ∆s = 5 seems to be a reasonable
value. It does not result in any changes when applied to the experiment of Figs. 14 to 16.

The reader is encouraged to provide to the author additional test data, i.e., tra-
jectories, preferably including predictions from each time step, and the given lim-
its. The resulting trajectories will be returned promptly. The data format is given at
http://rmc.dlr.de/rm/en/staff/friedrich.lange/trajectory-generation.

18

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

550

560

570

580

590

600

610

620

630

640

800 850 900 950 1000 1050 1100 1150

y
-p

o
si

ti
o
n

 (
m

m
)

time (steps)

sensed
normal backtracking
min backtracking
min backtracking, adapted preview
normal backtracking, less jerk
min backtracking, less jerk
min backtracking, adapted preview, less jerk

Figure 15. y component of the sensed and the generated trajectories.

687

688

689

690

691

692

693

800 850 900 950 1000 1050 1100 1150

z-
p
o

si
ti

o
n

 (
m

m
)

time (steps)

sensed
normal backtracking
min backtracking
min backtracking, adapted preview
normal backtracking, less jerk
min backtracking, less jerk
min backtracking, adapted preview, less jerk
without backtracking DPI
normal backtracking DPI

Figure 16. z component of the sensed and the generated trajectories.

7. Conclusion

The paper has presented an easy technique for the implementation of robot motion control. It satis-
fies all constraints of an industrial robot, thus enabling the execution of sensor-based modifications
of a programmed trajectory.

While the Direct Position Interpolation (DPI) of [40] computes a position qc(k) on the straight
line between qc(k − 1) and qd(k), Arc Length Interpolation (ALI) as presented in Sect. 3 selects
the appropriate segment of the sensed path and interpolates between qd(s(k)) and qd(s(k) + 1) or
between qc(k − 1) and qd(s(k − 1) + 1). This means that the commands qc(k) are computed as
qc(k) = qd(s(k)), where the latter expression stands for an interpolation if the argument of qd(·) is

19

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

689

690

691

692

560 561 562 563 564 565 566

z-
p

o
si

ti
o

n
 (

m
m

)

y-position (mm)

sensed

 5

 10

without

∆𝑠 ≦

∆𝑠 =
∆𝑠

Figure 17. Sensed and generated paths with loop in the y-z-plane.

550

570

590

610

630

650

670

690

710

730

800 850 900 950 1000 1050 1100 1150

y-
po

si
tio

n
(m

m
)

time (steps)

sensed
 = 1
 = 1.5
 = 2
 = 5
 = 10
without

Figure 18. y component of the sensed and the generated trajectories with loop.

not integral. s(k) is the time at which the sensed trajectory qd has passed the commanded position
qc(k) that satisfies all constraints.

ALI reduces blending of corners that may arise with DPI. Beyond that, the method of Sect. 4.3
inhibits undesired shortcuts. Thus, the exact shape of the sensed path near qc(k) in ensured.
s(k) is not defined if qc(k) is computed by Direct Scaling (DS), since then qc(k) is not on the

sensed path qd(·). The use of ALI is therefore not possible, which is not a disadvantage since the
path is left anyway.

The overall trajectory is generated by the iterative approach of Sect. 2. The procedure always
converges to a feasible trajectory, at the latest with Direct Scaling (DS) which is possible with-

20

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

out prerequisites. The convergence to a path-accurate trajectory is significantly improved by the
procedures of Sects. 4.1 and 4.2.

Thus the main contribution of the paper with respect to the previous work in [35] lies in the
extensions described in Sect. 4. These extensions ensure fast convergence and exclude premature
reactions or undesired shortcuts, even for difficult trajectories.

Appendix A. Prediction from Computed Differences

The sampling time is set to T0 = 1. This means that T0q̇, T 2
0 q̈, and T 3

0 q
...

are replaced by v, a, and
j. This implies that the units of q, v, a, and j are all identical.

Moreover, as in [40], all derivatives are computed by backward differences, e.g. a(k) = v(k) −
v(k − 1) = q(k)− 2q(k − 1) + q(k − 2).

With a(k + 1) = · · · = a(k + i) this results in

q(k + i) = q(k) + iv(k) + i(i+ 1)/2 a(k + i) (A1)

and

v(k + i) = v(k) + ia(k + i). (A2)

Similar to the acceleration, the jerk is defined by j(k) = a(k) − a(k − 1) = q(k) − 3q(k − 1) +
3q(k − 2)− q(k − 3). With j(k + 1) = · · · = j(k + i) this results in

q(k + i) = q(k) + iv(k) + i(i+ 1)/2 a(k) + i(i+ 1)(i+ 2)/6 j(k + i) (A3)

v(k + i) = v(k) + ia(k) + i(i+ 1)/2 j(k + i) (A4)

a(k + i) = a(k) + ij(k + i). (A5)

For a single sampling step (A1) or (A3) correspond to

q(k + 1) = q(k) + v(k + 1)

= q(k) + v(k) + a(k + 1) (A6)

= q(k) + v(k) + a(k) + j(k + 1).

Note that (A1), (A3), (A4), and (A6) differ from the classical Taylor expansion

q(k + i) = q(k) + iq̇(k) + i2/2 q̈(k) + i3/6 q
...

(k) +O(q(4)(k)). (A7)

However, a comparison of both approaches shows that for functions of type q(k) = a + bk +
ck2 + dk3 the equations (A3) and (A7) are identical and the constrained differences result in
v(k) = q̇(k − µv) with µv ≈ 0.5, a(k) = q̈(k − 1), and j = q

...
.

Beyond that, according to the mean value theorem, for any function q(k) which is three times
differentiable between the sampled positions, the differences are v(k) = q̇(k−µv), a(k) = q̈(k−µa),
and j(k) = q

...
(k − µj) with 0 ≤ µv ≤ 1, 0 ≤ µa ≤ 2, and 0 ≤ µj ≤ 3. This means that whenever

v, a, and j satisfy the constraints for all time steps, the trajectory is also feasible with respect to
q̇, q̈, and q

...
, besides violations within the sampling intervals, which cannot be considered by the

time-discrete approach. Thus the reduction of the limits ā and j̄, which was proposed in [35] as a
precaution, is not required.

21

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

References

[1] F. Lange, W. Bertleff, and M. Suppa. Force and trajectory control of industrial robots in stiff contact.
In Proc. 2013 IEEE Int. Conf. on Robotics and Automation (ICRA), pages 2912–2919, Karlsruhe,
Germany, May 2013.

[2] J. Schultz and T. D. Murphey. Real-time trajectory generation for a planar crane using discrete mechan-
ics. In Workshop on ”Real-time Motion Generation & Control - Constraint-based Robot Programming”
at the 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Chicago, IL, USA, Sep
2014. "http://cs.stanford.edu/people/tkr/iros2014/proceedings.html".

[3] Y. Suzuki, K. Koyama, A. Ming, and M. Shimojo. Grasping strategy for moving object using net-
structure proximity sensor and vision sensor. In Proc. 2015 IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 1403–1409, Seattle, Washington, USA, May 2015.

[4] F. Lange, J. Werner, J. Scharrer, and G. Hirzinger. Assembling wheels to continuously conveyed car
bodies using a standard industrial robot. In Proc. 2010 IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 3863–3869, Anchorage, AK, USA, May 2010.

[5] S. Macfarlane and E. A. Croft. Jerk-bounded manipulators trajectory planning: Design for real-time
applications. IEEE Trans. on Robotics, 19(1):42–52, Feb 2003.

[6] J. Mattmüller and D. Gisler. Calculating a near time-optimal jerk-constrained trajectory along a
specified smooth path. Int. J. Adv. Manuf. Technol., 45:1007–1016, 2009.

[7] F. Ghilardelli, C. Guarino Lo Bianco, and M. Locatelli. Smart changes of the end-effector orientation for
the automatic handling of singular configurations. IEEE/ASME Trans. on Mechatronics, 21(4):2154–
2164, Aug 2016. DOI: 10.1109/TMECH.2015.2506679.

[8] T. Kröger and F. M. Wahl. Online trajectory generation: Basic concepts for instantaneous reactions to
unforeseen events. IEEE Trans. on Robotics, 26(1):94–111, Feb 2010.

[9] M. H. Ghasemi, N. Kashiri, and M. Dardel. Near time-optimal control of redundant manipulators along
a specified path with jerk constraint. Advanced Robotics, 25:2319–2339, 2011.

[10] F. Lange and M. Suppa. Trajectory generation for immediate path-accurate stopping of industrial
robots. In Proc. 2015 IEEE Int. Conf. on Robotics and Automation (ICRA), pages 2021–2026, Seattle,
WA, USA, May 2015.

[11] L. van Aken and H. van Brussel. On-line robot trajectory control in joint coordinates by means of
imposed acceleration profiles. Robotica, 6(3):185–195, July 1988.

[12] Y. Bestaoui. On-line motion generation with velocity and acceleration constraints. Robotics and Au-
tonomous Systems, 5:279–288, 3 1989.

[13] T. Kröger. The reflexxes motion libraries: An introduction to instantaneous trajectory generation.
Tutorial Mo-T-19 at 2013 IEEE Int. Conf. on Robotics and Automation (ICRA), May 2013.

[14] Reflexxes. http://www.reflexxes.ws/, last visited 2015.
[15] T. Kröger. Online trajectory generation: Straight-line trajectories. IEEE Trans. on Robotics,

27(5):1010–1016, Oct 2011.
[16] S. A. Bazaz and B. Tondu. Minimum-time on-line joint trajectory generator based on low order spline

method for industrial manipulators. Robotics and Autonomous Systems, 29(4):257–268, 1999.
[17] K. Erkorkmaz and Y. Altintas. High speed CNC system design. Part I: jerk limited trajectory generation

and quintic spline interpolation. Int. J. of Machine Tools and Manufacture, 41(9):1323–1345, July 2001.
[18] R. Haschke, E. Weitnauer, and H. Ritter. On-line planning of time-optimal, jerk-limited trajectories.

In Proc. 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages 3248–3253, Nice,
France, Sep 2008.

[19] L. Biagiotti and C. Melchiorri. Online trajectory planning and filtering for robotic applicatons via B-
spline smoothing fiters. In Proc. 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
pages 5668–5673, Tokyo, Japan, Nov. 2013.

[20] R. L. Williams II. Simplified robotics joint-space trajectory generation with a via point using a single
polynomial. Journal of Robotics, 2013. http://dx.doi.org/10.1155/2013/735958.

[21] L. Yang, D. Song, J. Xiao, J. Han, L. Yang, and Y. Cao. Generation of dynamically feasible and
collision free trajectory by applying six-order bezier curve and local optimal reshaping. In Proc. 2015
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages 643–648, Hamburg, Germany,
Sep/Oct 2015.

[22] M. M. Ghazaei Ardakani. Topics in Trajectory Generation for Robots. PhD Thesis, Lund University,

22

August 1, 2016 Advanced Robotics Advanced˙Robotics2016˙final˙source

Sweden, Department of Automatic Control, 2015.
[23] K. Hauser. Fast dynamic optimization of robot paths under actuator limits and frictional contact. In

Proc. 2014 IEEE Int. Conf. on Robotics and Automation (ICRA), pages 2990–2996, Hong Kong, China,
May/June 2014.

[24] O. Dahl and L. Nielsen. Torque limited path following by on-line trajectory time scaling. IEEE Trans.
on Robotics and Automation, 6(5):554–561, Oct 1990.

[25] Z. Shiller and H.-H Lu. Computation of path constrained time optimal motions with dynamic singu-
larities. ASME Journal of Dynamic Systems, Measurements, and Control, 114:34–40, 1 1992.

[26] C. Guarino Lo Bianco and O. Gerelli. Online trajectory scaling for manipulators subject to high-order
kinematic and dynamic constraints. IEEE Trans. on Robotics, 27(6):1144–1152, Dec 2011.

[27] C. Guarino Lo Bianco and F. Ghilardelli. Techniques to preserve the stability of a trajectory scal-
ing algorithm. In Proc. 2013 IEEE Int. Conf. on Robotics and Automation (ICRA), pages 862–868,
Karlsruhe, Germany, May 2013.

[28] R. Gill, D. Kulić, and C. Nielsen. Robust path following for robot manipulators. In Proc. 2013
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages 3412–3418, Tokyo, Japan, Nov.
2013.

[29] A. Amthor, A. Lorenz, S. Zschaeck, and C. Ament. Fourth order motion profile planning for high
precision applications. In Proc. 2010 IASTED Int. Conf. on Robotics, volume 1, pages 55–61, Phuket,
Thailand, Nov 2010.

[30] F. Debrouwere, W. Van Loock, G. Pipeleers, Q. T. Dinh, M. Diehl, J. De Schutter, and J. Swevers. Time-
optimal path following for robots with convex-concave constraints using sequential convex programming.
IEEE Trans. on Robotics, 29(6):1485–1495, Dec 2013.

[31] R. Katzschmann, T. Kröger, T. Asfour, and O. Khatib. Towards online trajectory generation considering
robot dynamics and torque limits. In Proc. 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 5644–5651, Tokyo, Japan, Nov. 2013.

[32] C. Guarino Lo Bianco and F. Ghilardelli. A discrete-time filter for the generation of signals with asym-
metric and variable bounds on velocity, acceleration, and jerks. IEEE Trans. on Industrial Electronics,
61(8):4115–4125, Aug 2014.

[33] Q. Pham. A general, fast, and robust implementation of the time-optimal path parameterization
algorithm. IEEE Trans. on Robotics, 30(6):1533–1540, Dec. 2014.

[34] A. K. Singh and K. M. Krishna. A class of non-linear time scaling functions for smooth time optimal
control along specified paths. In Proc. 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 5809–5816, Hamburg, Germany, Sep/Oct 2015.

[35] F. Lange and A. Albu-Schäffer. Path-accurate online trajectory generation for jerk-limited industrial
robots. IEEE Robotics and Automation Letters (RA-L), 1(1):82–89, 2016. Presented at the IEEE Int.
Conf. on Robotics and Automation (ICRA), Stockholm, Sweden, May 2016.

[36] S. Pchelkin, A. Shiriaev, A. Robertsson, and L. Freidovich. Integrated time-optimal trajectory planning
and control design for industrial robot manipulator. In Proc. 2013 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), pages 2521–2526, Tokyo, Japan, Nov. 2013.

[37] F. Flacco and A. De Luca. Optimal redundancy resolution with task scaling under hard bounds in
the robot joint space. In Proc. 2013 IEEE Int. Conf. on Robotics and Automation (ICRA), pages
3954–3960, Karlsruhe, Germany, May 2013.

[38] F. Flacco and A. De Luca. Fast redundancy resolution for high-dimensional robots executing prioritized
tasks under hard bounds in the joint space. In Proc. 2013 IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), pages 2500–2506, Tokyo, Japan, Nov. 2013.

[39] T. Kunz and M. Stilman. Probalistically complete kinodynamic planning for robot manipulators with
acceleration limits. In Proc. 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
pages 3713–3819, Chicago, IL, USA, Sep 2014.

[40] F. Lange and M. Suppa. Predictive path-accurate scaling of a sensor-based defined trajectory. In
Proc. 2014 IEEE Int. Conf. on Robotics and Automation (ICRA), pages 754–759, Hong Kong, China,
May/June 2014.

23

