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Abstract

Runtime monitoring is a formal method for analyzing system executions.
This analysis improves the confidence in the behavior of the system, either
by improving the comprehension of the system or by checking the adherence
of desirable properties. Monitoring can be used offline based on log files
but also online along with the system being executed. The latter facilitates
feedback at runtime. A stream-based specification language for the desirable
properties is LOLA. Given a set of input streams, a set of output streams
is evaluated. LOLA is kept simple and expressive and, hence, closes the gap
between temporal logic and hand-written monitor code.

The DLR ARTIS framework is used for research on autonomy concepts,
applications, and implementations for unmanned aircrafts. Important as-
pects of increasing autonomy involve correctness, safety, robustness, and
system health management. In all of these aspects, runtime monitoring is a
useful method to support the task of their implementations.

In this thesis, the applicability of LOLA in the context of unmanned air-
craft is elaborated. Based on interviews with DLR engineers, desirable prop-
erties are formalized in LOLA specifications. In addition, the main contribu-
tion of this thesis is to adapt LOLA to the domain requirements. Therefore,
the LOLA specification language is extended by new operators to increase
its usability and expressiveness. For offline monitoring, existing logged flight
data is analyzed and the usage of LOLA in practice is examined. For online
monitoring, DLR’s available software-in-the-loop and hardware-in-the-loop
simulations are used to evaluate the impact of monitoring on the system.
In both monitoring cases, LOLA is efficient and fast enough and, thus, can
be used in practice. The specifications show that LOLA is capable of ex-
pressing required properties. Further, in the online experiments, the effect
of LOLA on the system is hardly measurable.
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1 Introduction

The name of the specification language LOLA is motivated by the movie “Run Lola
Run”. “Run Lola Run” is a 1998 german action movie written by Tom Tykwer in
which the main character is called Lola. In the beginning of the movie, Lola
receives a phone call from her boyfriend in which she gets told that she needs to
obtain 100.000 Deutsche Mark to save his life. After the call, the story is divided
into three story lines each starting at this point in time. In each story line, Lola
tries different strategies to obtain the money. Each strategy is based on gathered
information from previous tries. Using this past information, she finally manages
to rescue her boyfriend.

In reactive systems where the system has to possibly make safety-critical de-
cisions based on the environment, information about the past can support such
decisions. Runtime monitoring processes given information to identify violations
of important properties of the system. Using the monitor outcome the system can
alter its behavior to mitigate critical situations.

In runtime monitoring, a specification of desired system properties is given
and a monitor checks whether the system execution fulfills it. The events of the
execution are either given to the monitor using system instrumentation at runtime
or by reading a logged data file. The former is called online monitoring and
the latter is called offline monitoring. In both, as outcome, the monitor outputs
verdicts which indicate the adherence of the execution to the specification. The
verdicts for the execution may, in addition to property satisfaction (true, false),
also be of analytical nature (e.g. average). Both facilitate powerful feedback on the
system where especially the analytical feedback helps to refine and to improve the
understanding of the decision-making of the system. The monitor may provide
feedback to the system at runtime or the verdict can be interpreted elsewhere,
e.g. by a human. Figure 1 illustrates the approach.

Runtime monitoring is a formal method allowing to provide mathematical guar-
antees on the reliability of systems. We distinguish two methods: dynamic and
static verification. Static verification refers to the analysis of the system prior
to its execution. An example is model checking. Similar to runtime monitoring,
in model checking a specification is given but also a model of the system under
scrutiny. Then, all executions of the model are checked against the properties of
the specification. The resulting correctness guarantee on all executions is highly
desirable but unfortunately, in practice, model checking is often not applicable.
The reason for that is that model checking suffers from the state-space explosion
problem which turns it beyond current computational capabilities for more com-
plex practical systems. Runtime monitoring falls under dynamic verification where
only a single execution of the system is under scrutiny. As such, we are not able
to argue about the complete correctness of the system but instead about the cor-
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Figure 1: Overview of the online monitoring process.

rectness of the current execution run. However, by considering a single execution
we are able to express more complex (analytical) properties since we can directly
evaluate them during execution.

As a result, the following questions arise: What are the boundaries of the
expressiveness? What properties are expressible? Are computationally expensive
properties really required? Can we monitor them efficiently along the execution
trace in such a manner that the system is unaffected?

In general, monitoring should be a method to verify properties of the system
and not a method for solving computational problems within the system. Due to
the fact that the specification language adapts to required properties, it is often
called domain-specific.

In this thesis, we focus on utilizing the specification language LOLA in the
context of unmanned aerial vehicles (UAV). Aerial vehicles are highly complex
systems which react autonomously. This autonomy implies that the UAV is ca-
pable of perceiving the environment which involves handling and reasoning about
large data sets. Additionally, UAVs are safety-critical and, therefore, they have
to adhere to strict regulations. The system behavior should be correct, secure,
and reliable, even under severe conditions. In this thesis, we elaborate on whether
runtime monitoring can be used to support this goal. More specifically, we decide
whether runtime monitoring with LOLA suits the requirements of this domain.
We specify desirable properties based on interviews with engineers of the German
Aerospace Center (DLR). Further, we consider the expressiveness of LOLA but also
the practical applicability, i.e. efficiency and usage. Considering the efficiency, we
apply online and offline monitoring to evaluate the computational overhead on the
system. Software and hardware simulations, available at the DLR, are used for
online monitoring.
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Outline

In Section 2, we give additional background information on the research area
of runtime monitoring. In Section 3, we present the German Aerospace center,
especially the research framework ARTIS, which supports the identification of
interesting domain properties and also provides the UAV simulations used for the
experiments. We present syntax and semantics of the LOLA specification language
in Section 4. In Section 5, we introduce domain-specific extensions to LOLA.
Section 6 provides attained specifications, gives some implementations details, and
presents and discusses the experimental results. We conclude this thesis in Section
7 and address future work.
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2 Related Work

In this section, we give a brief survey of runtime monitoring. We start with general
notions followed by a presentation of related work, and other existing runtime
monitoring frameworks.

Runtime monitoring is a formal method which allows for checking whether a
single execution trace of a system under scrutiny satisfies given correctness proper-
ties [24]. These properties are formalized in a so called specification based on which
a monitor is generated. Formally, in its simplest form the monitor has to solve
the so-called word problem, a classical problem in automata theory, i.e. whether a
given finite word (the trace) is included in the language (defined by the specifica-
tion). Monitors are able to argue at runtime, or after the system has terminated.
In offline monitoring, the complete trace of the system is already generated. Al-
gorithms can increase the efficiency by utilizing the entire trace, e.g. by traversing
the trace backwards. Typical areas of applications are trace analysis, debugging,
and testing. In contrast, in online monitoring the execution is still ongoing and,
thus, the trace is continuously extended. Consequently, the mentioned efficient
algorithms may no longer be applicable. However, the great advantage of online
monitoring is that the verdict of the monitor can give real-time feedback to a user
or supervisor, or even the system itself. This can be achieved by feeding the verdict
of the monitor back to the system which allows to mitigate a detected unintended
system state.

Extensions of the Verdict Domain

Extensions of the verdict domain (true and false) were elaborated as follows. In
[16], a 3-valued semantics for linear temporal logic (LTL)[35] called LTLs is defined.
LTL is a popular specification language for trace properties. It is originally defined
for infinite traces and hence some adjustments had to be made to argue over finite
traces. In LTL3 the two value semantics of LTL were extended by an additional
verdict representing inconclusive, i.e. the current finite trace cannot be evaluated
to true or false. In [17|, the authors argued why LTL, is required for runtime
monitoring. LTL, further distinguished the verdict inconclusive between probably
true and probably false. An example why this separation is required for finite
traces is the property whenever there is a request, this request has to be granted
eventually. Previously in LTLj3, the verdict would always be inconclusive since
neither exists a good nor a bad prefix for this property. LTL, allows to distinguish
between cases where there is an open request (probably false) and cases without an
open request (probably true). In [22, 26], the notion of incrementally computable
statistical measures is introduced which provides an infinite verdict domain. There,
the specification language (LOLA) is extended by different types and functions and,
hence is capable of computing statistics like the average over an integer trace.
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Monitoring is based on a given specification. Advantages of a formal specifica-
tion language are:

e The monitor is more concise and readable than hand-written code.

Changing the specification and then automatically generating a new monitor
is easier and faster than modifying a written monitor.

Correctness of the specification suffices.

Optimization in the monitor framework carry over automatically.

Formal specifications allow to guarantee bounds on memory consumption.

In [24], a categorization of the different implementation approaches is given. A
distinction is made between external and internal languages. Internal specifica-
tion languages are embedded into an existing programming language. Often pro-
gramming languages like Scala [9] are used as they already offer straight forward
implementation of the required operators. On the other hand, external languages
are stand-alone. The advantage of a stand-alone language is that optimizations
can be implemented by choice.

Monitor System Integration

Another interesting aspect of runtime monitoring is the integration of the monitor
into the system. How does the monitor receives probes of the internal system state
in a sufficient way? This integration can be either inline or outline [24]. Inlining of
a monitor instance means that the monitor is directly included in the system code
[31]. Whereas outlining means that the monitor is an external entity [28]. In [47],
the authors discuss different monitoring approaches. They conclude that hard-
ware monitors have the advantage of non-intrusion but turn inapplicable for more
complex systems. The main drawbacks of inlined or outlined monitors in software
are the potential side effects and the resulting alternation of the target system.
On the other side, instrumentation offers a wide access to system information. In
hybrid monitors, the target process is instrumented in such a way that it emits
events when interesting properties, e.g. variable values, change. These events will
then be passed to an dedicated hardware monitor for its evaluation. Finally, they
shortly discuss on-chip monitors which will reoccur in the next paragraph.

System Health Management

As of recent work, runtime verification has been applied at the National Aero-
nautics and Space Administration (NASA)[7]| in context of System Health Man-
agement (SHM). In [28, 36, 39, 40|, the different aspects of this approach are



6 2  Related Work

elaborated. There, the authors present three system requirements for SHM which
are crucial to monitoring the system health. First, responsiveness states that sys-
tem faults have to be detected within reasonable time to allow mitigation. In
order to achieve this, the system has to be monitored continuously. Unobtrusive-
ness requires the system properties, i.e. functionality, timing, certifiability, and
tolerances, to remain unchanged despite the SHM framework integration. Last,
the SHM must be realizable, i.e. plug-and-play manner for the connection of other
systems and specifications.

In order to achieve these requirements they combine formal methods and a
probabilistic graphical model in their framework rt-R2U2. The rt-R2U2 is imple-
mented in hardware which runs externally and, hence, guarantees unobtrusiveness.
As formal method, they use runtime monitoring of metric temporal logic (MTL)
[14]. MTL is based on LTL and allows to specify time bounds on the temporal
operators. To assure responsiveness, the MTL evaluation is based on synchronous
and asynchronous observer pairs. The synchronous observers evaluate the specifi-
cation, only based on past events, at each time stamp to true, false, or inconclusive.
If necessary, the asynchronous observers will refine these values to true or false with
the help of future events. They use field programmable gate array (FPGA) to meet
the realizability requirement. FPGAs allow to reprogram the circuit in order to
adapt to changes in the specification.

Afterwards, the outcome of the observer pairs is passed to a bayesian network
(BN) |23] for the high-level health reasoning. The network is used to perform
diagnostic reasoning and system health analysis. This approach does not require
any specification for the health reasoning part since reasoning is performed with
the help of BNs. Temporal properties are only implicitly given to the network
via the observers which avoids the explicit and more complex reasoning over time
in the BN. However, there is a break in the formalism. For a user, it would be
beneficial to have a common formalism to specify both the temporal properties
and the high-level reasoning. Not having such high-level specification language for
the reasoning requires an expert for designing the BN i.e. dependencies of nodes
and the conditional probability. Additionally, BNs require an underlying directed
acyclic graph which prevents using bidirectional dependencies, e.g. between two
health nodes. A translation from a high-level specification language to a BN could
help to specify a network in a concise and efficient way. The rt-R2U2 framework
was able to identify previously unknown faults in the aircraft control system.

Alternative Approaches

In [13], a specification language based on quantitative regular expressions (QRESs)
is presented. Regular expressions are a common way for describing regular lan-
guages in computer science. Regular languages are prominent because they cover
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exactly the class of languages accepted by deterministic finite automata. QRE
are quantified because they allow to specify numerical queries over a sequence of
alphabet characters, called stream. Here, an alphabet character is a predicate over
a domain, e.g. D = R U {endp, end;}, end, and end, indicate that an hour and a
day ended, respectively. Possible numerical operators are for instance min, max,
and sum. The framework follows a filtering and composition paradigm. Assume
a property like the average download rate per hour over the course of a day for
the given domain ). When formalizing this property, we first need to specify a
regular expression to identify whenever an hour ended: r; = R* end;,. Next, we
iterate over this filtered data to compute the average download rate in this seg-
ment: fi := iter-avg(ry). Finally, split-sum(f;, end,; ? 0) takes the sum over the
average download rates when the day ended.

Another monitoring approach is RULER [15]. RULER is a rule-based trace
analysis tool. The specification is given as a set of named rules. These rules
consists of a condition part and a consequence part. The condition part is a con-
junction of predicates and the consequence part is a disjunction of conjunctive
predicates. The predicates are restricted to be non-temporal, i.e. temporal de-
pendencies will be encoded in rules. The predicates in the consequence part are
called activated whenever their respective rule condition holds. Active predicates
are non-persistent. They are only activated for the next evaluation step and then
are automatically deactivated. The evaluation is based on a frontier set which
contains all currently activated predicates. Given an event sequence over CurInt
with an unique starting event Start its sum can be evaluated by the following

rules:
Init: Start —  {CurSum(0)}

CurSum(i:int): CurInt(k:int) A CurSum(i) — {CurSum(i+k)}
Rules are a common reasoning system in artificial intelligence. Therefore, it is
interesting to identify the connection between the two research domains.

BeepBeep 3 [29] is a tool that was invented to close the gap between runtime
monitoring and complex event processing (CEP). In contrast to runtime monitor-
ing where a property over a trace is evaluated, CEP answers a query. It can be seen
as a database problem. The author argues that CEP allows to manipulate data,
i.e. computations, whereas most monitors provide only a boolean result. Further,
CEP tools are more focused on these manipulations and lack in the expressiveness
of temporal dependancies which is a core feature of runtime monitoring. BeepBeep
3 aims at combining computational and temporal expressiveness. BeepBeep 3 is
a stream-based framework, similar to LOLA. So called processors receive inputs
and produce an output. The processor output can be piped to another processor,
i.e. it acts as an input. Whenever all input traces obtain a value the processor pro-
duces its output. As a result of this processor architecture, it might happen that
a processor has to build up a buffer for one input while waiting for another. The
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tool allows for different ways of manipulating these input trace buffers, e.g. the
decimator operators (returns only the n-th input event and removes the others)
which is complemented by the freeze operator.

Note that, all presented approaches are event-triggered, i.e. they are invoked
whenever an new event occurrs. An alternative approach is time-triggered behavior
where the monitor is invoked periodically and reads the events. In [18], the authors
argue that event-triggered monitoring can suffer under bursts of new events at
runtime. As an example, they show how a C program can be augmented based
on its control-flow graph such that a monitor which awakes periodically does not
miss any changes. Furthermore, it is shown that the LTLs properties without
the next operator can be soundly verified. Note that when augmenting the C
program by further instructions, the runtime overhead may change. In addition,
the responsiveness of the monitor depends on the wakeup period. The approach
is implemented in the tool RiITHM [32|. In [49], an hybrid approach is proposed
where depending on the current execution, the monitor can switch between a time-
triggered and an event-triggered behavior.
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3 Field of Application

In runtime monitoring, the specification formalism is often considered as domain-
specific. The expected expressiveness of the formalism highly depends on the
properties of the system under scrutiny. A restriction to the expressiveness of
a formalism is the monitorability. The more expressive a formalism is the more
expensive is monitoring properties of the respective formalism. Additionally, the
property description should be easy to write and to read for a user. Criteria for
this are for instance conciseness and elegance. In order to find a good tradeoff
between expressiveness, monitor efficiency, and usability, it is necessary to identify
families of required and interesting properties for the given domain.

In this section, we give a summary of our domain: the German Aerospace
Center (DLR). First, we present the project for which we are going to integrate
our monitor approach. Second, the participating ARTIS working groups are in-
troduced. Then, we give an indication of the kind of data a monitor receives and
should be able to handle. Afterwards, we shortly present the current state of the
software development, verification, and validation. Finally, the problem of uncer-
tainty of future restrictions and the resulting decision-making is outlined briefly.
Additionally, in the last subsection we list the different possible applications of
runtime monitoring.

3.1 German Aerospace Center

The German Aerospace Center!|3|, abbreviated DLR, is Germany’s national re-
search center for aeronautics, space, energy, transport, and security. The DLR was
established in 1969 and nowadays consists of 33 institutes and facilities in sixteen
national locations and four international offices with its headquarter in Cologne.

This thesis is the outcome of the collaborative work between the reactive sys-
tems group (Saarland University) and the department for unmanned aircraft (DLR
- Braunschweig). The main research topic of the department for Unmanned Air-
craft is the research of autonomy concepts, applications, and implementations for
unmanned aircraft. Among others, flight control, sensor fusion, and mission con-
trol are active research areas to accomplish this task. The main research tool is the
Autonomous Research Testbed for Intelligent Systems (ARTIS) framework with
its ARTIS fleet of aircraft.

3.1.1 ARTIS

Starting with a single test aircraft the ARTIS fleet now consists of an entire fleet
of aircraft of different types and properties. The testbed offers different degrees of

I'Deutches Zentrum fiir Luft und Raumfahrt e.V.
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autonomy such that an incremental approach towards complete autonomy can be
applied. This approach is required since a higher degree of autonomy adheres an
increasing software complexity which has to meet several constraints on software
maintenance and guarantees towards code quality. Additionally, since aircraft are
a safety-critical domain, strict regulations with high demands on correctness apply
such that formal techniques are of interest. Unfortunately, aircraft are both safety-
critical and highly-complex systems. One indication of the high complexity of the
system is a wide range of sensors from simple GPS and magnetometer sensors to
cameras and laser sensors for high-resolution image processing. Therefore, formal
methods like model checking tend to turn out inapplicable for the complete system.

Hence, there is great interest in finding a sweet spot for the applicability of
formal methods, for instance by using a compositional approach, i.e. splitting
the overall system into several parts and applying dedicated methods to some
parts and model checking with a higher degree of abstraction to others [19, 21].
However, this approach requires that both sides complement each other which is
often complicated. Therefore, in this thesis, we chose to apply runtime verification
as lightweight technique [24|. Runtime verification cannot guarantee the overall
safety of the system but instead the safety of the currently observed trace, which
has a lower complexity and can be seen as a first step towards system verification.
Online feedback of the monitor can be used to improve the self-awareness and
health of the system which improves the trustworthiness and safety of the system
[41].

3.1.2 Involved Working Groups

The department of unmanned aircraft is divided into three working groups to
cover different research areas. The three working groups are: Sensor Fusion and
Environment Perception (SF), Flight Control, and Systems Integration (CNTRL),
and Mission Planning and Execution (MiPlEx). An abstracted view of the group
structure and its interaction is depicted in Figure 2.

Sensor Fusion and Environment Perception
The first step towards autonomy is self-perception and environment perception. In
order to react to situations, it is important to first understand the situation. The
environment perception is handled by cameras and laser sensors which are able to
model a 3D obstacle mapping of the environment in real-time. This mapping can
be used to build an internal map of the area from scratch and, hence, to make
smart decisions concerning the mission, e.g. obstacle avoidance.

Another non-trivial part is the self-perception, i.e. the assessment of the cur-
rent state of the aircraft. The self-perception comprises statements on the current
position, the direction of the flight, the altitude, the flight state, the distance to
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obstacles, and the acceleration. To estimate the actual state of the aircraft, the
data of the already mentioned sensors are fusion-ed with the data of the global po-
sitioning system (GPS), magnetometer, and the inertial measurement unit (IMU).
Therefore, to handle this bulk of data in real-time, efficient algorithms for the
estimation are required. Interesting arising perception tasks are recognition of
dangers, the detection and tracking of obstacles, and the automatic construction
of aerial surveys.

Flight Control and Systems Integration

The actual flight of a mission is based upon commands. If the aircraft is com-
manded to fly on a straight line from position A to position B it would be un-
pleasant if the aircraft never reaches position B. In this setting, the task of flight
control is to assure a smooth flight with minimal deviation. An ideal flight is quite
unlikely due to environment influences, e.g. wind. Challenges are that anomaly
in the behavior should be detected to enable smooth flights. Therefore, a precise
flight mechanical model of the actual aircraft and robust algorithms, capable of
fast adaptation to environmental conditions, are required. Additionally, it should
be guaranteed that the aircraft acts inside its operational limits.

System integration is not only the task of presenting a system which is capa-
ble of flying but also of integrating all hardware as well as software components
into hardware-in-the-loop simulations. Hardware-in-the-loop simulations are key
to evaluate new algorithms or sensors in an early not-ready-to-flight stage of de-
velopment involving a single or multiple components of the system.

Further tasks are the maintenance of the aircraft, the coordination, and the
safety arrangements of the actual flight tests.

Mission Planning and Execution

The mission planning and execution represents the highest level of abstraction
for commanding a UAV. This simulation is mainly achieved by encoding human-
like decisions into mathematical functions either statically encoded or dynamically
learned. Roughly spoken, the high aim of the group is to replace a human pilot by
an auto-pilot. The auto-pilot is supposed to make all safe and reliable decisions in
highly complex situations under strict time constraints.

The MiPlEx (Mission Planning and Execution) framework comprises the im-
portant aspects of achieving this decision-making. It supports planning of missions,
paths, and the command execution required to achieve the goal of the mission [12].
The framework follows a layered architecture where each layer implements a differ-
ent autonomy level of the system. In order to cope with the complex situations, the
framework facilitates high-level behaviors, e.g. Fly Home, Surveillance, or Search
to decrease the complexity of the planning decision-making. These high-level be-
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Figure 2: An abstracted overview of the group structure.

haviors are then automatically synthesized into a sequence of low-level maneuvers.
Low-level maneuvers, e.g. Take Off, Fly To, or Land, allow the full control over
the aircraft but have an high complexity for planning.

Another difficult requirement is the determination of a flight plan. Efficient
flight plan computations for 3D environments are required and additionally they
need to be optimized at runtime.

3.1.3 Logging

Online runtime monitoring is used to observe the data flows and to check whether
they adhere to a given specification. One of the first steps in order to integrate a
monitor (observe events) is to identify the interesting properties and to find the
positions in the system where an easy and unharmful eavesdropping is possible.
Integrate the monitor at the already existing logging positions offers several advan-
tages. First, it simplifies the development of specifications since their development
can be based on existing log files?>. Second, both offline and online monitoring
use the same data and, therefore, specifications can be reused. Last, it eases the
integration of the monitor. Comparing the log files to the monitor output allows
to validate the monitor.

In the following, we present some of the log files and their logged data in more
detail. We abstract from the type of values and assume floating-point numbers.

2In most cases, specifications can be used for online and offline monitoring
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e Sensor Fusion and Environment Perception:

— Input: imu_output.log
is used to observe the IMU data which is the most important sensor for
sensor fusion and measured at 100Hz. It has nine columns: Rotation
rate in z, y, and z axis, acceleration in x, y, and z axis, a counter to
check missing values, and two time values time s and time ms: the
first in seconds and the second in microseconds as an exact offset added
to the first time value.

— Input: mgn_output.log
validates the IMU input on the flight attitude of the aircraft. It has
five columns: Flight attitude in z, y, and z axis and the two time values
time_ s and time_ ms.

— Input: gps_vel output.log
is the first part of the GPS sensor, both parts are used to validate
the IMU data. It contains data about the current velocity, e.g. the
horizontal and wvertical speed, the actual motion direction, as well as
time values.

— Input: gps_pos_output.log
The second part of the GPS sensor captures information about the po-
sition. Among others, it incorporates latitude, longitude, height, number
of tracked observations, and time values.

— Output: nav_states.log

is a Log of the output of the sensor fusion and entails 34 columns. Its
main features are: current position relative to the reference point (z,
y, and z), current position in World Geodetic System 1984 (WG S 84)
(latitude, longitude, and height in meters above sea level), velocity (in z,
y, and z direction), rotation rate (in z, y, and z direction), acceleration
(in z, y, and z direction), current height, and again the two time values
time s and time_ms.

e Flight Control and System Integration - control output.log:

This log is generated in the control engineering part. It can contain over 100
rows and varies from flight to flight. Typical values are: the outervel cmds ,
representing the commands given by the mission manager, the vel ref which
depicts the reference behavior, and the vel state which stands for the current
behavior. Latter values should match with the command and differ only
slightly from each other. Other values range from the commanded velocity
or acceleration to the current fuel status or pilot commands. Again, time_ s
and time_ms are also entailed.
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e Mission Planning and Execution - missionManager output.log:

Is the last log file we consider and it closes the circular data flow. The
file contains information about the mission manager which is part of the
MiPlEx and contains the information and current command of the mission.
The log has 26 columns some of which are: the commanded velocity vk , the
turn_ rate, the state of the sequence controller statelD SC| and information
about the current position, e.g. z, y, and z. As before, time s and time ms
are also entailed.

3.1.4 Current State of Software Development

This section summarizes the results presented in [44]. The development of a soft-
ware project, which includes many engineers, comprises constraints on the system
and the software, coding guidelines, integration, verification, and software man-
agement, i.e. tracking an issue, publishing it, assigning an engineer, and finally
solving the issue.

The ARTIS development is a research project. Therefore, its constraints vary
over time and are incrementally extended which introduces additional constraints
on the adaptability of the software. For the management of the software a modified
Mantis bug tracking server [6] is used along with an SVN [10] server for code
management. The SVN server contains three repositories: green (stable version -
ready for flight tests), yellow (planned version - working code which will soon be
integrated into the green code), and red (development code).

In order to ease the integration of new code the overall project is composed
of modules, just like the working groups. Each module selects a Module Master
(MM). This MM verifies the code and then pushes the code changes into the
yellow repository. Other module members do not have the permission to push
changes directly into the repository. During a monthly meeting the MMs present
the changes and discuss which to integrate into the green branch. The integration
is planned by the Integration Master (IM) who is chosen among the MMs. She is
responsible to schedule the steps to be carried out for a smooth transition. As last
steps, the functionality of the code pre-version is tested to avoid negative effects
and to allow a successful integration. If the IM is satisfied with the code quality
this pre-version is committed into the green repository and will be used in further
flight tests.

In Section 6, we receive a SVN branch of the green version in order to integrate
and evaluate runtime monitoring.
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3.1.5 Current State of Software Verification and Validation

In the last section, we presented the process of software integration. We often
mentioned that high code quality and trustworthiness is assured by testing. In
this section, we show how software verification is currently handled for sensor
fusion, mission planning, and execution [44, 46].

In Section 3.1.2, the responsibility of sensor fusion is depicted. Originally, the
module was written in C and featured a high quality in position estimation. It was
trustworthy and, thus approved correct in principle. Unfortunately, the module
had to be completely rewritten in C++ due to new software constraints, restrict-
ing the compatibility. To ensure that the new implementation is still capable of
high performance, regression testing [48] is applied. In regression testing, already
completed tests are continuously repeated to ensure that modifications do not alter
the already tested behavior and lead to new software faults. Each test case asserts
an expected value with the returned value. If the values do not differ significantly
the test is passed. In this specific application, the expected values are the return
values of the old C implementation which is approved correct.

In many other cases this knowledge about the expected values is missing, e.g. in
mission planning and execution. They are using UML state charts, an event-based
automaton, in order to implement the event handling where verification support
is available. Their testing approach is broken up into several levels of abstractions
each raising the confidence in the code.

First, abstract tests are used to guarantee the basic model correctness. These
tests can be automatically synthesized from the model and are based upon cover-
age criteria of the model, e.g. transition coverage, i.e. each test run applies each
transition at least once.

Second, the functionality of module components and their interaction with
other module components are checked using unit tests.

Third, actual flights are simulated to check the correct integration with the
other modules. Advantages of simulations are that they speed up the development
life cycle, reduce the overall costs, e.g. expensive flight time, and of course increase
the safety of people. Two simulations are used: software-in-the-loop (SiL) and
hardware-in-the-loop (HiL).

SiLL is mostly used in an earlier stage of development where hardware is not
yet available or a first impression of the algorithm’s performance suffices. Figure 3
shows the process. The main drawback of SiL is that the simulation (of hardware
and environment) and the software is run on the same machine. This can result
in a completely different runtime behavior compared to the runtime when using a
dedicated embedded machine. However, SiL. is flexible and no expensive hardware
equipment is required.

In later development stages, hardware is available, HilL deals only with the en-
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Figure 3: Illustration of the software-in-the-loop simulation setup.
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Figure 4: Illustration of the hardware-in-the-loop simulation setup.
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vironment simulation where the embedded machine will be applied in the future.
Figure 4 depicts the hardware-in-the-loop setup. The figure shows that the soft-
ware is run on the target machine on which it will run on after deployment. The
environment simulation is run on an external machine. Therefore, the behavior is
closer to real flights and has more expressiveness.

Finally, the embedded system is tested during an actual flight. The obtained
flight data is analyzed and shows the applicability.

3.1.6 Uncertainty about Future Regulatory Restrictions

Unmanned aircraft gain more and more public attention due to global companies
like Amazon [1], Facebook [5], or Google [8]. These big corporations put a lot of
effort into the development. International and national authorities are demanded
to give guidelines for a legal framework and to regulate unintended operations and
behavior. Frameworks like ARTIS have to keep up this fast pace in order to play
an active role in creating this regulations and standards.

Currently, authorities are working on defining the categories of operations. As
reference point, they often compare to available and proven regulations in manned
aircraft but not all can be reused. The current regulation in Europe states that
unmanned aircraft above 150 kg have to adhere EUROCONTROL (European
Organisation for the Safety of Air Navigation), the others to national authorities
[20, 34]. For Germany and the ARTIS framework, this implies that a human safety
pilot is required who must have the aircraft in line of sight at all times in order
to switch to remote control in case of an emergency |27, 33|. This is a strong
and undesired intervention in the autonomy of the aircraft for any business UAV
but necessary to guarantee safety of this critical domain. In order to overcome
this restriction of autonomy, it is required to replace the human safety pilot by an
auto-pilot which requires modeling and safety certification.

A current software standard, namely DO-178C [37], allows for the first time
formal methods, object oriented techniques, and model-based development for the
software certification. It distinguishes several software levels representing increas-
ing criticality levels from No Effect - despite failure still safe (0 Objectives) over
Minor(26 ODbj.), Major(62 Obj.), and Hazardous(69 Obj.) up to Catastrophic -
multiple fatalities due to failure (71 Obj.). Depending on the level, the amount
of software verification effort increases, and the number of required development
objectives grows. Further, the standard allows the applicability of formal methods
to verify the system [38]. Open questions include how formal methods can be
implemented to certify the system (preferably in an efficient, adaptive, and afford-
able manner) and whether a common basis of requirements of the different aircraft
types can be found to reduce the effort of certification required. First steps have
already been made [43, 45, 42].
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This is an ongoing process and yet, the outcome, what a valid certification
would require, is unclear. The research is compelled to decide whether to hold
onto the simpler solution and wait how the certification situation evolves or to
approach the problem right from the start by actively seeking for alternatives and
maybe even propose them as a solution. The ARTIS framework has decided to
evaluate the applicability of formal methods. The basic idea is to use runtime
monitoring as a monitor for the overall system. Since the monitor is formally
defined, the hope is to deliver it along with its proof of correctness. As we will see
in Section 4.3, formal methods can guarantee bounds on the memory consumption.
However, formal methods do not render the obligation to consider all possible error
scenarios but they allow to specify such properties in a more descriptive way.

3.2 Applications of Runtime Monitoring

Runtime monitoring is a very powerful technique in different scenarios and stages
of development. In the following, some of the possible application fields are listed.
The first four applications consider more the offline monitoring aspect whereas the
others indicate an incremental approach towards autonomous health management.
The idea of the incremental approach is to first use monitors to ease the work of a
safety pilot by pointing towards errors behaviors which he can then handle. In a
second step, using these errors behaviors, the decisions of the safety pilot can be
be mimicked either off-board or on-board. For now, we assume there exists a fast,
secure, and strong enough data link between the system and the monitor.

Formalizing the Expectations

in the designing stage of a project, developers should be clear about what they
want to achieve. Beforehand, important and expected properties can be captured
in a specification. This helps early to become clear and, additionally, afterwards
attained specifications can be used to check to which degree the desired properties
are achieved.

Debugging, Testing, and Analysis Support

Currently, at least for the ARTIS framework, the analysis of log files is done via
python plots. In case of an error, an expert has to find it by sight. He has to put
the values of multiple sensors into context, make calculations, and maybe even
consider the temporal dependencies of the values. Especially the last point makes
this tasks very disillusioning and error-prone. A monitor can be used as a tool
to narrow down the error source or even identify it. Useful techniques for this
are specifying failure properties, establishing statistics, or even the filtering of the
data for another analysis step on the smaller data set.
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Often, it is not directly possible to specify the correct properties of a system.
Either because the outcome is previously unknown, unexpected, or the bounds are
not yet exactly identified. Here, statistics offer experts a deeper understanding
of the system state, e.g. average trajectory deviation. Furthermore, in order to
identify the bounds, monitors can evaluate all stored flight data and based on
that give a first bound estimation.

Another scenario where monitors can be useful are tests. By extending existing
unit tests with monitors, their expressiveness of a valid flight is increased and will
already reduce work at an early stage of development.

Benchmarking of different Flights based on Statistics

Not only can we use (all) logged flight data to identify the bounds but also to
compare different flights with each other. This is very useful when experimenting
with different algorithms. It enables us to identify properties of the different
algorithms on a statistical basis. For instance, one algorithm is known not to be
very precise but very fast, another the contrary, precise but computational slow.
Statistics offer to measure the pros and cons between those algorithms.

Integration of Blackbox Systems

Integration of new components is dangerous since it can destroy the timing be-
havior of the overall system. Often new components are a custom product based
on a specification. This specification formalizes the properties of the delivered
product, e.g. resource or timing limitations. If these properties hold the behavior
of the system is expected to work in the desired way. Runtime monitoring can be
used to increase the trustworthiness towards these components by supervising this
specifications.

Increasing Situational Awareness of the System State

So far in, safety is guaranteed based on a human safety pilot who can switch to
remote control whenever he recognizes a bad behavior. To recognize such behavior,
the pilot has to observe the aircraft from the ground control station with limited
information on the current internal aircraft state. This limited information and the
distance between the aircraft and the pilot introduces new challenges, particularly
the delayed situational awareness. Runtime monitoring can be used as an onboard
reasoning mechanisms to identify unintended system states. For instance, bound
violations can be passed to the pilot. These pilot notifications can have different
granularities. Some violations might be safety-critical, i.e. flagged as urgent and
some others are only simple, maybe even unnecessary notifications.
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Detection of the Error Source

Runtime monitoring is a suitable technique for identifying system faults. The next
step towards autonomous health management will be to diagnose the faults to find
its source. In order to illustrate this point, assume we have three sensory inputs
for a system property a. If two of the sensors say a holds and the other says it
does not then it is very likely that a holds and the differently reporting sensor
is erroneous. This is just an example to show what diagnosis might look like.
Diagnosis reasoning can be arbitrary high, e.g. the trustworthiness of the sensors
in different situations can be taken into account. That diagnosis is also very useful
for a human safety pilot at the ground control station.

Integration of a Contingency Manager

To go from these open-loop use cases to a closed health managing loop, the out-
come of the diagnoses can be passed to a contingency manager. Depending on the
design choice, this can either be part of the monitor or a separate component. In
both cases, the task of the contingency manager will be to mitigate the error im-
pact towards the system. Countermeasures can be initiated which were originally
the task of the human safety pilot. However, in some cases, e.g. fatal error, the
mitigation of the failure might not be possible and a safe flight behavior cannot be
re-established. Yet, in this worst case scenario, a possibility might be to implement
actions which guarantee at least a controlled form of action, safe landing, or flight
termination.
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4 The Specification Language LOLA

LOLA is a stream-based specification language for synchronous systems, first in-
troduced in [22]. The general idea of LOLA is to generate a set of output streams,
based on a given set of input streams. Input streams describe the values of the
system under observation and output streams represent errors or diagnosis reports
of the monitor. In this section, we give an overview on the essential definitions
introduced in this paper.

Synchronous systems are systems in which the variables change their values
by a unique and synchronized clock signal. In LOLA, the system variables are
represented as streams. A specification describes the dependencies between in-
put streams and output streams. A stream has previous values, a present value,
and possibly future values. The dependencies express the temporal connection
between all streams. In fact in Section 4.3, we will see that LTL [35] properties
are expressible in LOLA.

Further, LOLA streams are typed and the language allows to specify incremen-
tally computable statistical measures which enrich the information content for a
user. Additionally, the same LOLA specification can be used for online and offline
monitoring. Despite its expressiveness, the language is kept simple and closes the
gap between temporal logic and hand-written monitor code.

In this section, the basic structure of a LOLA specification is introduced and the
underlying monitoring algorithm is presented. In Section 4.3 the known efficiently
monitorable fragment of LOLA is shown. To ease the introduction, the left open
syntax is restricted to the one used for the first LOLA implementation.

4.1 Syntax & Semantics

LOLA specifications are structured in a modular way, depicted in Syntax 1. Writ-
ing specifications in a modular way is a key feature of LOLA since it helps a
specification engineer to keep track of the current state of the target property.

4.1.1 Syntax

The specification consists of input, constant, and output streams each having a
unique identifier and a type. The basic types are integer and boolean. Syntax 2
shows the possible values of the types and the identifiers. The syntax is given in Ex-
tended Backus-Naur Form (EBNF). EBNF consist of terminal symbols (indicated
by ‘..”) and non-terminal production rules (indicated by (..)). Further, production
rules can contain optional symbols (indicated by [..]), grouping symbols (indicated
by (..)), repetition symbols (indicated by *) and alternation symbols (indicated
by | ). The rules are used to express how the terminal symbols are allowed to
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be combined. Input streams represent the values given to the monitor, i.e. the
values under test. Constant streams are streams with a fixed value. Especially
in specifications, where fixed bounds often reoccur, constants allow adjusting the
specification by only changing these single points.

Last, output streams are used to handle the error checks (true or false) and
the statistical measurement computations by specifying expressions. Further, a
boolean output stream can be declared as trigger which generates a notification
to the user each time the value of the output evaluates to true. Syntax 3 lists the
possible expressions for the output. The basic integer and boolean operators are
available and an if-statement operator which is similar to common programming
languages.

(lola-format) = ¢ | (streamDef) (lola-format)
(streamDef) = (inputDef)

| (constantDef)

| (outputDef)

| (triggerDef)
{(inputDef) = ‘input’ (type) (identifier)
(constantDef ) = ‘comnst’ (type) (identifier) ‘:=" (literal)
(outputDef) = ‘output’ (type) (identifier) ‘:=" (expression)
(triggerDef) = ‘trigger’ (identifier)

Syntax 1: Structure
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(type)

(identifier)

(literal)

(integer)

(expression)

(unaryExpr)

(binaryEzpr)

{comparison)

(computation)

(ifEzpr)

(elseExpr)

(shiftExpr)

‘int’ | ‘bool’
( £a7_£z7‘(A7_(Z7 ) (ﬁa7_ﬁz7|(A7_(Z7 | 107_(97 ’ ﬁ_’)*
‘true’ | ‘false’ | (integer)

[-] (F0-'97) (‘0-'97)*

Syntax 2: Literals

(literal) | (identifiery | (unaryExpr)
(binaryExzpr) | (ifExpry | (shiftEzpr)
‘" (expression) ‘)’

‘v’ (expression)

(expression) (comparison) (expression)
(expression) (computation) (expression)

¢<7 | 4<_7 ‘ [ | 4!_7 | <>=7 | 4>7
4&7 | cl? | o> | ¢<_7 ’ a<_>7
() ‘ (3] ’ Cx? ’ (/7 ‘ uy: ‘ (a0

0

‘if’ (expression) ‘{’ (expression) ‘Y (elseExpr)

[ ‘elif’ (expression) ‘{’ (expression) ‘} (elseExpr) |
‘else’ ‘{’ (expression) ‘}

(identifier) ‘[’ (integer) ‘,” ({literal) | (identifier)) ‘1’

Syntax 3: Expressions
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Definition 1. Well-Typed Specifications

LoLA is a typed language. The syntax of a specification is restricted based on
type conventions. Let T be the set of types consisting of int and bool and S be
the set containing all streams. Each specified input, constant, or output stream
s; € S has a certain type t; € T, where 0 < ¢ < | S |. A specification is called
well-typed if all output streams s; and their corresponding expressions e; satisfy
the following type rules, where e;, e, and e, indicate subexpressions.

o If s5; is of type t; then e; has to be of type t; as well.

o If ¢; is a literal of type t; then e; is of type t;.

o If e; represents an identifier s; then e; is of type t;.

o If ¢; = ! ¢; then the type of e; and e; have to be of type bool.
o If ¢, = ¢; 0¢y then

— If o € {&, |, 4=, —, <>} then both e; and e;, have to be of type bool and
e; is of type bool.

— If o € {+,—,%,\,%," } then both e; and e; have to be of type int and
e; is of type int.

— Ifo € {<,<,=,%#,>,>} then both e; and ej, have to be of type int and
e; is of type bool.

o Ife; = if e; {er} else {en} then e; has to be of type bool, e and e, have
to be of the same type ¢, and e; is of type ;.

o If ¢, = ej[n, [] then e; and e; have to be of the same type ¢; and further /
has to be either a literal or constant of type t;. n is a natural number. In
the following, we call this operator the offset operator.

Note that e = if e; {ea} elif es {es} else {e5} is syntactic sugar for
e = if e; {ex} else {if e3 {es} else {e5}}. In the following, we assume well-typed
specification unless explicitly stated differently.

Example 1. Bound Check

In order to prepare the more complex formal semantics, a simplistic boundary
check is shown in Listing 1. The well-typed specification is used to check whether a
given input value exceeds a predefined constant bound. In case the check is enabled
and the input exceeds the bound, a notification is raised. The specification can be
understood as an equation system. The set of variables consists of the two inputs
enabled, value, and the output stream exceeds. Note that a monitor evaluates a
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continuous trace of the system. The evaluation of the LOLA specification starts
at the first position (indexing starting with zero) and traverses the trace onwards.
Therefore, at each position of the trace an instance of this equation system is
spawned and possibly resolved. Simplifying the argumentation, we introduce the
shorthand <identifier># <integer> which is an abbreviation for <identifier> at
position <integer> of the trace. Assume enabled#1 is true and value#1 is 5 at
the second position in the trace. In this case, exceeds#1 corresponds to if true {5
> 10}else{false} which can be further resolved to false. Since the result is false
no trigger is raised. If the next input values enabled#2 and value#2 would be
true and 100 then the output stream instance would evaluate to true which would
raise a trigger notification.

input bool enabled

input int value
const int bound = 10
output  bool exceeds := if enabled { value > bound } else { false }

trigger exceeds

Listing 1: A simple LOLA specification that checks whether an input value exceeds
a predefined bound and the enabled holds.

4.1.2 Semantics

The example above gave a first intuition on how a specification is evaluated over
an input trace 7 = (71,...,Tm), representing literal values for each input stream
st ..., s 1In the following, the relation between input streams and output
streams is formally defined. Let N be the length of 7 and L be the set con-
taining all literals. Further, let s, ..., s be the specified output streams with
their corresponding expressions e, ..., e, and s ... s{°"" be the given con-
stant streams representing the constant values ¢; € L,...,cx € L. Then, the
evaluation over the trace is defined as a stream of N tuples (oy,...,0,) where for

all 0 < j < N and 0 < ¢ < n, the following equation has to be satisfied:

0i(j) = eval(e;)(j)

Such an equation satisfying evaluation is called an evaluation model. o;(j) stands
for the value access of the output stream evaluation o; at position j. Similar, 7;(j)
is used to access position j of the input trace 7;.
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eval is a function which, given an expression and a position, returns the result
of the expression. It is inductively defined as follows:

e Base case:

— eval(l)(j) =1, where l € L
ssmstY () = ¢; , where 0 <i < k

— eval(s™™)(j) = 7:(j) , where 0 < i <m

(
— eval(
(
(

K2
— eval(s?)(j) = 0:(j) , where 0 < i <n
e Inductive case, where ¢, e,, and e. are sub-expressions:

— eval( ! e.)(7) = eval(e.)())

)
— eval(e;0e,)(j) = eval(e;)(j) o eval(e,)(j), where o is any binary operator
(e

e)(J))

~ eval(er o1 e 0 €)(j {(eval(el o‘l e.)(4)) oo eval(er)(.j)  if left(.ol, 09)
eval(e;)(j) o1 (eval(ecoq€,.)(j)) ,otherwise.
where left(oy,09) evaluates to true when the precedence order, given in
Figure 5, of oy is higher or the operator is left-associative and has an equal
order, otherwise it evaluates to false.

— eval(if e, {e;} else {e,})(j) = if eval(e.) () {eval(e;)(j)} else {eval(e,) ()}
eval(e)(j + eval(p)(j)) ,if 0 <j+eval(p)(j) < N

eval(o0obv)(j) , otherwise.

where p € N and oobv represents the out-of-bounds value € L. This operator
will be further called offset operator.

— eval( (e.) )(j) = ( eval

— eval(e[p, oobv])(j) =

In the previous example, the given specification consists only of dependencies
on present stream values. In the semantics above, the so called offset operator
is already formally introduced which gives access to past and future values of
an existing stream. Accessing these temporal values allows the computation of
statistical measures.

Example 2. First Statistical Measure

In Listing 2, we compute the sum over the input value in two ways using the offset
operator. The output stream sum_ backward computes the sum by accessing the
previous value, i.e. |-1, 0], whereas sum_ forward computes the sum by accessing
the future value, i.e. [1,0]. Let (1,2,3) be the input trace for the input value
stream, we evaluate the outputs in an online manner as follows:



4 The Specification Language LOLA 27

e sum_ backward:

1. sum_ backward#0 = value#0 + sum_ backward#-1 =1+ 0 =1
2. sum_ backward#1 = value#1 + sum_ backward#0 =2 + 1 =3
3. sum_ backward#2 = value#2 + sum_ backward#1 =3 + 3 =6

o sum_ forward:

1. sum_ forward#0 = value#0 + sum_ forward#1 =1+ 7 =7
2. sum_ forward#1 = value#1 + sum_ forward#2 =2 + 7 =7

3. sum_ forward#2 = value#2 + sum_ forward#3 =3 + 0 = 3
sum__ forward#1 = 2 + sum_ forward#2 =2 + 3 =5
sum__ forward#0 = 1 + sum_ forward#1 =1+ 5 =6

The stream sum_ backwards inserts the out-of-bounds value at the start of the
trace. Since we try to access a previous value which can never exist. sum_ forwards
works similar but inserts the value at the end of the trace. Being at the end
guarantees that no further values exist. In Section 4.3, we will see that the former
is more desirable since back propagation is not required. Note that we computed
the sum over the values correctly but the position holding the result differs.

input int value

output int sum_backward := value + sum_backward[-1, 0]

output  int sum_forward value + sum_forward [ 1, O]

Listing 2: A simple LOLA specification which computes the sum of a given input
stream in a backward manner and in a forward manner.

4.1.3 Well-Formedness

In Section 4.1.1, the syntax was restricted to guarantee well-typed specifications.
In this section, another restriction is imposed on the specification in order to have
a unique evaluation.
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Definition 2. Well-Defined Specifications [22]
A well-typed specification is also called well-defined if the evaluation model is
unique for arbitrary input streams of equal length.

Example 3. Well-Definedness

Consider Listing 3, the input value with assumed length N and five outputs are
declared. For this example, we consider each combination of the input with one
output to be an independent specification since well-definedness is a property of
the specification as a whole. We will use 0 < 7 < N as an arbitrary but valid
position of the trace.

o stream_ 1 is well-defined. There is exactly one evaluation model which is
given by: Ogream 1(J) = true < Tyaue(j) < 10.

e self is ill-defined. There is no evaluation model. We can assign self to true
or false but both result in a contradiction.

e cyclic_ 1 and cyclic_2 are both ill-defined. For both of them, there is more
than one evaluation model. oeyqic 1(j) = true and oeyaic 2(j) = true;
Ocyeiic_1(J) = false and ocyaic 2(j) = false.

o stream_ 2 is well-defined. (value < 10 & value >= 10) always evaluates to
false which leads to the unique evaluation model: O'Stream_g( j) = true.

Well-definedness is a powerful semantical restriction on the specification. But, in
order to identify an ill-defined specification it is essential to enumerate all possible
evaluation models for all possible input traces which is very expensive to check.
For instance in Listing 3, we saw that stream_ 2 is well-defined but at a first glance
one might guess that it is ill-defined due to the self reference.

left-associative right-associative

~

x, \, %
_’_’ —_
&
|
—, =
—
< < = #E > >

Figure 5: Operator Precedence, highest at the top.
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input int value

output  bool stream_1 := value < 10

output  bool self := ! self

output  bool cyclic_1 := cyclic_2

output  bool cyclic_2 := cyclic_1

output  bool stream 2 := !( value < 10 & value >= 10 ) | ! stream_2

Listing 3: If we split the specification into five, for each input/output stream pair
then the specifications enumerated by the lines are: well-defined (line: 2, 6) and

ill-defined (line: 3, 4, 5).

To avoid this expensive check, a syntactical restriction is introduced on the
specification called well-formedness. Well-formedness analyzes the so called de-
pendency graph which can be done comparatively cheap. In [22], the authors
proved that well-formedness implies well-definedness.

Definition 3. Dependency Graph [22]

A dependency graph for a given LOLA specification is a directed and weighted
multi-graph G = (V| E). The task of the graph is to capture the temporal depen-
dencies between the streams. Therefore, the vertex set V' consists of all the input
and output streams {si", ... s s ... s} and their temporal dependencies

?Cm? n
are encoded using weights on the edges E. An edge e : (s, s¢*' w) from vertex

7 )
s to s¢t with weight w, respectively e : (s si" w), is contained in the edge
set F iff for some position j, 0;(j) contains a subexpression o (j + w), respectively

T(J + w).

Note that the graph needs to be a multi-graph to represent that an expression
can have several temporal subexpressions with different temporal dependencies to
the same stream. Further, an input stream cannot have outgoing edges since they
are independent. After introducing the notion of a dependency graph, it is possible
to define how we can traverse it. A walk is defined on the graph and properties of
it. With these properties well-formedness is imposed on LOLA specifications. As
a reminder, well-formedness implies well-definedness but is a specification check
on the syntax instead of its semantics.

Definition 4. Walk [22]
A walk on a dependency graph G = (V, E) is a sequence v; — vy — ...Ux_1 Sy
v such that for all & > 0, vy, € V and e; : (v, vpr1,w) € E. A walk is called

closed whenever v; = vi. The total weight of a walk is the sum of all weights along
the walk.
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Definition 5. Well-Formed Specifications [22]
A well-typed specification is also called well-formed if there exists no closed walk
with total weight zero.

Example 4. Average Computation

In Listing 4, we compute the average value of a given input stream. Additionally,
we are interested whether the average keeps increasing along the trace. We use
four output streams for the computation and a trigger condition which notifies
us when we are decreasing. The first stream is called sum and is identical to
the already seen sum_backward from Listing 2. In order to capture the current
position in the trace, i.e. the amount of already given values, we use the output
stream pos. The output stream avg computes the average by dividing the sum by
the current position. Since we use integer streams, the value is floored. Finally
with dec, we are able to identify whether our average decreased, which would
trigger a notification, by comparing the previous avg value with the current avg
value. The corresponding dependency graph is depicted in Figure 6. The stream
dec shows why we require the graph to be a multi-graph. The only closed walks
in the graph are the self-loops on sum and pos. In both cases, their total weight
is non-zero from which we can conclude that the specification is well-formed and,
thus, also well-defined.

input int value

output int sum := sum[-1 , 0] + value
output  int pos := pos[-1, 0] + 1
output int avg := sum / pos

output bool dec := avg < avg[-1,0]

trigger dec

Listing 4: A LOLA specification that computes the average value along the trace.

In [22], it was shown that well-definedness does not always imply well-formedness.
The given counterexample is output bool s := s && !s which is well-defined, i.e. has
a unique evaluation model (os(j) = false, for any position j) but is not well-
formed, i.e. there exists a closed walk with total weight 0 (zero self-loop). The
same holds for Line 6 in Listing 3.
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1

Figure 6: Dependency graph for the specification given in Listing 4.

4.2 Monitoring Algorithm

In this subsection, the algorithm for LOLA online monitoring is presented. Since
the only difference to offline monitoring is the access to the completed trace, the
same algorithm can be applied for offline monitoring.

Let ¢ be a LOLA specification where S = {s ... s™} is the set of inputs,
Sout = {9 ... %} is the set of outputs, and St = {g§st . st} g the
set of constants. Further, let L be the set of all possible literals and 7 = (71, ... 7,)

be an input trace of length N for each defined input stream.

The Fwvaluation Algorithm is given in Algorithm 1. It is based upon two sets
of equations, called stores: the resolved store R and the unresolved store U. All
resolved equations will be contained in R and all unresolved equations will be in
U. An equation is called resolved when it is of the following form.

o 7.(j) =1, where 0 <k<m,0<j< N,andl €L
e 0x(j) =1, where 0 < k<n,0<j< N,andl €L

Otherwise the equation is unresolved.

First, all occurrences of constants are replaced by their literal values. Second,
both stores are initialized and the current position in the trace is set. Then, in Line
6 and 9 it is computed when it is safe to remove resolved equations, i.e. when their
value is not required anymore. This computation is similar for both input streams
and output streams and is based on the maximum lookup of previous values. For

instance, in Listing 4, rem™, ~would evaluate to 0 which indicates that in the
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future this value is not required anymore and, therefore, can safely be removed in
the present. In contrast, rem2“ would return 1 which means that this value has
to be stored for one trace step and, only then, can be removed safely.

The equation evaluation starts in line 12. The upcoming equations are incre-
mentally managed while traversing the trace. In each synchronous step, new input
stream values are added to R and new output stream equations are spawned and
added to U. In Line 20, the equations in U are simplified as much as possible
and, if they turn out to be resolved, they are removed from U and added to R. If
declared, they can trigger a notification. Equation eq is simplifiable, respectively
Simplify(eq) means that at least one of the following rules applies:

e Partial evaluation: true A e ~+ e, e+ 0 ~~ e, and such ...
e Rewriting rules: if true {e;} else {es} ~» €1, and such ...

e Substitution: if o4 (j) respectively 7,(j) occurs in eq and ox(j) =1 € R
respectively 74(j) = | € R then it is substituted with the occurrence [.

Before starting the next equation evaluation round, the unrequired equations are
removed from R using the previously computed rem values.
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Example 5. Evaluation Algorithm Example

To conclude this subsection, the algorithm is illustrated by means of an example
shown in Listing 5. We have one input stream signal with a value range from 0
to 10 and two output streams dec and count. The stream dec checks the signal
whether the value will be decreasing and count captures how often this was the
case. Let the input trace 7ygna be given by (1,3,2,5,4). Table 1 illustrates the
incremental approach of the algorithm, starting with position ¢ = 0 of the trace.
Notice that we abbreviate the equations in R and U by their left hand side. At
the first position, we read the input value 1. The current equation of dec and
count are added to the unresolved store U. Since we are at the first position in the
trace, we have to insert the out-of-bounds values for the equations which contain
past dependencies. Thereafter, we simplify the unresolved equations in U. Since
we do not have any resolved equations, there is nothing to add to the resolved
store R. Therefore, we remove the resolved equations which are irrelevant for
the further evaluation and continue at the next position. At the second position,
we add the new resolved and unresolved equations and try to simplify existing
elements of U, as before. This time, having 7g;gna (1), we can simplify o4..(0) to
false which further results in the simplification of 0oy (0) to 0 and, then, in the
substitution of Gepunt(0) by 0 in oeount(1). At the end of this iteration, we have
to remove three entries from R: Tgigna(1) = 3, 04e(0) = false, and 0puni(0) = 0.
The further evaluation steps work analogously, except that at the last position,
we have to insert the out-of-bounds values for the equations which are referring to
future values, as those cannot exist. Notice that the final count value is 2 which
captures exactly the decrease from position 1 to 2 and 3 to 4.

input int signal

output  bool dec signal > signal[1l, 10]

output int count := count[-1, 0] + if dec {1} else {0}

Listing 5: A LOLA specification that computes how often the input signal is frozen.

Regarding both time and space, the algorithm is linear in the length of the trace
and the size of the specification [22]. Especially for online monitoring, where the
length of the trace is a-priori unknown, this imposes restrictions on the applicabil-
ity. Therefore, in the next subsection, a class of LOLA specifications is presented
which can be efficiently monitored due to a constant bound on the number of
equations in U.
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‘ 7_szgnal ‘ O_dec ‘ Ucount@)

01 | 1> Taignat(1) | 0+ if 04ec(0) {1}else{0}

R = {Tsignal( )}

U = {Jdec(0)7 Ucount(o)}

Simplifiable: oeount(0) = if 04ec(0) {1}telse{0}
R = {Tsignal<0)}

U = {O‘dec(O), Ucount(o)}

Removable: 7g;gna(0)

1|3 | 3> Taignat(2) | Ocount(0) + if 04ec(1) {1}else{0}

R = {Tigna(1)}

U= {Udec(o)y O-count(o)y Jdec(1>7 Ucount<1)}

Simplifiable: 04..(0) =1 > 3 = false, Teount(0) = 0,
Oeount(1) = 0 + if 04e.(1) {1}else{0}

R = {Tsignal<1); Udec(o)a Ucount(o)}

U= {Odec(l)y Ucount(l)}

Removable: Tgignai(1), 0dec(0), Tcount (0)

22 12> Toignat(3) | Ocount(1) + if 04ee(2) {1}else{0}

R = {Tsignai(2) }

U= {O-dec(l)y O-count(]-)a Udec(2>7 Ucount<2)}

Simplifiable: 04e.(1) =3 > 2 = true, oeount(1) = 1,
Ocount(2) = 1 + if 04e.(2) {1}else{0}

R= {Tsignal<2); Udec(l)a Ucount(l)}

U= {O-dec(Q)y Ucount(z)}

Removable: Tgignai(2), 0dec(1), Tcount (1)

3]5 | 5> Toignat(4) | Ocount(2) + if 04ee(3) {1}else{0}

R = A{Tsigna(3)}

U= {Odec(2)7 Ucount(2)7 Udec(3>7 Ucount<3)}

Simplifiable: 04..(2) =2 > 5 = false, Teount(2) = 1,
Ocount(3) = 1 + if 04e.(3) {1}else{0}

R = {Tsignal<3); Udec(Z)a Ucount(2)}

U= {O-dec(S)y Ucount(g)}

Removable: Tgignai(3), 0dec(2), Tcount (2)

44 | 4> 10 = false | ocount(3) + 0

R = {Taigna(4)}

U= {Odec(3)7 Ucount(3)7 Udec(4>7 Ucount<4)}

Simplifiable: 04e.(3) =5 > 4 = true, oeount(3) = 2,
Ucount(4) =2+0=2

R = %Tf;ignal(Zl); Udec(B)a Ucount(3)7 Sigmadec(4)v O count (4)}

U =

Table 1: An algorithmic LOLA evaluation based on Example 1.
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Algorithm 1 LorLA Evaluation Algorithm

Input: Specification p = (S, Sout Seonsty with literal set L,
L: T = (T1,...Ty) with length N

2: Substitute all occurrences of ¢ € St in all s € S°U.

3140 > Current position in the trace.
4: R+ {}

5. U« {}

6: for all s, € S° do > When to remove resolved output equations.
7 rem$" < max{{o| o >0 and si[—o, d] is a subexpression € p} U {0}}
8: end for

9: for all s, € S™ do > When to remove resolved input equations.
10: rem{" < max{{o| o >0 and si[—o, d] is a subexpression € p} U {0}}

11: end for

12: while 7 < N do

13:  wait until 7(7) is available. > Synchronous system step.
14: for all inputs s € S™ do > Insert new input equations.
15: add 7(7) = to R.

16: end for

17: for all outputs s¢** € S do > Insert new output equations.
18: add o (i) = eval(ex) (i) to U.

19: end for

20: while 3 equation eq: 0y (j) = eval(ex)(j) € U which is simplifiable do

21: Simplify(eq) > Apply: partial evaluation, rewriting, and substitution.
22: if resolved(eq) then > Resolved if eq: 7.(j) =l or ox(j) =1, 1 € L.
23: remove eq from U.

24: add eq to R.

25: if marked as trigger then

26: notify()

27: end if

28: end if

29: end while

30: for all equations eq € R do > Remove what is not needed anymore.
31: if eq: 0,(j) =1 and j + rem" < i then

32: remove eq from R

33: end if

34: if eq: 7(j) =l and j + remi™ < i then

35: remove eq from R

36: end if

37 end for

38: 14+—1+1
39: end while




36 4 The Specification Language LOLA

4.3 Efficiently Monitorable Fragment

Consider Listing 6. In this example, some popular linear temporal logic (LTL) op-
erators are encoded into a LOLA specification. The quantifier globally means that
a property, here a, should hold along the whole trace. The quantifier eventually
represents the obligation that the property, here b, has to hold at least once along
the trace. The last operator, the until operator, assures that property a holds
until property b holds. Notice that the given out-of-bounds values determine how
unresolved obligations are resolved at the end of the trace. For instance, currently
at the end of the trace, until requires b to hold once to evaluate to true which
would not be the case if true is used as out-of-bounds value.

In general, the satisfaction of an LTL formula is based on the initial state
whereas LOLA streams can successively compute intermediate results. For in-
stance, assuming the input trace (false,true,true), the LTL operator globally
would return false since the first position does not hold. Whereas in LOLA, glob-
ally would return an ambiguous output evaluation stream (false,true,true). As
an alternative, to facilitate only a single notification if the formula holds, and none
if it does not, one could define a trigger on an additional stream. This stream re-
quires two obligations to hold: first, the LTL operator should evaluate to true and
second, we need to be at the first position. For instance for eventually, we could
use a stream like:
output bool trigger E := (a[-1, true] & 'a[-1, true]) & eventually
In the following, we refrain from this difference.

input bool a

input bool b

output bool globally a & globally[1l, truel
output bool eventually := b | eventually[l, false]

b | (a & until[1, false])

output bool until

Listing 6: A LOLA specification which encodes some of the LTL operators.

In the worst case, all three output streams cannot be monitored efficiently.
Assume the trace 7, contains only true values, then the first globally equation can
be evaluated at the end of the trace at the earliest. The reason for this is that a
partial evaluation is not possible. Only at the end of the trace, we can use the out-
of-bounds value which results in a backward propagation of the resolved equations.
Analogously for eventually, the same holds if only false values are contained in
the trace 7,. Next, the notion of efficiently monitorable specifications is formally
defined and a syntactical characterization is given.
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Definition 6. Efficiently Monitorable Specification

A LoLA specification is efficiently monitorable(EM) if the memory consumption
needed to monitor it is constant in the size of the trace, i.e. there exists a constant
bound for the worst case.

Essentially, efficiently monitorable specifications refer only to past or boundable
future stream evaluations, i.e. streams for which there exists a point in time where
we can predict its evaluate, e.g. future input values.

Definition 7. Syntactical Characterization of an EM Specification
Given a LOLA specification ¢ and its dependency graph G. ¢ is called efficiently
monitorable if G has no closed walk with a positive total weight.

Here, the proof is omitted that the characterization suffices to bound the mem-
ory consumption to a constant in the length of the trace. The proof idea is to
construct a function for each node in G which computes the maximal reference,
i.e. offset, into the future. This maximum cannot be infinite because the graph is
finite and there exists no closed walk.

As mentioned, the examples in Listing 6 are all non-efficiently monitorable
and the characterization covers this due the positive self-loops in its dependency
graph. Fortunately, it is often possible to reformulate non-efficiently monitorable
specifications into efficiently monitorable specifications.

For example, output bool always := a & always[-1, true] is perhaps more
natural and could be used instead of globally. But similar to Listing 2 the position
of the final value changes. Similar, instead of eventually one could use output
bool finally := b | finally[-1, true] to capture that the obligation is al-
ready satisfied.

In fact in [30], a transformation is presented which automatically synthesizes
an efficiently monitorable specification from a boolean-only specification. Since
the synthesized specification may increase in size, and the monitoring algorithm is
linear in both the size of the trace and the specification, one must consider whether
the transformation is worth it. Further, it is shown that if no partial evaluation for
the equations is used, then the converse of presented syntactical characterization
also holds. This implies that there are no positive closed walks in an efficiently
monitorable specification.
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5 Domain-specific LOLA Extensions

In this section, we present the domain-specific LOLA extensions required to im-
prove the applicability in the context of unmanned aircraft. LOLA is a very pow-
erful language and most of the desired properties are expressible as is. However,
especially entangled dependencies between several streams increase the size of the
specification significantly which, in return, decrease the applicability for usage
and performance. Furthermore, LOLA limits the expressiveness of prior knowledge
about the domain which specification engineers often have. In the following, we
highlight the extended syntactical fragments in order to present the extensions in
a concise and understandable way. The complete extended LOLA syntax is listed
in Appendix A.

In Syntax 4, we depict the basic structure of our extensions. Possibilities to
observe and control the behavior of an online monitor as well as the analysis of
offline executions are introduced. Furthermore, we see why prior knowledge of
the domain is useful and can improve efficiency. Additionally, to improve the
reusability and readability, we propose macro definitions. Macros will facilitate
LorA libraries and, by that, allow the extraction of often used LOLA patterns to
an even higher level of abstraction.

(streamDef) (i
(constantDef)
{outputDef)
(observable Behavior)
(knowledge)
(macroDef)

Syntax 4: Extended structure

In the following, we formally introduce the extensions. First, the extensions
to the stream expressions are presented. Second, we show how we improved the
observable monitoring behavior and its controllable behavior. Third, the new
statement operator is shown which uses specified prior knowledge. Finally, we
propose macros to reduce redundant work while writing specifications.

5.1 Stream Expressiveness

One key feature of LOLA is the computation of statistics. In order to enrich this
feature, we extend the supported stream types by double, string, and tuple. Double
values are required quite naturally due to the monitoring of real time systems. The
reason for string support is based on the fact that high-level reasoning is often kept
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humanly readable to understand the process. High-level reasoning applies to both
the system reasoning and the desired specification. The last type which we only
allow for output streams is tuple.

There are two reasons why tuples are interesting. They allow combining
streams to improve the structure of specifications. For instance, when comput-
ing the average over the trace, the sum is an unavoidable byproduct. The other
reason concerns concurrent /distributed LOLA monitoring. Computing the strongly
connected components based on the dependency graph allows generating indepen-
dent LOLA monitors for each of them. In this case, tuples could be used to enrich
the dependency graph to group streams together which do not explicitly depend
on each other according to the dependency graph itself, but should be run on the
same LOLA instance.

Syntax 5 shows that among others the notion of functions is introduced. Note
that types and functions were never explicitly listed in [22]. In fact, we increased
the practical expressiveness and by far not the theoretical. In the consequent
subsections, we present the extensions in detail by motivating and defining them
formally. For the remainder, we extend the set of types T by double, string, and
tuple. Further, the well-typedness and semantics of binary operators are extended
for double types in the natural way. The same holds for the string comparison
'=". We enforce that both operands of a binary operator are of the same type. We
do not offer automatic type conversion. Instead, type conversion is performed via
functions. A specification engineer should not lose that control.

= (literal) | <C (expr) )’ | (unaryOp)
| (binaryOp) | (ifExpr) | (switchEzp)
| (keyword) | (streamAccess) | (functionOp)

(expr) *

Syntax 5: Expressions

5.1.1 Functions

The allowed functions are given in Syntax 6. Most of their semantics are obvious
from their name but to avoid misunderstandings, we formally introduce them next.
We extend the notion of well-typedness and present their semantics. We abbreviate
a tuple entry access similar to trace positions. For instance, (1,2,3)#1 would be
resolved to 2. We do the same for tuple types.
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Definition 8. Well-Typedness Extension: Functions
For well-typedness, we extend the rules from Definition 1 in the following way.

o If €;

o If €;

= f(e;) and f is a function with a single parameter then

If f € {abs,bin_to_int} and e; is of type int then e; is of type int.

If f e {abs, sqrt,log, cos, sin, tan, ceil, floor, round} then e; has to be
of type double and e; is of type double?.

If f € {int} then e; has to be of type double and e; is of type int.

If f € {double} then e; has to be of type int and e; is of type double.
If f € {length} then e; has to be of type string and e; is of type int.
= f(ej,ex) and f is a function with two parameters then

If f € {atan2} then both e; and ej have to be of type double and e; is

of type double.

If f e {dif ference} then both e; and e, have to have the same type,
either double or int and respectively the type of e; is double or int.

If f e {contains, startswith, endswith} then e; and e have to be of
type string and e; is of type bool.

If f € {get} then e; has to be of type tuple, ey of type int, and e; has
the same type as e;#ey,

If f € {combine} then e; and ej have to be of type tuple and e; has
type (e;, ex).

= f(e,...,e,) and f is a function with n € N many parameters then
If f € {max,min} then all parameters have to be of the same type int
or double and e; is of type int or double respectively.

If f € {equals} then all parameters have to be of type string and e; is
of type bool.

If f € {concat} then all parameters have to be type string and e; is of
type string.

If f € {extract} then ey has to be of type tuple and all other parameters
have to be of type int and e; is of type (e1#ea, ... e1#e,).

Definition 9 extends the LOLA semantics by functions. Since functions do not
change the dependency graph, there is no need for updating its definition.

3Note, sqrt(a,b) and log(a,b) abbreviate a” (1/b) respectively log(a)/log(b)
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Definition 9. LOLA Semantic Extension: Functions

We extend the previously introduced function eval which, given an expression and
a position in the trace returns the result of the expression. Again, let e;, e,, and
e. be well-typed subexpressions.

e Number functions:

— eval(abs(e;))(j) = |eval(e)(7)]
— eval(atan2(e;, e,))(7) = atan2(eval(e;)(7), eval(e,)(7))
— eval(dif ference(ey, e.))(7) = |eval(e;)(j) — eval(e,)(7)]

— eval(maz(ey,...,e,))(7) = maz{eval(er)(j),...,eval(e,)(j)}, where
n € N and eq,...,e, are valid subexpressions.

- eval(min(el, —oyen))(j) = min{eval(er)(j), ..., eval(e,)(j)}, where n €
N and ey, ..., e, are valid subexpressions.

)(G) = Veval(e)(j)
(7) = )())
) = cos(eval(er) (7))
) )0

— eval(sqrt(e

— eval(log(e;) log(eval(e,

(
— eval(cos(e))(j
— eval(sin(e)))(j) = sin(eval(e;) (7))
— eval(tan(e))(j) = tan(eval(el)(j))
int(eval(e;)(j)) , if eval(e 1)(j)
— eval(bin_to_int(e))(j) = i(s)tah;zivliicslebinary

— eval(int(e)))(j) = int(eval(e)(5))
— eval(double(e;))(j) = double(eval(e)(j))
) =

(in
(
— eval(ceil(e;))(j) = [eval(e)(7)]
— eval(floor(e)))(j) = eval(e)(7)]
— eval(round(e;))(j) = |(eval(e;)(j)) + 0.5]

e String functions:

— eval(contains(eg, e, ))(7) = eval(e;)(j) is contained in eval(e,)(j)

true  if forall 1<i<n,

— eval(equals(es, ..., e,))(j) = eval(e_1i)(j)=eval(e_i+1)(j)
false , otherwise.
, where n € N and eq,...,e, are valid subexpressions.

— eval(startswith(e;, e, ))(7) = eval(e;)(j) starts with eval(e,)(7)
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— eval(endswith(e;, e,))(j) = eval(e;)(j) ends with eval(e,.)(j)
— eval(concat (e, e,))(j) = eval(e;)(j) concatenated with eval(e,)(7)
— eval(length(e;))(j) = length of eval(e;)(j)

e Tuple functions:

— eval(get(ey, e,))(j) = eval(er)(j)#eval(e,)(5)
— eval(extract(ey, ..., e,))(J) =

(eval(er)(7)#eval(ez)(7), ..., eval(er)(j)F#eval(e,)())

, where n € N and ey, ..., e, are valid subexpressions.

— eval(combine(er, e,))(j) = (eval(er)(5), eval(e,) (7))

(functionOp) = (numberFunction) | (stringFunction) | (tupleOp)
(numberFunction) ::= ‘abs’ ‘( (expr) )’ | ‘difference’ ‘C (expr) ‘,’ (expr) )’

| ‘max’ ‘C (expressions) )’ | ‘min’ ‘C (expressions) ‘)’

| ‘sqrt’ ‘C (expr) [, (doubleLiteral)]')’

| ‘log’ ‘C (expr) [ (doubleLiteral)] *)’

| ‘cos” ‘C (expr) )’ | ‘sin’ ‘C (expr) )’

| ‘tan’ ‘C (expr) )’ | ‘bin_to_int’ ‘C (expr) )’

| ‘int’ ‘C (e:ppr> )’ | ‘double’ ‘(’ (expr) )’

| ‘ceil” ( (eaz ry )’ | ‘floor’ ‘(C (expr) ‘)’

| ‘round’ ‘C’ (expr) )’

‘contains’ ‘C (expr) ¢,” (expr) )’
‘equals’ ‘(’ (expressions) ‘)’

‘startswith’ ‘(" (expr) *,’ (expr) )’
‘endswith’ ‘C (expr) *,” (expr) )’

(3]

‘concat’ ‘(" (expr) ‘,’ (expr) ‘)’
‘length’ ‘(" (expr) ‘)’

(stringFunction)

(tupleOp) ‘get’ *C (expr) ‘,’ (intLiteral) *)’
‘extract’ ‘( (expr) *,’ (intLiteral) [*,” (intLiteral)]* )’

‘combine’ ‘( (expr) *,” (expr) )’

Syntax 6: Functions
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The following example illustrates how we can use functions to improve the
conciseness of our specification.

Example 6. Maximal Velocity

Consider Listing 7, let vel wvert and wvel hori be input streams indicating the
vertical, respectively horizontal, velocity of an UAV. A negative vertical velocity
indicates that the UAV is descending and a negative horizontal velocity represents
that the UAV is flying backwards. An interesting property of the system, both
offline and online, might be the maximal velocity independent of the direction.
Using the max function on the absolute values of the inputs, it is straight forward
to express this property. Note that we require the previous m_wvel to carry the
maximal value along the trace. Otherwise, the output stream would only represent
the local maximum in each position in the trace. Further, without using the mazx
function, we had to use several if-statements, increasing the size of the specification
and their error susceptibility. In Section 5.4, we propose a generalization of this
idea.

input double vel_vert, velo_hori

output double m_vel := max( abs(vel_vert), abs(velo_hori), m_vel[-1, 0.0])

Listing 7: A LOLA specification that calculates the maximal velocity.

5.1.2 Keywords

The next extension to LOLA we introduce are keywords. We currently allow
position (current position in the trace), last_position (length of the trace),
int_max (maximal integer value), int_min (minimal integer value), double_max
(maximal double value), double_min (minimal double value). position is often
used for statistical computations, e.g. average, and last_position is interesting
for offline monitoring since the knowledge about the last position is easy to obtain
and useful for specifications, e.g. in the middle of the trace some property should
hold. Note that in Listing 8, a trigger might be raised in the middle of the trace
during offline monitoring, whereas in online monitoring, the earliest notification
will be given after termination. Of course, other keywords are possible, but we
restricted ourselves to this specific set since others did not increase the expres-
siveness. Instead, much more the possibilities to express the same property. We
formally extend well-typedness and the semantics of keywords in the following.
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input int values

values + sum[-1, O]

double(sum) / (double(position+1))

output int sum

output double average

output bool mid_exceed (position=(last_position / 2)) & (average>100.0)

trigger mid_exceed

Listing 8: A LOLA specification that checks that average in the middle of trace is
greater than 100.

Definition 10. Well-Typedness Extension: Keywords
For well-typedness, we extend the rules from Definition 1 in the following way.

e If e; = position then e; is of type int.

If e; = last_position then e; is of type int.

If e; = int_max then e; is of type int.

If e; = int_min then e; is of type int.

If e; = double _max then e; is of type double.

If e; = double _min then e; is of type double.

Definition 11. LOLA Semantic Extension: Keywords

We extend the previously introduced function eval which, given an expression and
a position j in the trace returns the result of the expression. Let N be the length
of the trace.

e cval(position)(j) = j

e cval(last _position)(j) = N — 1

e cval(int_max)(j) = largest integer value

e cval(int_min)(j) = smallest integer value

e cval(double _max)(j) = largest double value

e cval(double _min)(j) = smallest double value
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5.1.3 Absolute Access

So far, we only allow relative stream accesses. The relative offset operator accesses
the previous/future value of a stream depending on the current position in the
trace. In this subsection, we introduce and motivate the use of the absolute offset
operator.

Imagine, we only have access to the current absolute height hgt (above sea
level) via an input stream. The allowed flight height of UAV missions can be
relatively restricted, e.g. do not raise or descent by more than 5 meters. Such
relative restrictions require capturing the initial state of the UAV to refer to it
later in the flight analysis. Furthermore, since we could start a flight in the valley
and the other time in the mountains it is not possible to assume that the initial
state remains the same.

There are two obvious ways of capturing this initial state: we could define
constants to specify the current state. This would yield efficient monitoring but
would raise the problem, that whenever we change the location we had to adjust
each of these possibly many constants. Further, there would never be a specifica-
tion which is proven/assumed correct since every change in the specification might
introduce new errors. The other approach is storing the initial state using streams.
Listing 9 shows this approach. Using the keyword position, we can initialize the
init_hgt stream with the initial height. Afterwards, this height can be propagated
over the entire trace via the offset operator. Notice that this approach involves
re-evaluating a stream which actually represents a constant stream apart from the
initialization of the first position.

const double bound := 5.0

input double hgt

output double init_hgt := if position = O { hgt } else { init_hgt[-1, 0.0] }
output bool exceeds := difference(init_hgt, hgt) > bound

trigger exceeds

Listing 9: A LOLA specification that calculates the current relative height using
an auxiliary stream.

In order to interpolate between constant and dynamic values, we introduce the
absolute offset operator. Its syntax is given in Syntax 7.

Similar to the relative offset operator, the well-typedness follows from the fact
that the type of stream itself and the type of its out-of-bounds value have to match.
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(streamAccess) ::= (identifier) [ (relativePos) | (absolutePos) |
(absolutePos) = ‘#’ (offset) | ‘# (window)

{offset) = [ (offsetValues) “,” (0obV) ‘1’

(window) = ‘[(offsetValues)‘. .’ {offset Values)*, {0ob V)", (binaryOp)‘]’
(offsetValues)y = ( (intLiteral) | ‘last_position’ )

Syntax 7: Absolute Offset Operator

Definition 12. Well-Typedness Extension: Absolute Offset Operator
For well-typedness, we extend the rules from Definition 1 in the following way.

o If e; = e; # [n, [] then e; and e; have to be of the same type t; and, further,
[ has to be either a literal or a constant of type t;. Additionally, n is either
a positive integer or a keyword representing an integer greater or equal zero.

The semantics of the absolute offset operator is stated in the following defini-
tion.

Definition 13. LOLA Semantic Extension: Absolute Offset Operator
We extend the previously introduced function ewval which, given an expression and
a position in the trace returns the result of the expression as follows:

[ if 0 < [ ) < N
eval(e(p, oobv]) () = 4 ° (e)(p) _ sif0<eva (P)(J) <
eval(oobv)(j) ,otherwise
, where N is the length of the trace, j is any position, p € N, and oobv represents
the out-of-bounds value.

Notice that specifying values at the “end” of the trace is highly inefficient
for online monitoring. Observe further that Definition 3 sufficiently captures the
temporal dependency of absolute offsets, i.e. we do not require any extensions to
the graph to check well-formedness.

Listing 10 shows that we are now able to specify the previous property concisely
and efficiently. There are neither extra constants nor extra streams involved which
store the initial state values.
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const double bound := 5.0
input double hgt
output bool exceeds := difference(hgt#[0, 0.0], hgt) > bound

trigger exceeds

Listing 10: A LOLA specification calculates the current relative height without an
auxiliary stream.

In the context of offset operators, we further introduce windowing for both the
relative and the absolute offset operator. The windowing: a [i..j, oobv, o] is
an abbreviation for a[i, oobv] o---0 a[j, oobv] wherei,j €N, i < j,aisa
stream and o is an available binary operator. Binary computations are unfolded
using the operator precedence whereas binary comparisons are performed pairwise.

5.1.4 Frozen Stream Values

In the previous subsection, we have introduced the notion of windowing for both
relative and absolute offsets. This is very useful when checking whether a value
along a trace is frozen, i.e. does not change. Consider Listing 11 and assume an
arbitrary sensor for which it is very unlikely that the value remains the same. In
the listing, we use normal windowing with a window size of 3. Unfortunately, this
check is highly inefficient since the windows overlap and intermediate values are
computed all over again although they do not change. For instance in the first
position, the values sensor#1, sensor#2, and sensor#3 are compared in the next
step we compare sensor#2, sensor#3, and sensor#4.

const int w_size 3= 8
input double sensor

output bool is_frozen := sensor[l..w_size, false, =]

trigger is_frozen

Listing 11: A LOLA specification that checks whether the sensor is frozen, using a
normal window.

To overcome this limitation, we introduce frozen offsets and frozen windows
for the relative offset operator?. Syntax 8 depicts the extensions.

4 Absolute offsets are frozen by design.
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(streamAccess) = (identifier) | (relativePos) | (absolutePos) |
(relativePos) = (offset) | (frozenOffset)

| (window) | (frozenWindow)
(frozenOffset) = [ (offsetValues) ¢,” (oobV) *,” (frozenTime) ‘1’
(frozenWindow) = ‘[’ (offsetValues) ‘.." (offsetValues) *,’

(00bV') *," (binaryOp) ,” (frozenTime) ‘1’

(frozenTime) = (identifier) | (literal)

Syntax 8: Frozen Offsets and Frozen Windows

The intuition is to express the property of is_frozen by a window which takes
single large discrete shifts instead of several small shifts, in each subsequent posi-
tion. The additional parameter and last parameter in brackets indicates how long
a value is frozen. With the new operators, we can write the formula as:
output bool is_frozen := sensor[l..w_size, false, =, w_size-1]
which compares the first three positions, i.e. we evaluate whether sensor#1, sen-
sor#2, and sensor#3 are the same only at the fourth position in the trace, we
shift the window to check the equality for sensor#3, sensor#j, sensor#5 and
so on. An algorithm can make use of this structure, which improves the perfor-
mance of the monitor. Note that the frozen offsets and frozen windows differ from
the standard relative offset operator only by the extra last value representing the
frozenTime.

Definition 14. Well-Typedness Extension: Frozen Offset and Frozen Window
For well-typedness, we extend the rules in Definition 1 as follows:

o If ¢, = ¢; [n, [, ft] then e; and e; have to be of the same type t; and,
further, [ has to be either a literal or a constant of type t;. Additionally,
each n and ft are either a positive integer or a keyword, or respectively a
constant representing an integer.

A frozen window a [i..j, oobv, o, ft] is an abbreviation for:

ali, oobv, ft] o---0 al[j, oobv, ft] where i,j € N, i < j, a is a stream
and o is an available binary operator. Binary computations are unfolded using the
operator precedence whereas binary comparisons are performed pairwise.
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Definition 15. LOLA Semantic Extension: Frozen Offset and Frozen Window
We extend the previously introduced function eval which, given an expression and
a position in the trace returns the result of the expression. Let p be a keyword or
a literal representing an integer, oobv a constant or a literal representing the out-
of-bounds value, and ft a constant or a literal representing an integer interpreted
as the frozen time. Further, let 7 be the current position in the trace with total
length N and let frozenDuration be a function which takes j and ft and computes
the duration a value is still frozen, i.e. j — (7 % (ft + 1)), then:

e if frozenDuration(j, ft) = 0:

eval(e[p, oobu, f))(j) = {Zzzggiiii;]ival(m(j)) aftgefwei::l(p)(j) <N

e otherwise:
eval(e[p, oobv, ft])(j) = eval(elp, oobv, ft])(j — 1)

Observe that the given definition does not distinguish between out-of-bounds val-
ues and actual values when it comes to deciding whether to take the frozen value or
the current new value. Further, Definition 3 suffices again to capture the temporal
dependency, i.e. well-formedness can still be checked using the dependency graph.

5.2 Prior Knowledge

Domain experts have some kind of prior knowledge of the domain or the process
itself. For instance, the expert knows that the fuel tank only decreases during a
mission. Process knowledge might involve insight of the event sequence used by a
mission manager, e.g. a mission starts with a TAKEOFF event and ends with a
LAND event. Syntax 9 shows the expressible knowledge. Using the dependency
graph, it is possible to automatically derive some of the expressible knowledge.
Below, we present the ones which can be derived automatically and indicate how
to do so:

e past_only: A given stream s can be evaluated independent of the future.
- There is no walk starting from s containing a positive weighted edge.

e future_only: A given stream s can be evaluated independent of the past.
- There is no walk starting from s containing a negative weighted edge.

e efficient_fragment: A given specification is efficiently monitorable.
- Using Definition 6.

e inefficient_fragment: A given specification is not efficiently monitorable.
- Using Definition 6.
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e evaluation_order: The order in which the outputs are evaluated.
- Use the dependency graph to schedule the outputs.

At first glance, the dual operators might seem unnecessary, e.g. future_only, but
we want to remind here that offline monitoring allows evaluating the trace back-
wards where this is useful. The remaining knowledge operators are monotone_inc
and monotone_dec. The operator monotone_inc and monotone_dec state that the
values of a stream are monotonically increasing or decreasing, respectively. It is
not possible to derive this knowledge automatically since the behavior of an input
stream is unknown to a LOLA monitor.

(priorKnowledge) = (streamKnowledge) | (specificationKnowledge)

‘monotone_inc’ (identifier list)
‘monotone_dec’ (identifier list)
‘past_only’ (identifier list)
‘future_only’ (identifier list)

(streamKnowledge)

(specificationKnowledge) — ‘efficient_fragment’
| ‘inefficient_fragment’
|

‘evaluation_order’ (identifier list)

Syntax 9: Prior Knowledge

We argue that this knowledge can be used by operators to improve the perfor-
mance, especially in the case of future dependencies. Syntax 10 gives the structure
of such a new switch statement operator which makes use of prior stream knowl-
edge. The keyword position is by default set to monotonically increasing.

Example 7. Flight Modes

Consider Listing 12. The flight commands during a mission are provided via the
integer stream enum_ cmd and the stream remote control indicates whether the
system changes to remote (assumed once). In the example, we abstract from the
explicit properties checked in the case blocks. However, we assume that depending
on the current state of the system the property can be split into three: initialization
phase(0), flight phase(1), and landing phase(2). This grouping is done via the
monotonically increasing output cnd which is used as the switch condition in
check. The stream cnd has an additional group(3) which distinguishes whether
the system changes to remote control within the next three steps.
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Informally, the switch statement encodes an acyclic state machine whenever
the condition is flagged as monotone inc or monotone_dec. The states of the
machine are given by the case blocks and the initial state is assumed to be the
first case block. The switch operator makes use of the fact that whenever it
descends to a higher case block (the default block is always the highest) it knows
by monotone_increasing that it will never check lower case blocks again®. This is
not only useful when we splitting up the property into many cases but also when
the switch condition depends on the future like in the example. In such a case, we
only need to update the interesting cases and do not keep track of the others.

input int enum_cmd

input bool remote_control

output int cnd := if remote_control[0..3,false,|,3] | cnd[-1,0] = 3
{3} else { if enum_cmd <= 0 {0} elif enum_cmd >= 10 {2} else {1} 1}

monotone_inc cnd

output bool check := switch cnd {
case 0 { ...xinitialization* ... }
case 1 { ...xflight commands*... }
case 2 { ...*xlanding*
default{ false }
}

trigger check

Listing 12: An abstracted LOLA specification with a switch which uses a monotone
increasing stream as condition.

In the remainder of this subsection, we formally define the switch operator.

Definition 16. Well-Typedness Extension: Switch Operator

Let I € N, ecnd, €cy5 - - -, €, and eq be well-typed subexpressions and ¢y, ..., ¢ be
distinct literals. For well-typedness, we extend the rules from Definition 1 in the
following way.

o If ¢; = switch eqa{case c1{e., }...case ¢{e,} default {e4}} then eqnq, ci,
.., and ¢ have to be of the same type and e.,, ..., e,, and e; have to be

of the same type, finally e; is of type ey.
Additionally, if e.,q represents a stream with or without an offset then when-
ever this stream is flagged as monotonically increasing: ¢y, ..., ¢ have to be
ordered increasingly respectively decreasingly for monotonically decreasing.

5Note that we enforce that the case blocks are ordered.
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The order of integers and doubles is given by <, strings are ordered lexi-
cographically, true is greater than false, and tuples are ordered by pairwise
recursively comparing their entries starting with position zero.

Definition 17. LOLA Semantic Extension: Switch Operator

We extend the previously introduced function eval which given an expression and
a position in the trace returns the result of the expression. Let state be a variable.
This variable captures the case block to which the latest condition (relative to the
trace) evaluated to, initially unde fined. If the switch condition refers to a stream
which is monotonically increasing or decreasing then state is set to the first case
block if it exists otherwise to the default block.

e if state is undefined:
eval( switch eqq{ case ci{e1}... case ¢{e.} default {es}})())

eval(er)(y) . if eval(ecma)(j) = 1
eval(ey,)(j) ,if eval(eqna)(j) = a
eval(eq)(j) ,otherwise

e clse:

1. eval(switch ecpa{case csiate{€state} - - - case c{e., } default {e,}})(4)

eval(esmte> (]) ) lf eval(ecnd> (]) = Cstate

eval(ee,)(7) if eval(ecna)(j) = ¢
eval(eq)(7) , otherwise

2. If condition is monotonically increasing and Cgqqe is smaller than eval(eqnq)(7)

according to the case order then change state to the current case/default
block, respectively cgaze is greater than eval(eq,q)(j) for a monotonically
decreasing condition.

Well-typedness assures that whenever we set state to a case/default block, we
never check previous cases again. Additionally, considering well-formedness, since
the switch operator does not change the temporal dependencies, we do not have
to adjust anything.
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(switchEzpr) n= ‘switch’ (expr) {’ (cases) (default) ‘¥’

(cases) €
‘case’ (literal) ‘{’ (expr) ‘¥

‘case’ (literal) ‘{’ (expr) ‘¥ (cases)

(default) = ‘default’ ‘{’ (expr) ‘¥
Syntax 10: Switch Statement

5.3 Observable Monitoring Behavior

In this section, we improve the interface between the user and LOLA. We extend
the notifications a user receives, allow to generate new offline logs, and grant
control over the LOLA evaluation. Syntax 11 contains the syntactical extensions.
The overall order of the observable monitor behaviors evaluation is: 1.) Online
Behavior, 2.) Offline Behavior, 3.) Control Behavior.

5.3.1 Online Feedback

Whenever LOLA is running (online), triggers are the only possibility to give feed-
back on the current trace evaluation, i.e. whether an error occurred or an interest-
ing threshold is exceeded. Previously, we did not mention the details of triggers
and, in fact, there exist different interpretations. In [22|, a trigger is a special
kind of a boolean stream, whereas the old implementation presented in Section
4, interprets them as a flag on a boolean stream. We decided to use the latter.
We allow multiple flags on a stream to facilitate several different triggers on a
single stream. Furthermore, it is possible to declare a trigger on an input stream
without an additional stream simulating its value. Since we are using flags further
modifications to the stream are not expressible anymore. The syntax of a trigger
consists of three parts: a kind, a well-typed condition, and an optional message.
The condition is either a valid stream s € S or a comparison between a stream
s € S and a literal [ € L. We call the condition well-typed whenever the kind is
print, s is a boolean stream, or the comparison is well-typed. We give its formal
semantics in Definition 18.
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(observableBehavior) ::= (onlineBehavior) |[‘with’ (stringLiteral) |

| (offlineBehavior) ‘at’ (location)

| (controlCommands) | ‘with’ (stringLiteral) |
{onlineBehavior) = ‘trigger’ (condition)

| ‘trigger_once’ (condition)

| ‘trigger_change’ (condition)

\ (identifier)

| ‘snapshot’ (condition)
(offline Behavior) = ‘filter’ (identifier list) ‘if’ (condition)

| ‘as’ (identifier list) ‘if’ (condition)

(identifier list)

{controlCommands) = (condition)

| (condition)

| (condition)
(condition) = (identifier) [ (comparison) (literal) |

Syntax 11: Observable Behavior
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Definition 18. LoLA Semantic Extension: Online Behavior

Given the evaluation function eval, the current position in the trace j, and a de-
clared observable online behavior:

obs_kind condition message, where obs_kind € { trigger, trigger_once,
trigger_change, print, snapshot} and message is an arbitrary string. Ad-
ditionally, let s € S be the stream referred in the condition, eval cnd be the
current condition evaluation, i.e. eval(condition)(j), and let last obs be the value
of the condition evaluation which results in the last notification (i.e. prior to j),
initially set to undefined. Furthermore, let streamuvalue be a function which takes
a stream and prints its current value, i.e. undefined if it cannot be resolved, yet.
Then, we define its semantics as follows:

e obs_kind is trigger:
if eval cnd holds

then notify user by: streamvalue(s) and print(message).

e obs_kind is trigger_once:
if eval cnd holds and last obs is undefined
then notify user by: streamvalue(s) and print(message).
and set last _obs to eval cnd.

e obs_kind is trigger_change:
if either last obs is undefined and eval cnd holds
or last obs is defined and eval cnd unequal to last obs
then notify user by: streamvalue(s) and print(message).
and set last _obs to eval cnd.

e obs_kind is print:
if true
then notify user by: streamvalue(s) and print(message).

e obs_kind is snapshot:
if eval cnd holds
then notify user by: Vs’ € S, streamvalue(s’) and print(message).

trigger, trigger_once, trigger_change, print can be used to give the user
feedback about a single stream. snapshot offers the user online feedback about
the current state of LOLA, i.e. current statistical measurements.

Example 8. Observable online monitor behaviors

Figure 7 illustrates the different granularities of user feedback available. The in-
put stream check is used as condition for the listed online behaviors below. The
notification print reports the complete stream whereas a trigger reports only the
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input bool check m

trigger check
trigger once check .

trigger change check . . . .

print check

snapshot check

Figure 7: We specify all kinds of online feedback on the given boolean input stream
check. For each online feedback, we depict its behavior whenever its condition
changes.

positions in the trace where the stream evaluates to true. In case we raise too
many triggers, trigger change can be used to notify the entrance into a trace
sequence where the condition holds at its exit. trigger once signals once the con-
dition holds since this might already suffice. Note that there is a difference in the
feedback between a trigger and a snapshot. The snapshot is quantified over all the
existing output streams whereas a trigger is dedicated to a single stream.

5.3.2 Offline Feedback

In offline analysis, where engineers want to deepen their understanding on how the
sensor inputs/outputs evolve over time and which properties hold, statistical mea-
surements and error detection are not the only features LOLA offers. Currently,
engineers use plots for identifying errors by manual inspection and for understand-
ing how an occurring error can be fixed. Arguing over several such plots to identify
an error is hard, especially for long traces where the error occurs only in a combi-
nation of several plots in different local timestamps. The properties LOLA streams
offer might not suffice to give enough information about the problem source but,
still, LOLA is able to identify the fault. We augmented LOLA by tagging which can
be used to produce a new data file based on stream values. For instance, this new
file can be a filtered version of the original data and can later be used by engineers
to plot this filtered data only. The Syntax 11 (above) of tagging involves a well-
typed boolean filter condition and lists of identifiers which represent past only
streams. We give its semantics in Definition 19.
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Definition 19. LoLA Semantic Extension: Offline Behavior

Given the evaluation function eval, the current position in the trace j, and a de-
clared observable offline monitor behavior obs, let cnd be the condition used to
filter the data and S be the set of all streams. Furthermore, let s; € S, ..., s, € S
and write be a function which takes a list of evaluated streams, a list of the corre-

sponding names, and writes their current values to a location . Spew,, ..., Snew, are
arbitrary but pairwise distinct new stream-names. Then, we define the semantics
of tag as Spewys s Snew, 1if cnd with sq,...s, at [ as follows

if eval(cnd)(7) then write(eval(s1)(7), Snew,, 1) - - - write(eval(s,)(7), Snew, )

The other kind of offline behavior we allow is filtering which is a special case of
tagging. Is is defined as follows:

filter sq,...,s, if cnd at [ =

tag as si,...,8, if cnd with sp,..,s, at [

Example 9. Filtering of data exceeding a given bound

Consider Listing 13. We receive the current state, velocity, and the commanded
acceleration. Assume the system can be in a state where it has to wait for further
commands. This state requires that there is no commanded acceleration and the
velocity is close to zero. In post flight analysis, each input stream is individually
plotted and an engineer has to manually inspect these plots to find violations.
This task is difficult, since a violation is based on values of different plots, which
might be temporally shifted. Therefore, especially, entangled errors are hard to
find and are often overlooked. LOLA can be used in such cases to directly identify
the violation if its properties are known, otherwise tagging facilitates to narrow
down the failure point by filtering the trace. In this example, we do not only filter
the data but also enriched it by the average acceleration and renamed the new
columns.

input string state
input double vel, acc
output double avg_acc := switch position < 2

{ case false { 0.0 } default { acc[-2..0,0.0,+,3] / 3.0 }
output bool tag_cnd := state = "WaitCmd" & avg_acc > 0.0 & abs(vel) < 1.0
tag as cur_state, cur_vel, cur_acc, avg_acc if tag_cnd

with state, vel, acc, avg_acc at "Desktop"

Listing 13: A LOLA specification that uses tagging for invalid command executions.
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5.3.3 Control Commands

Simulating flights and testing in general is a very time intensive task. Simulation
can run for hours and is only aborted by unsatisfied assertions in the code. Extend-
ing LOLA by commands allows to define more sophisticated properties based on
which a test or a simulation can be aborted. As before, commands are interpreted
as flags on streams this time each stream can only be flagged by a single command.
A command requires a boolean condition, when to execute the command, and al-
lows an optional message. We support three different types of controls which are
executed whenever their condition holds:

e exit: Terminates the LOLA application.
e pause: Pauses the LOLA application.
e reset: Resets the LOLA streams to their initial state.

The order in which we execute the commands is: 1.) exit, 2.) pause, 3.) reset.
We chose this order because we think that exit might be urgent in case a monitor
hinders the system to keep up its pace which might harm the safety guarantees of
the system. The reason to arrange pause before reset is based on the fact that
pause is reversible compared to reset. Controls allow LOLA to be controlled via
input streams. As an example, consider Listing 14.

input bool stop_lola
output int current_pos := position

exit stop_lola

Listing 14: A LOLA specification that aborts its execution in case of a stop signal.

5.4 Macro Proposal

In this subsection, we motivate why we propose macros as an additional extension.
The proposed syntax is given in Syntax 12. There are two main reason why we
think macros are useful. First, they allow to encapsulate common used LOLA pat-
terns in specifications and, second, bloated constructs can be further abstracted
to reuse them in an simpler way.

Introducing new LoOLA functions
LoOLA supports a lot of basic functions. In Listing 15, we demonstrate the computa-
tion of the distance between two points in a three dimensional space using macros.
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(macroDef) = ‘macro’ (identifier) ‘C (typed_parameterList)‘)’
{" (macroBody) ‘¥’

(typed_ parameterList) = €

| ‘stream’ (type) (identifier)

| ‘expression’ (expr)

| (type) (identifier)

| (type) (identifiery *,” (typed_parameterList)

(macroBody) = € | (macroBody) (lola-format)
Syntax 12: Macros

Since each domain often requires some common computations, macros are a simple
way to introduce new functions to LOLA. The current LOLA implementation al-
lows to spread its specifications over many specification files. Therefore, a common
LoOLA library with new domain-specific functions can be established.

macro distance_3D ( double x_1, double y_1, double z_1,
double x_2, double y_2, double z_2 )

sqre( (x_1 - x.2)°2 + (y_1 - y_2)°2 + (z_1 - z_2)"2 )

input double x,y,z,r,s,t

output double point_distance := distance_3d(x,y,z,r,s,t)

Listing 15: A LOLA specification that computes the distance between two points
in a three dimensional space.

Freezing a stream evaluation

Previously, we introduced freezing offsets and windows. Makros can be used to
extend this principle to a complete stream evaluation. In Listing 16, we depict
the idea. Note that it is possible to encode freezing offsets and windows in this
fashion. However, we are restricted by the parameter types. We have to specify a
new macro for each possible type which is infeasible having tuples. Unfortunately,
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in this example, we suffer from the same restriction. However, in our experience the
common types, i.e. integer, double, and string, occur most frequently. A solution
might be to remove the obligation of types in the parameters but then static type
checking of the macros is not possible anymore.

macro freezeStreamValue_int (expression then_expr, expression else_expr ,

int freezeTime)

if position % (freezeTime+1l) = O { then_expr } else { else_expr }
}
input double value

output double check := freezeStreamValue_int(sqrt(value), check[-1,0.0], 3)

Listing 16: A LOLA specification that checks whether the sensor is frozen using a
normal window.

Abstract LOLA specifications

Macros are also very useful to simplify common LOLA properties in specifications.
For instance, many safety properties involve a bound which should never be ex-
ceeded. In Listing 17, we show how to specify bound checks and the common
average statistics. In the example, we generate an output stream avg wvalue and
an output stream check bound using macros.

macro boundcheck_double ( stream double s, stream double v, double bound)
{ output bool s := v < bound 1}
macro average_double ( stream double s_out, stream double s_in )
{
output (int, double) s_out := ( get( s_out[-1,(0,0.0)] , 0) + s_in s
get( s_out , 0 ) / double(position+1) )
}
input double value
boundcheck_double( check_bnd, value, 10.0 )
trigger check_bnd

average_double( avg_value, value )

Listing 17: A LOLA specification that uses macros to specify streams.



1

2

3

5 Domain-specific LOLA Extensions 61

5.5 Summary

In this section, we introduced the domain-specific LOLA extensions, one part of
the main contribution of this thesis. We presented the applicable core functions,
introduced keywords, and extended possible stream accesses. For the latter we
are able to freeze a value for a given time to reduce the computation overhead.
Furthermore, we do not only allow to access a relative stream position but, also, an
absolute position. Using these features, we avoided auxiliary streams to distinguish
between different phases in the trace, e.g. initial values. The resulting specifications
are more compact and efficient.

Using the knowledge of domain experts, it is possible to improve the perfor-
mance of LOLA. Prior knowledge over a stream behaviors can be specified. New
operators may make use of this to improve the performance and memory consump-
tion. As a first example of such an operator, we presented the switch statement.

In order to improve the usage, specifically the feedback to the user, we extended
the online behavior, e.g. triggers, to give feedback at different levels of granularity.
Furthermore, we used tagging and filtering to generate a new data set based on
the avaible one. Control commands were introduced to express criteria where a
LoLA monitor should pause, reset, or even exit its evaluation.

In the last section, we proposed macros and gave motivating examples why
their usage might be beneficial. A future extension, not mentioned before, are the
introduction of sets and lists. In the next section, based on specifications, we see
why lists are useful. The idea of sets is to group streams with the same properties
together. By unfolding this set, similar the window offset unfolding, we can specify
a property once for all streams in the set. The idea is depicted below.

input int a, b, c
const set all_inputs := {a, b, c}

output bool bound_check := forall i in all_inputs, i < 20
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6 LOLA in Practice

In this section, we present the application of LOLA in practice by means of exper-
imental results. We use LOLA for both offline and online monitoring. The specifi-
cations are constructed based on interviews conducted with the involved working
groups. We chose analyzing the system in a bottom-up manner. Detecting erro-
neous behaviors in lower reasoning stages, e.g. sensor fusion, increases the integrity
and robustness of the system. Otherwise, high-level reasoning, e.g. planning, might
try to solve these problems due to false correctness assumptions. Considering the
LOLA integration into the development stages, we decided to follow the presented
stages of verification and validation in Section 3.1.5. In Section 6.1, we show the
attained specification. Afterwards, the monitor online integration is presented. In
Section 6.3, we explain log file analysis. In Section 6.4, we experiment with SiLL
simulations and with HiLL simulations. Finally, the reoccurring typed of properties
are summarized in Section 6.5.

6.1 Specifications

For each group (Section sec:involvedWorkingGroups), we list and explore the at-
tained specifications. In many of them, we see reoccurring properties, e.g. fre-
quency checks. Since these specifications are used in the experiments, we retain
them, to give a better impression of the monitoring workload. Keep in mind that
the following specifications are monitorable offline as well as online. They will be
used to evaluate the impact of the monitor on the overall performance.
Especially, the first specifications are of an analytical nature, where the objec-
tive is to determine the boundary values. In order to support this kind of spec-
ification, the implementation delivers the last value of each stream at the end of
the trace similar to an implicit snapshot. We provide the number of input streams
available in the respective log file as comment in the first line of each specification
some of them are unused by the specification but passed to the monitor anyways.
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Sensor Fusion and Environment Perception

e Magnetometer:

A sensor has a predefined frequency with which it delivers values. If the
sensor is valid, this frequency is fixed and should only vary slightly. Inte-
grating over a too small time interval or a too large interval, can have severe
outcomes. In Listing 18, from Line 5 to 6, we compute the frequency, i.e. the
difference in time between two consecutive time values. Additionally, in
Line 4, we calculate the current flight time. Note that position is by default
monotonically increasing. Therefore, after the second position, we enter the
default case only. In order to compute the current time, we receive two time
offsets. The input time_ s is an absolute offset in seconds and time ms is an
relative offset on time s in microseconds. Given the frequency, we compute
its average in Line 9. We have to account the double occurrence of the first
frequency in the devisor (position 0 and 1). We chose this approach because
it avoids division by zero which otherwise had to be checked.

Additionally, in Line 11 to 13, we calculate the maximum jump of the mag-
netic field vector. Ideally, this maximum should be close to zero. We could
define a notification in case of a violation:

trigger change_max < 1.0

//Amount of input streams in the experiments: 5

input double x, y, z, time_s, time_ms

output double time := time_s + time_ms / 1000000.0

output double flight_time := time - time#[0,0.0]

output double frequency := switch position{
case 0 { 1.0 / ( time[1,0.0] - time ) }
default { 1.0 / ( time - time[-1,0.0] ) } }

]

output double freq_sum := freq_sum[-1, 0.0] + frequency

output double freq_avg := freq_sum / double(position+1)

output double euclidian_norm := sqrt( x°2.0 + y~2.0 + z~2.0 )
output double euc_change := euclidian_norm - euclidian_norm[-1,0.0]

output double change_max := max( euc_change,change_max[-1,double_min] )

Listing 18: The specification used for the mgn output.log.
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e Global Positioning System

Two log files are used to capture the behavior of the GPS sensor: one for the
velocity and the other for the position.

Listing 19 is used for the velocity GPS file. From Line 5 to 11, similar to
Listing 18, we compute the average frequency, but, additionally, we capture
the maximal and minimal frequency. The next two outputs do the same
for vertical and horizontal speed, respectively. The input stream sol_age is
the differential age of the solution status. Since new values are expected,
this value should always be close to zero. In Line 16, we get a notification
whenever we enter and leave such a region. The input trk_gnd_in_ bound
checks that the track over ground, the motion direction with respect to north,
is a valid degree. The values of trk_gnd_min and trk_gnd_max show only
slight deviations when flying in the same direction.

//Amount of input streams in the experiments: 9

input double sol_age, hor_spd, trk_gnd, vert_spd, time_s, time_ms
output double time := time_s + time_ms / 1000000.0
output double flight_time := time - time#[0,0.0]

output double frequency := switch position{

output double freq_sum :

output double freq_avg :

case 0 { 1.0 / ( time[1,0.0] - time ) }
default { 1.0 / ( time - time[-1,0.0] ) } }
freq_sum[-1, 0.0] + frequency

freq_sum / double(position+1)

output double freq_max := max( frequency, freq_max[-1,double_min] )

output double freq_min :

min( frequency, freq_min[-1,double_max] )

output double hor_spd_max := max( hor_spd, hor_spd_max [-1,0.0] )

output double vert_spd_max := max( vert_spd, vert_spd_max[-1,0.0] )

trigger_change sol_age <= 0.5 with "Sol age should remain zero!"

output bool trk_gnd_in_bound := if trk_gnd >= 0.0 & trk_gnd <= 360.0

{ trk_gnd_in_bound[-1,true] }
else { false }

output double trk_gnd_min := min( trk_gnd, trk_gnd _min[-1,360.0])

output double trk_gnd_max := max( trk_gnd, trk_gnd_max[-1,0.0])

Listing 19: The specification used for the gps vel output.log.
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The properties on the GPS position log are specified in Listing 20. Line 13 to
20 records the maximal, and minimal longitude and latitude respectively. A
post flight analysis can use these values to detect whether there exist a jump
in the GPS signal. Later in this subsection, we specify a property which is
able to detect such jumps online. Here, we use these values to check if they
comply with their bounds (Line 22 to 25). We do not need the maximal
or minimal values to check these bounds. However, this example shows the
advantage of the modular composition of LOLA specifications. We capture
the boundaries and reuse them in other streams which avoids recalculations.
In Line 27 to 30, we check the relative height behavior and assume a mission
bound of 100. Finally, the last properties show that binary encodings of
integers are used and that LOLA can handle them. Notice, that in future
additional binary transformations are interesting for online monitoring where
data is moved across the system. It is cheaper to send such binaries instead
of complete objects, e.g. strings.

e Inertial Measurement Unit
In Listing 21, we show the specification used for the IMU. We assume an
ideal_ frequency of 100Hz. Similar to before, we compute the frequency in
each step of the system. However, this time we do not compute the maximum
and minimum frequency. Instead, we compute the deviation and the worst
deviation from the ideal frequency in Line 12 and 14. In fact, in Line 14, we
also remember the position where it happens®.

For analysis purposes, we retain the maximal acceleration in x, y, and z
direction. We assume an arbitrarily chosen mission bound of 15. In Line
25 to 30, we check that the acceleration sensors are not frozen by taking a
frozen window over the past 6 values. Finally, the counter value is used to
detect missing IMU values. Ideally, the counter should increase by 1 in each
step and reset whenever it reaches 100.

6In this manner, we found and displayed a deviation of 11Hz which was by then unknown.
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//Amount of input streams in the experiments: 18

input double lat, lon, hgt, nObjs, nGPSL1, time_s, time_ms

output
output
output

output

output

output

output

output

output

output

output

output
output

double time := time_s + time_ms / 1000000.0
double flight_time := time - time#[0,0.0]
double frequency := switch position{
case 0 { 1.0 / ( time[1,0.0] - time ) }
default { 1.0 / ( time - time[-1,0.0] ) } }
double freq_sum := freq_sum[-1, 0.0] + frequency
double freq_avg := freq_sum / double(position+1)
double freq_max := max( frequency, freq_max[-1, double_min] )
double freq_min := min( frequency, freq_min[-1, double_max] )
double lat_max := switch position{
case 0 { lat } default{ max(lat, lat_max[-1,0.0]) } }
double lat_min := switch position{
case 0 { lat } default{ min(lat, lat_min[-1,0.0]) } }
double lon_max := switch position{
case 0 { lon } default{ max(lon, lon_max[-1,0.0]) } }
double lon_min := switch position{
case 0 { lon } default{ min(lon, lon_min[-1,0.0]) } }
bool lat_in_bound := ! (max( abs(lat_max), abs(lat_min) ) <= 90.0)
bool lon_in_bound := ! (max( abs(lon_max), abs(lon_min) ) <= 180.0)
trigger lat_in_bound with "Irregular latitude value!"
trigger lon_in_bound with "Irregular longitude value!"
output double hgt_inc_max := max( hgt_inc_max[-1,0.0], hgt - hgt#[0,0.0] )
output double hgt_dec_max := min( hgt_dec_max[-1,0.0], hgt - hgt#[0,0.0] )
trigger hgt_inc_max > 100 with "Never increase height by more than 100m!"
trigger hgt_dec_max < -100 with "Never decrease height by more than 100m!"

const int threshold_nObjs
const int threshold_nGPSL1
output int nObjs_trust_worthy

10
10

bin_to_int (int(n0bjs))

output int nGPSL1_trust_worthy := bin_to_int(int(nGPSL1))

trigger nObjs_trust_worthy < threshold_nObjs with "nObjs below threshold!"
trigger nGPSL1_trust_worthy < threshold_nGPSL1 with "nGPSL1 below threshold!"

Listing 20: The specification used for the gps pos_output.log.
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//Amount of input streams in the experiments: 9
input double ax, ay, az, time_s, time_ms

input int counter

const double ideal_frequency := 100.0

output double time := time_s + time_ms / 1000000.0
output double flight_time := time - time#[0,0.0]

output double frequency := switch position{

case 0 { 1.0 / ( time[1,0.0] - time ) }
default { 1.0 / ( time - time[-1,0.0] ) } }
freq_sum[-1,0.0] + frequency

output double freq_sum

output double freq_avg := freq_sum / double(position+1)

output double deviation := difference(frequency, ideal_frequency)

output bool exceeds_worst := deviation > get(worst_dev[-1,(0,0.0)],1)
output (int,double) worst_dev := if exceeds_worst { (position,deviation) }

else { worst_dev[-1,(-1,0.0)] }

I

output double ax_max := max( abs(ax), ax_max[-1,0.0] )

output double ay_max := max( abs(ay), ay_max[-1,0.0] )

output double az_max := max( abs(az), az_max[-1,0.0] )
const double a_max := 15.0
trigger_change ax > a_max
trigger_change ay > a_max

trigger_change az > a_max

output bool frozen_ax := ax[-5..0,0.0,=,6]

trigger frozen_ax

output bool frozen_ay := ay[-5..0,0.0,=,6]

trigger frozen_ay

output bool frozen_az := az[-5..0,0.0,=,6]

trigger frozen_az

output bool check_counter := switch position {
case 0 { false }
default { counter '= ( (counter[-1, -1] + 1 ) % 100 ) } }

trigger check_counter with "A counter value was ignored."

Listing 21: The specification used for the imu_output.log.
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e Navigation Output - Result of the Sensor Fusion
During the discussion of the GPS sensor, we mentioned that we are interested
in detecting jumps of sensor values. We use the nav_output.log to specify
such a property from Line 13 onwards. Given the longitude and latitude, we
use the Haversine formula [4]7 to estimate the distance between two points
on a sphere:

a = sin((ps — ¢1)/2)° + cos(i1) * cos(2) *sin((A2 — M1)/2)° (1)
c=2x*atan2(v/a,v1 — a) (2)
d=R=xc (3)

where R is the radius of the sphere, here the earth, ¢; and ¢, are the
latitude and Ay and A\, are the longitude of the first and the second position,
respectively.

The formula is encoded straight forwardly from Line 22 to 29. Since it
expects the latitude and longitude in radians and we receive them in decimal
degree we have to convert them first (Line 17 to 20). Again, we see the
advantage of the modular composition which allows this conversion to be
performed straight forwardly.

So far, we computed the traveled GPS distance. In Line 32, we calculate
the assumed distance given the current velocity and the passed time. By
comparing these two values and incorporating a small deviation, we are able
to detect a signal jump in Line 35.

Flight Control and Systems Integration

In this paragraph, we are interested in detecting different phases of a flight, e.g. the
hover phase. The basic idea is that each possible flight phase has unique properties
which distinguish them from others. In practice, it would be great to know these
properties. Unfortunately, they are not formally identified, yet. Listing 23 depicts
how LOLA can support this task. Tagging can reduce the bulk of data by selecting
only the fragments which are interesting. Maybe, the chosen log file does not
even contain any interesting fragments. Also, if not yet contained properties are
interesting, they can simply be added and e.g. plotted afterwards. In our example,
we are interested in fragments of the flight which are longer than five seconds with
a velocity below 0.3 meter per seconds.

"We use a derivation of the original formula which is easier to implement but does not take
the ellipsoidal shape of the earth into account.
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//Amount of input streams in the experiments: 34

input double lat, lon, ug, vg, wg, time_s, time_ms

output
output
output

output
output
output
output

double
double
double

double
double
double
double

time := time_s + time_ms / 1000000.0
time - time#[0,0.0]

flight_time :=

frequency := switch position{
case 0 { 1.0 / ( time[1,0.0] - time ) }
default { 1.0 / ( time - time[-1,0.0] ) } }
freq_sum := freq_sum[-1,0.0] + frequency
freq_avg := freq_sum / double(position+1)

freq_max := max( frequency, freq_max[-1,double_min] )

freq_min := min( frequency, freq_min[-1,double_max] )

output double velocity := sqrt( ug™2.0 + vg~2.0 + wg~2.0 )
:= 6373000.0
const double pi := 3.1415926535

const double R

output
output
output
output

output
output
output

output
output

output
output
output
const

output

double
double
double
double

double
double
double

double
double

double
double
double
double
bool

lonl_rad := lon[-1,0.0] * pi / 180.0
lon2_rad := lon * pi / 180.0
latl_rad := lat[-1,0.0] * pi / 180.0
lat2_rad := lat * pi / 180.0

dlon

lon2_rad - lonl_rad

dlat := lat2_rad - latl_rad
a := (sin(dlat/2.0))"2.0 +
cos(latl_rad) *

cos(lat2_rad) *
(sin(dlon/2.0))"2.0

c

gps_distance

passed_time
distance_max
dif_distance
delta_distance

detected_jump

2.0 * atan2( sqrt(a), sqrt(1.0-a) )

:= R * c

time - time[-1,0.0]
velocity * passed_time
gps_distance - distance_max
1.0

switch position {

case 0 { false }

default { dif_distance >

snapshot detected_jump with "Invalid GPS signal received!"

delta_distance } }

Listing 22: The specification used for the nav_output.log.



70 6 LoOLA in Practice

In Line 8, we encode a state machine which remembers whether we begin, we
currently are, or we are not, in a phase where the velocity is below the threshold
vel _bound. The output start interval records the starting time of such a phase.
Based on end_interval, we write the starting time and the end time into the new
log file. It evaluates to true whenever we were previously in an interesting phase,
we currently reached the end of such a phase, and the phase took longer than the
specified time interval of five. This example shows why lists (cf. Section 5) are
interesting. Since we are referring to real time, there can be an a priori unbounded
amount of data until we reach the time interval. So far, it is not possible to collect
these data values and write them to file whenever the tag condition holds. In our
example, we remember the start time and end time of the phase and by using
them in a consecutive run, we can filter the values of the phase.

Similar, but in an online fashion, we detect phases in Listing 24 from Line 14 to
26. The objective is to identify flight fragments where the velocity differs by only
vel _bound for at least three seconds. We use the computed wvelocity to shift the
maximum and minimum velocity along the trace. But, we reset them whenever
they differ by more than the given vel bound. Also, whenever we reset, we record
the time which will later be the starting time of such a fragment. The stream
unchanged triggers a snapshot whenever the fragment exceeds the three seconds
bound. In unchanged, we count to 150 because we assume an underlying frequency
of 50Hz.

An additional interesting property evaluable in this log is the deviation between
the actual velocity and the reference velocity, depicted in Line 28 to 35. Ideally,
both velocities should not differ significantly. We capture the worst deviation in
worst_ dev as well as the position where it occurs.

In the last lines, we use simple bound checks on the fuel and power, respectively.
Note that we notify the user only once whenever a certain threshold is undershot.
Also, we use different granularities on the same stream indicating the urgency of
the notification.
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//Amount of imput streams in the experiments: 97

input double time_s, time_ms, vel
double time := time_s + time_ms / 1000000.0
0.3

output

const double vel_bound

const double time_interval

output
output

output
output

output

tag as

with

bool correct_vel

int cur_state

double time_since_start

double start_interval

bool end_interval

begin, end

start_interval, time

if
at

:= abs( vel ) < vel_bound

:= if correct_vel {

if cur_state[-1,0.0] = 0
{1}else {21} }
else { 0 }

:= time - start_intervall[-1,0.0]

:= if cur_state = 2 { start_interval[-1,0.0] }

else { time }

:= cur_state[-1,0] > 0 & !correct_vel &

time_since_start > time_interval
end_interval

"Desktop"

Listing 23: A simple specification that shows the usage of tagging.
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//Amount of input streams in the experiments: 97

input double time_s, time_ms, vel_x, vel_y, vel_z,

output double
output double
output double

output double
output double
output double
output double

fuel, power, vel_r_x, vel_r_y, vel_r_z

time := time_s + time_ms / 1000000.0

flight_time := time - time#[0,0.0]
frequency := switch position{
case 0 { 1.0 / ( time[1,0.0] - time ) }

default { 1.0 / ( time - time[-1,0.0] ) } }

freq_sum := freq_sum[-1,0.0] + frequency

freq_avg := freq_sum / double(position+1)

freq_max := max( frequency, freq_max[-1,double_min] )

freq_min := min( frequency, freq_min[-1,double_max] )

const double vel_bound

output double
output double

output double

output double

output bool
output double

velocity

velocity_max

velocity_min

dif_max

reset_max

reset_time

output int unchanged

snapshot unchanged = 150 with

output double

output double
output double

output int worst_dev_pos

output double

output double
output double

trigger_once fuel_p
trigger_once fuel_p
trigger_once fuel_p
trigger_once power_p
trigger_once power_p

trigger_once power_p

Il

= if
else
;= if

else

1.0
sqrt( vel_x"2.0 + vel_y~2.0 + vel_z"2.0 )

reset_max[-1,false] { velocity }
{ max( velocity, velocity_max[-1,0.0]) }
reset_max[-1,false] { velocity }

{ min( velocity, velocity_min[-1,0.0]) }

:= difference(velocity_max, velocity_min)

if

else
= if

else

dif_max > vel_bound

reset_max | position = 0 { time }
{ reset_time[-1,0.0] }

reset_max[-1,false] { 0 }

{ unchanged[-1,0] + 1 }

"Phase detected!"

vel_dev := difference(vel_r_x,vel_x) + difference(vel_r_y,vel_y)

+
dev_sum 1=

vel_av 1=

difference(vel_r_z,vel_z)

vel_dev + dev_sum[-1,0]

dev_sum / double((position+1)*3)

if worst_dev[-1,double_min] < vel_dev { position }

else { worst_dev_pos[-1,0] }

worst_dev :=

if worst_dev[-1,double_min] < vel_dev { vel_dev }

else { worst_dev[-1,0.0] }

fuel p := ( ( fuel#[0,0.0] - fuel ) / (fuel#[0,0.0]+0.01) )
power_p := ( (power#[0,0.0] - power) / (power#[0,0.0]+0.01) )

.50
.25
.10
.50
.25
.10

AN AN AN AN AN A
o O O O O o

with
with
with
with
with
with

"Fuel below half capacity"
"Fuel below quarter capacity"
"Urgent: Refill Fuel!"

"Power below half capacity"
"Power below quarter capacity"

"Urgent: Recharge Power!"

Listing 24: The specification used for the ctrl output.log.
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Mission Planning and Execution

In the following, we take a look at the mission manager which handles the high-
level reasoning. The manager is similar to a finite automaton with locations and
edges. A location indicates the current state of system and an edge represents the
condition and action which leads from one location to another. In general, the
current location is written to the log file in each step independently of changes.
Filtering the changes by hand can be very exhausting.

By encoding this automaton in LOLA, we can support the debugging process.
In Listing 25, we show an example for applying this technique. The objective is
to extract a user-friendly interpretation of the walk. We indicate the specification
only and leave some automaton parts open. Output change state uses the current
location of the automaton and compares it to the previous one. Whenever they
differ, we know we identified a taken transition. Instead of reading the enums
(ints) of locations, we apply the transition table state enum. Finally, in Line 23,
we use the identified location change to construct a string representing the walk. A
possible outcome might be: “Start - > MissionControllerOff -> HammerHead Turn”
which is an invalid walk.

To detect such invalid walks, we can use the specification in Listing 26 . Basi-
cally, we introduce two new streams: checkCommand_ MissionControllerOff and
no_wvalid_transition. Whenever there is a location change, no_wvalid_ transition
queries the respective helper stream, e.g. checkCommand_ MissionControllerOff,
whether the occurring transition was valid. In case of a violation, the user will re-
ceive a snapshot of the current LOLA state. Using this approach, we translate the
complete state space into a LOLA specification which is used in the experiments
afterwards. It would be possible to incorporate the edges as well, but we omitted
this here.

Using the state space, we are not only able to detect invalid transitions, but
we can also aggregate statistics for each location, e.g. fuel consumption for each
flight mode, or check safety requirements, e.g. landing should take less than ten
seconds. If the overall fuel consumption is too high, we can use LOLA to point
to the most consuming location. Similar to a program profiler, we should choose
this point to apply the first changes. In Listing 27, we show explicit examples for
both. From Line 20 to 32, we compute statistics for the HoverTo location. An
interesting statistic is the duration spend in a specific location. The output stream
entrance_time takes a timestamp whenever a change in the location occurs. In
Line 22, we know that we left the location HoverTo. Hence, we compute the time
spend in this location and add it to hover sum_ time depicted in Line 26. This
stream will give us the current time we spend in HoverTo up to this point in the
trace, i.e. the total time at the end of the trace. Further, we compute the maximal
and average time spend in this location which gives us a better understanding of
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the location behavior. For instance, do we visit the location several times for a
short amount of time or for a few enduringly times only? Note that we do this
exemplary for the HoverTo locations but we could extend this to other locations
as well by reusing stream computations, e.g. entrance_ time.

As an example for the safety assurance, we chose a time bound on landing.
Assume we enter the state landing, captured by Line 35. The output stream
landing info computes the difference between the entrance of the landing location
and the current time. In Line 37, if we still want to land, we are not yet OnGround,
and the time bound is exceeded, the stream landing error will evaluate to true,
indicating a violation.

//Amount of input streams in the experiments: 23

input int stateID_SC

const int Start =0

const int MissionControllerOff := 1

const int HammerHeadTurn := 16

output bool change_state := switch position {

case 0 { false }
default { stateID_SC != stateID_SC[-1,-1] } }

trigger change_state

output string state_enum := switch stateID_SC {
case 0 { "Start" }

case 1 { "MissionControllerOff" }

case 16{ "HammerHeadTurn" }
default{ "Invalid" } }
output string state_trace :=
switch position { case O { state_enum } default {
if change_state { concat(concat(state_trace[-1,""]," -> "),state_enum) }

else { state_tracel[-1,""] } } }

Listing 25: The specification extracts the state sequence as string, given the mis-
sionManager output.log.
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//Amount of input streams in the experiments: 23

input int stateID_SC

const int Start =0

const int MissionControllerQOff := 1

const int HammerHeadTurn := 16

output bool change_state := switch position {

case 0 { false }
default { stateID_SC != stateID_SC[-1,-1] } }

trigger change_state

output bool checkCommand_MissionControllerOff :=

switch stateID_SC[-1,-1] {

case Start { true }
case SlowDown { true }
default { false }
}
output bool no_valid_transition := !( change_state -> (position = 0 |

switch stateID_SC {
case Start { true }

case MissionControllerOff { checkCommand_MissionControllerOff }

case HammerHeadTurn { ...}
default { false } } ) )

snapshot no_valid_transition

Listing 26: The specification checks the state space of the mission manager, given
the missionManager output.log
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//Amount of input streams in t
input double time_s, time_ms

input int stateID_SC, OnGround

output double time := time_s +
output double flight_time := t
output double frequency := swi
output double sum_frequency :=
output double avg_freq := sum_
const int HoverTo := 4

const int Landing := 5

output bool change_state := sw

trigger change_state
output double entrance_time
bool hover_end

output

output double hover_cur_time

output double hover_sum_time

output int hover_num_times
output double hover_max_time

output double hover_avg_time

const double landing_timebnd :

output double landing_info

output bool landing_error

:= if hover_num_times

he experiments: 23

time_ms / 1000000.0
ime - time#[0,0.0]
tch position{

case 0 { 1.0 / ( time[1,0.0] - time) }
default { 1.0 / ( time- time[-1,0.0] ) }

}
sum_frequency[-1,0.0] + frequency

frequency / (double(position+1))

itch position {
case 0 { false }

default { stateID_SC != stateID_SC[-1,-1] } }

:= if change_state { time }

else { entrance_time[-1,0.0] }

:= if hover_end

{ time - entrance_time[-1,0.0] }

else { 0.0 }

:= hover_sum_time[-1,0.0] + hover_cur_time

:= hover_num_times[-1,0] +

if hover_end { 1 } else { 0 }

:= max ( hover_max_time[-1,0.0], hover_cur_time )

1= 0

{ hover_sum_time/double (hover_num_times) }

else { 0.0 }

20.0

:= if stateID_SC = Landing { 0.0 }

else { time - entrance_time[-1,0.0] }

:= stateID_SC = Landing & OnGround != 1

landing_info > landing_timebound

Listing 27: A specification that collects properties for the states of the mission

manager, given the missionManager output.log

change_state & stateID_SC[-1,-1] = HoverTo
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Another safety assurance, however not concerning the state space, is the ad-
herence of the safety corridor. A mission can consist of several waypoints which
have to be passed in a fixed order. The specification given in Listing 28 guarantees
the compliance to this order. The streams at 1, at 2, at_ 3, and at /4 are used to
detect whether we are currently at a waypoint by incorporating a small deviation.
In Line 20, curwp captures the last seen waypoint and check order compares the
changes of curwp. To be valid, the waypoint should either remain the same or
jump to the next waypoint. Notice that we remain true in case of a violation.

So far, in Listing 28, we only guarantee the correct order of the waypoints. In
Listing 29, we also check that we do not deviate too much from the next waypoint.
We compute the midpoint (Line 16) between the current waypoint (Line 3) and the
next waypoint (10). By putting a sphere around this midpoint with the distance
to the next waypoint (Line 20 to 24) as radius we have a valid corridor which can
guarantee that we are still on track. Additionally, we add a delta to the radius
to allow small backwards flights. From Line 25 to 29, we compute the distance
between the current position and the center of the current sphere and compare
it to the radius. Whenever we leave the sphere, we notify the user. Note that it
is possible to put liveness assumption on each waypoint. For instance, we could
assure that the time between two consecutive waypoints should never be greater
than one minute. To keep the specification concise, we omitted this. The approach
is depicted in Figure 8.

Waypoint 1 | Waypoint 2

Figure 8: Illustration of a spherical safety corridor used in Listing 29.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

78

6 LoOLA in Practice

//Amount of input streams in the experiments: 23

input
const
const
const
const
const

output

output

output

output

output

output

trigge

double x, y, z

(double, double, double) waypoint_1 := (1.0,
(double, double, double) waypoint_2 := (2.0,
(double, double, double) waypoint_3 := (3.0,
(double, double, double) waypoint_4 := (4.0,
double delta := 3.0
bool at_1 := sqrt( (x - get(waypoint_1, 0))~2.
(y - get(waypoint_1, 1))"2.
(z - get(waypoint_1, 2))"2.
bool at_2 := sqrt( (x - get(waypoint_2, 0))~2.
(y - get(waypoint_2, 1))"2.
(z - get(waypoint_2, 2))"2.
bool at_3 := sqrt( (x - get(waypoint_3, 0))"2.
(y - get(waypoint_3, 1))°2.
(z - get(waypoint_3, 2))"2.
bool at_4 := sqrt( (x - get(waypoint_4, 0))~2.
(y - get(waypoint_4, 1))"2.
(z - get(waypoint_4, 2))°2
int curwp := if at_1 {1}

elif at_ 2 { 2 }
elif at_3 { 3}
elif at_4 { 4 %
else { curwpl[-1, 0] }

bool check_order := check_order[-1,true] &

( curwp =

curwp =

r check_order

curwp[-1,0] |
curwp[-1,0] + 1

1,0,
2.0
3.0,
4.0,

O O O O © O © O ©o o o o
+

)

1.0)
2.0)
3.0)
4.0)

AN

AN

delta

delta

delta

delta

Listing 28: Guarantees on the safety corridors, Version 1.
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//Amount of input streams in the experiments: 23
...addition to Listing 11...
output (double,double,double) curwp_loc :=
switch curwp {
case 0 { (x#[0,0.0]1, y#[0,0.0], z#[0,0.0]1) %}
case 1 { waypoint_1 }
case 2 { waypoint_2 }
case 3 { waypoint_3 }
default { waypoint_4} }
output (double,double,double) nextwp_loc :=
switch curwp + 1 {
case 1 { waypoint_1 }
case 2 { waypoint_2 }
case 3 { waypoint_3 }
default { waypoint_4} }
output (double,double,double) center :=

( (get(nextwp_loc, 0) + get(curwp_loc, 0) ) / 2.0,
(get (nextwp_loc, 1) + get(curwp_loc, 1) ) / 2.0,
(get (nextwp_loc, 2) + get(curwp_loc, 2) ) / 2.0

output double distance_wps := sqrt(

(get (curwp_loc, 0) - get(nextwp_loc, 0))~2.0 +
(get(curwp_loc, 1) - get(nextwp_loc, 1))°2.0 +
(get(curwp_loc, 2) - get(nextwp_loc, 2))°2.0

output double radius := distance_wps / 2.0 + 5.0

output double distance_center := sqrt( (x - get(center, 0))°2.0 +
(y - get(center, 1))°2.0 +
(z - get(center, 2))°2.0

distance_center > radius

output bool out_corridor
trigger_change out_corridor

//Possible here to put a time bound on each waypoint

)

)

)

Listing 29: Guarantees on the safety corridors, Version 2.
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Contingency Manager

In the following, we discuss probabilistic and health reasoning. We assume a con-
tingency manager which takes as input the output of a LOLA monitor. In Listing
30, we show how to model trust based on probabilities. The LOLA monitor receives
as input the values of two visual sensors (laser and optical) both arguing over the
same observations. The input avgDist represents the average distance to the mea-
sured obstacles (range of sight), actual is the actual number of measurements, and
static is the number of static measurements, i.e. observations, which remained the
same. We model the rating of each of the sensors given arbitrarily chosen weights
on the data in Line 3 and Line 6, respectively. The higher the rating the better is
the health of the sensor. Using these ratings, we compute the trust on each sensor
as a probability and print it in each evaluation step. A contingency manager could
use this outcome as basis to decide which sensor to use for its reasoning.

input double avgDist_laser, actual_laser, static_laser,

avgDist_optical, actual_optical, static_optical

output double rating_laser := 0.2 * static_laser +
0.4 * actual_laser +
0.4 * avgDist_laser
output double rating_optical := 0.2 * static_optical +
0.4 * actual_optical +
0.4 * avgDist_optical
output double trust_laser := rating_laser / ( rating_laser + rating_optical)
output double trust_optical := 1.0 - trust_laser

print trust_laser

print trust_optical

Listing 30: A simple specification that shows how probabilistic reasoning can be
used.

Similar in Listing 31, we receive the range of sight of the sensors and the
current velocity. In order to guarantee a safe flight, especially under bad weather
conditions, it might be beneficial to adapt the velocity to the current visual range.
This simple LOLA specification suffices to point to such situations. Based on this,
an intelligent adaption of the velocity is possible at runtime.
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input double avgDist_laser, avgDist_optical, vel

const double vel_warning := 5.0
const double vel_avoid 35 2.0
output double avgDst_dif := min(avgDist_laser,avgDist_optical) - abs(vel)

trigger avgDst_dif < vel_warning with "WARNING: Dynamic Velocity Limit reached"
trigger avgDst_dif < vel_avoid with "ERROR: Abort mission."

Listing 31: A simple specification that shows how health reasoning can be used.

6.2 Implementation Details

We briefly present some of the C implementation details. Assume the simple
specification given below which takes the sum over the values v whenever the
enable signal e holds. First, the lexer will tokenize the specification and afterwards

input int v
input bool e

output int s := s[-1,0] + if e { v } else { 0 }

the parser returns the abstract syntax trees (AST) for each stream. Figure 9
illustrates the AST corresponding to sum.

Next, we compute the time steps in which a value is of interest for the eval-
uation. In our example, we receive 0 for value, i.e. only used in this round, and
1 for sum, i.e. used in this and in the next round. Further, we compute the size
of the ASTs: size(v)=1, size(s)=6. The evaluation is based upon two mayor data

+
s[-1,0] if

Figure 9: Abstract syntax tree for sum.
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Inputs sum stream sum stream

l
0 1 2 3 4 5 6 7 8 9 10 11 12 13

'uesife'UOsife'uO

Past index size is 14

Figure 10: Complete past index.

structures. We call them, the past indexr and the future inder. The past index
is allocated once and does not change in size. It contains the previously solved
stream instances. For the allocation size, we combine the computed AST sizes and
the amount of time they are of interest. The AST for each stream is flattened and
pushed into the index. Figure 10 shows this idea for our example specification.
First, we flattened and inserted the inputs, followed by the flattened outputs. At
Index 2 and 8, we store the sum values. By doing so, it is possible to address pre-
vious values and automatically remove irrelevant values. For instance, at position
0 of the trace, the current sum would be stored at Index 2 and in the next step,
the value would be stored at Index 8.

All the calculations are handled due to indexing. Note that the implementation
requires the correct evaluation order. We do not check whether a value at a
specific index is already calculated or outdated. We omitted this check because
the order can be automatically derived based on the dependency graph as indicated
in Section 5. This is one of the next implementation steps but for now we focused
on the expressiveness and applicability. Also, as a workaround, we allow specifying
the evaluation order in the specification itself. If not specified, the implementation
assumes the implicit order given by the specification.

The other mayor data structure is called the future indexr which is used to
store the streams that could not be evaluate so far. For an efficient lookup, we
implemented this index as an inverted index. The mapping takes a key, i.e. a
stream value we are waiting for, and returns the waiting streams. Considering the
listing below, we obtain the following mapping after the first position:

a#1 — and#0 b#1 — and#0 and#0 — dis#0

We require a#1 and b#1 to solve and#0 which is in return required for dis#0.
For efficiency reasons, at the start of a new evaluation round, we insert all the
inputs in the next position and then check whether we can resolve some previously
unresolved stream values. In our example, we are able to first evaluate and#0 and
then using the result, we evaluate dis#0.

Remark: The tuple functions are not yet implemented. For the experiments,
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input bool a,b,c

al[l,false] & b[1l,falsel

c | and

output bool and :

output bool dis :

we unfold the tuple values. For instance,
const (double,double,double) waypoint_1 := (1.0,1.0,1.0) is unfolded to:
const double waypoint_1_x := 1.0,
const double waypoint_1_y := 1.0, and
const double waypoint_1_z := 1.0

To validate the experimental results, we compare the results of this implemen-
tation version with our previous one which was not based on indexing only the
lexer and parser are used in both.

6.3 Offline Monitoring

In this section, we present the experiments we conducted on the existing log files.
First, we explain the experimental setup. The objective is to decide whether
LoLA is applicable in the context; detected faults are just a side-effect. In fact,
some constants are chosen by plausibility and, thus, may only be false positives.
In the following experiments, we use real data of various flights.

6.3.1 Experimental Setup

Offline, LOLA is working as a command-line tool. As parameters, LOLA receives
one or more specifications ending with “.lola” and the logged data ending with
either “.store” or “.log”. In case of several specifications, LOLA automatically com-
bines them into a single one. As an optional parameter, a location for the monitor
output can be passed (-1). When set, the monitor does not write on the con-
sole (default) but writes to the given location instead. An example LOLA call is:
./1lola constants.lola checkHeight.lola heights.store
For our experiments, we used the specifications presented above and collection of
log files obtained from the DLR. We will not elaborate on the log file content here.
Further, we wrote a tool which can be set to a root directory and browses through
all available subdirectories, looking for a log file which matches a predefined name.
To report the memory consumption, we use time [11], a unix command-line tool.
An example call of our helper tool is:
/usr/bin/time -1lp ./lola spec.lola data.store -1 m_log 2 » m_log
where m_log is the monitor log location (optional parameter).

The offline experiments were conducted on a dual-core machine with an 2.6GHz
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Intel Core i5 processor with 8GB RAM. The input streams files were stored on an
internal SSD.

As an additional feature, the helper tool captures the intermediate results of
the LOLA calls and is able to output statistics on all of them. For instance, it can
compute the average, the maximum, and the minimum frequency deviation over
all final LOLA results. This simplifies comparison of several log files allowing to
distinguish between fundamental and situational errors. The overall time a specific
expert was required to distinguish them was reduced.

The experiments show how LOLA scales regarding runtime and memory for
different log files and specifications. As an indicator for the scalability, we state
the responsiveness, i.e. the amount of time required for a single event.

6.3.2 Experimental Results

We refer to the specification by the component name and the listing number in
brackets. Below, we explain the column abbreviations used for the experimental
results.

— #Events .................. Number of evaluation steps, i.e. rows in log file.
— BT Actual flight time.
— R Overall LOLA runtime.
— Responsiveness ............ Amount of time required per event, i.e. %.
— #Notifications ..................... Total amount of triggered notifications.
— Memory ... Required memory consumption.

Flight Control and Systems Integration
Specification: CTRL (Listing 24)

#Events | FT | Responsiveness | #Notifications | Memory | RT

(sec) (msec) (MB) | (sec)
6275 | 190 0,065 10 1.19 | 0.41
7409 | 270 0,068 13 1.18 | 0.51

10516 | 314 0,067 11 1.18 | 0.71
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Sensor Fusion and Environment Perception

e Specification: Magnetometer (Listing 18)

#Events | FT | Responsiveness | #Notifications | Memory | RT
(sec) (msec) (MB) | (sec)

2137 | 219 0,004 0 0.97 | 0.01
2640 | 270 0,003 0 0.98 | 0.01
2887 | 296 0,003 0 0.97 | 0.01
3110 | 319 0,003 0 0.97 | 0.01
3129 | 321 0,006 0 0.97 | 0.02
3428 | 351 0,005 0 0.97 | 0.02
7307 | 750 0,004 0 0.97 | 0.03
7490 | 767 0,004 0 0.98 | 0.03
7754 | 794 0,003 0 0.98 | 0.03
8739 | 896 0,004 0 0.97 | 0.04
9086 | 931 0,004 0 0.98 | 0.04
9636 | 987 0,004 0 0.98 | 0.04

e Specification: GPS-vel (Listing 19)

#Events | FT | Responsiveness | #Notifications | Memory | RT
(sec) (msec) (MB) | (sec)

4321 | 216 0,006 154 1.00 | 0.03
5426 | 271 0,007 246 1.01 | 0.04
6151 | 307 0,008 52 1.00 | 0.05
6331 | 316 0,006 222 1.00 | 0.04
6410 | 320 0,007 317 1.00 | 0.05
7008 | 350 0,007 348 1.01 | 0.05
14915 | 746 0,007 564 1.00 | 0.11
15309 | 765 0,007 124 1.00 | 0.11
15906 | 795 0,008 224 1.00 | 0.14
17947 | 897 0,007 682 0.99 | 0.13
18648 | 932 0,007 88 1.00 | 0.14
19806 | 990 0,007 24 1.00 | 0.14
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e Specification: GPS-pos (Listing 20)

#Events | FT | Responsiveness | #Notifications | Memory | RT
(sec) (msec) (MB) | (sec)

4347 | 217 0,013 0 1.05 | 0.06
5027 | 251 0,013 0 1.06 | 0.07
6173 | 309 0,012 0 1.04 | 0.08
6350 | 317 0,014 0 1.04 | 0.09
6407 | 320 0,014 0 1.04 | 0.09
7020 | 351 0,014 0 1.04 | 0.10
14944 | 747 0,013 0 1.04 | 0.20
15362 | 768 0,014 0 1.04 | 0.22
15901 | 795 0,017 0 1.04 | 0.28
17960 | 898 0,014 0 1.04 | 0.26
18622 | 931 0,014 0 1.04 | 0.27
19812 | 991 0,013 0 1.06 | 0.27

e Specification: IMU (Listing 21)

#Events | FT | Responsiveness | #Notifications | Memory | RT
(sec) (msec) (MB) | (sec)

21570 | 216 0,007 0 1.02 | 0.17
27391 | 274 0,007 0 1.02 | 0.21
30454 | 305 0,008 0 1.02 | 0.25
31998 | 320 0,008 0 1.04 | 0.26
32235 | 322 0,007 0 1.04 | 0.24
35013 | 350 0,007 6 1.03 | 0.28
74676 | 747 0,007 0 1.04 | 0.59
76494 | 765 0,007 0 1.02 | 0.60
79236 | 792 0,007 0 1.03 | 0.63
89800 | 898 0,008 1183 1.03 | 0.74
93228 | 932 0,008 0 1.04 | 0.78
98916 | 989 0,008 21 1.05 | 0.80
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e Specification: Navigation output (Listing 22)

#Events | FT | Responsiveness | #Notifications | Memory | RT
(sec) (msec) (MB) | (sec)

2564 26 0,027 0 1.08 | 0.07
21557 | 216 0,025 0 1.08 | 0.55
27307 | 273 0,025 0 1.07 | 0.70
29657 | 297 0,025 0 1.09 | 0.77
30477 | 305 0,025 0 1.07 | 0.77
31903 | 319 0,024 0 1.07 | 0.78
34594 | 346 0,025 0 1.08 | 0.88
73956 | 740 0,024 0 1.09 | 1.78
74884 | 749 0,024 0 1.07 | 1.86
76640 | 766 0,024 0 1.09 | 1.85
89803 | 898 0,025 0 1.08 | 2.32
92796 | 928 0,024 0 1.09 | 2.26
99506 | 995 0,024 0 1.09 | 2.44

Mission Planning and Execution
Specification: Mission Manager (Listing 25, 26, and 27 as one specification)

#Events | FT | Responsiveness | #Notifications | Memory | RT
(sec) (msec) (MB) | (sec)

11045 | 221 0,017 11 1.20 | 0.19
13702 | 274 0,018 4 1.18 | 0.25
15319 | 306 0,018 15 1.19 | 0.28
15691 | 314 0,017 15 1.20 | 0.28
15835 | 322 0,017 26 1.21 | 0.28
17460 | 349 0,017 0 1.18 | 0.31
37235 | 745 0,019 69 1.24 | 0.68
38342 | 767 0,018 61 1.21 | 0.71
39852 | 797 0,018 68 1.23 | 0.72
44962 | 899 0,017 8 1.20 | 0.78
46940 | 939 0,018 73 1.23 | 0.87
49573 | 991 0,018 69 1.25 | 0.92
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6.3.3 Analysis and Evaluation

We start by discussing the obtained notifications component-by-component. Af-
terwards, we analyze and evaluate the overall experimental results. Note that we
report the total number of notifications, i.e. the sum over all occurred notifications.

Flight Control and Systems Integration

We consider three flights because we only evaluate those flights that match with
our stated CTRL specification in Listing 24, i.e. the number of inputs. In this
specification, we start a phase based on a defined velocity bound and a minimum
phase duration (Line 14 to 26). In all the experiments, we were able to identify at
least ten phases.

Sensor Fusion and Environment Perception
The monitor for the magnetometer logs did not raise any notification. This is
simply the case because we did not specify any observable, e.g. a trigger.

In contrast, several notifications were raised in the GPS-vel logs. In Listing 19,
we specify a trigger change on the sol_age. Therefore, we know that there exist
several segments in the log where the age of the solution status is greater than 0.5.

The specified bound checks for the GPS-pos log (Listing 20), e.g. latitude ranges
from -90 to 90, are never triggered.

In the used specification for the IMU (Listing 21), we specify triggers for the
maximal acceleration (Line 21 to 23) and check that the values change within six
evaluation steps (Line 25 to 30). In the results, the peak of 1183 notifications
stands out. By examining the monitor output and validating the findings for the
respective log, we found out that all notifications are solely based on frozen values.
The same holds for the other notifications of this component.

In the specification for the navigation log (Listing 22), we identify GPS signal
jumps. The monitor result shows that such signal jumps did not occur in any
examined flights.

Mission Planning and Execution

The last specification we consider is used for the mission manager where we val-
idate the state chart sequence. In Listing 25, we specify a trigger whenever the
state changes. Further, in Listing 26, we use a trigger to identify invalid state
transitions. The monitor results show that both triggers occur. By checking the
final state_ enum (Listing 25, the string representation of the state sequence), we
can easily identify that invalid states were reached. We could also find this invalid
states in the respective log data. Nevertheless, we mainly use flight data from
2014 and, therefore, it is more likely that a different state chart was used than the
occurrence of an actual violation.
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Overall Experimental Results

The examined flight times range from thirty seconds to twenty minutes. The
number of events depend on the frequency of the corresponding component. For
instance, the IMU ideally runs with 100Hz. This is perfectly reflected in the IMU
results by comparing the number of events with the flight time (rounded).

The main result of these experiments is that throughout all experiments, we
require constant memory and linear runtime. By responsiveness (in msec), i.e. the
time required for a single event, we can validate that the runtime is independent
of the length of the trace (#Events). Here, we als require constant memory and
the computational overhead is hardly measurable.

Considering the mission manager, we require constant memory. However, in
general, this is not the case. Since we accumulate the visited states in a string, the
required memory can no longer be bounded to a constant and, thus, is no longer
efficiently monitorable in the worst case.

Overall, the efficient memory consumption and very fast responsiveness (hardly
measurable) are promising results for the subsequent subsection, where we apply
online monitoring. The aim of further experiments is to evaluate the impact of
monitoring to the overall system.

6.4 Online Monitoring

In the previous experiments, we have considered the runtime and memory con-
sumption of LOLA for used specifications. There, the data was completely avail-
able. In this section, we receive the data successively. Since we use efficiently
monitorable specifications only® this may alter the runtime® but not the memory
complexity.

In the next subsections, we present the online integration and the experimental
setups for both SilL and HiL. Afterwards, we analyze and discuss the experimental
results.

In Section 2, we mentioned the notion of unobtrusiveness, i.e. the monitor
should not alter the critical properties of the system. We highlight some ARTIS
architectural limitations to motivate our design choices and indicate why unobtru-
siveness may suffer. One restriction is the absence of both a software bus and a
hardware bus. Thus, we have to weave a monitor interface into the existing sys-
tem to supply the monitor with data. Further, for instance, Hil allows arbitrary
switching between logging and non-logging. Since the monitor interface is weaved
into the logging code segments, we offer the same possibilities for monitoring. The

8 As mentioned, the mission manager is in fact not efficiently monitorable. However, in our
experiments, only a small amount of state changes occur.
9The monitor may wait until it receives the next values.
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log files are particularly interesting as we can use them to evaluate the monitor
outcome and impact on the system by an offline LOLA analysis.

6.4.1 Online Integration

The LOLA online interface is written in C++ and integrated into an ARTIS green
version branch. The monitors are implemented as threads which allows spawning
a thread whenever logging is turned on and, respectively, its termination whenever
it is turned off. The monitor threads belong to the system which is not optimal for
unobtrusiveness but facilitates first experimental results. In fact, the experiments
will show that the system remains unaffected by the monitoring in our settings.
Additionally, the interface can be easily extended to decouple monitoring from
the system, e.g. as a process. Listing 32 depicts the available function calls. We
consider Listing 33 to explain their usage.

int init();

int run();

int eval();

int insert_value( streamname, streamtype, value, evalstyle=AUTO )

int insert_values( streamnames, streamtypes, list of values, evalstyle=AUTO );
int synchronize_value( streamname, streamtype, value, evalstyle=AUTO );

int listen( streamname, callbackFunction );

int terminate();

Listing 32: The functions of the online monitor interface are depicted.

In Line 4, when starting the logging, we create the monitor by passing a specifi-
cation file, an existing stream in the specification, and a location where the monitor
should write its output (by default: stdout). Next, we call init which represents
the initialization of the monitor, i.e. lexing, parsing, and creating data structures.
Only after the thread is ready, this function returns. Afterwards, in Line 6, we set
the monitor to run, indicating that the monitor is ready to receive values.

In our example, in Line 12, we use insert_value to pass the data to the
monitor. We have to specify the stream (‘“vel’’) to which the value belongs and
its type. The flag MANUAL indicates that the monitor should wait for an eval
call which represents the start of a LOLA evaluation phase. The evaluation phase
covers all currently possible evaluation steps, i.e. the received values are buffered.
This allows the user to enforce that the LOLA monitor evaluates ten evaluation
steps at a time instead of only single ones. As an alternative, AUTO is offered which
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automatically determines whether all streams have an unevaluated value. Another
way to add several values to possibly several streams is insert_values).

Somewhat different is the function synchronize_value which also adds a value
to a stream. The idea is that some streams receive values faster than others and
since LOLA assumes a synchronous system, we have to map multiple values of the
faster stream to a single value of slower streams. The clock used to synchronize
these stream values is passed to the constructor of the monitor, e.g. time_s in
Line 4. By now, the current implementation takes only the most recent value, but
in future, functions over these values are possible, e.g. average.

Finally, in Line 17, we terminate the monitor which again returns after com-
pletion since we want to allow to restart another one. The last function to mention
is listen which is designed to accept stream observers. Unfortunately, this func-
tion is not yet ready to use. Its idea is to register observers on streams. Whenever
a stream value is generated, it is propagated to all its observers by calling their
callbackFunction. A possible application is the online visualization of streams
with a python plotting script as observer.

#include "monitorInterface.hpp"

int startLoggingMM(){

Monitor* monitor = new Monitor(specification, "time_s", monitorlog)
monitor->init();

monitor->run();

int logData(){
double vel_data = getVelocity();

if (monitor != NULL){
monitor->insert_value("vel", DOUBLE, vel_data, MANUAL);

monitor->eval();

int stopLoggingMM(){

monitor->terminate();

Listing 33: A simple example how the monitor is weaved into the logging of the
system.
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In the next subsection, the implementations of the inter-thread communication
is explained since we had to adapt to compiler and system constraints.

6.4.2 Experimental Setup

Regarding the experimental setup, we distinguish between the software-in-the-loop
and hardware-in-the-loop setup.

Software-in-the-loop Setup

The SiLi experiments were conducted on a quad-core machine with an 2.8GHz
Intel Core Q9550 processor with 4GB RAM. As operating system, Windows 7 is
installed. For the inter-thread communication, to deliver data, we use Windows
named pipes'® to pass the data and callback functions to deliver the monitor
outcome.

As simulations, we choose MissionPlannerPseudoOnlineBasic and Mission-
plannerOnline. Both use online planning to avoid unknown obstacles in real time.
Since we are considering Sil. simulations, ideal sensor values are provided.

However, in MissionPlannerPseudoOnlineBasic, the obstacle recognition, plan-
ning, and control is done synchronously. In MissionplannerOnline, the planning
is an external process. Therefore, decisions of the planner have to be in time and
too late decisions are considered as critical for the system. In the experiments,
this constraint is represented by #Belowl0Hz. Additionally, if previous decisions
aggregate over time, the planner should replan the previously determined flight
path.

The MissionPlannerPseudoOnlineBasic simulation generates logs for the mis-
sion manager, the navigation, and the control. Since our monitor interface is
integrated at these position, we can monitor them. Except for the control log,
the MissionplannerOnline generates the same logs. The CTRL log is restricted
to seven columns and, therefore, the used specification (Listing 24) can only eval-
uate the minimum, maximum, and average frequency (Line 4 to 12). The other
specifications remain unchanged.

We conducted the experiments to evaluate the impact of monitoring to the run-
time behavior on Sil. simulations of the system. For the evaluation, we used the
computed average frequency and the actual flight time by the monitor, the required
time for the whole test, the overhead, and the time required for the same offline
analysis. The computed average frequency and the flight time should remain the
same. In order to compute the overhead, i.e. the additional time due to monitoring,
we compare the test time with monitoring enabled/disabled. Ideally, a low over-
head is achieved. Furthermore, for MissionPlannerPseudoOnlineBasic, we report

10Pipes offer an easy way to buffer the incoming values.
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the offline monitoring time to indicate the best case monitor runtime, i.e. without
waiting time for the next stream values. Instead, for MissionplannerOnline, we de-
pict the amount of times the planner violates its predefined frequency of 10Hz. In
the best case, no violations occur. In all experiments, with and without monitor,
all unit tests for the simulation are passed. For the reference values, i.e. without
a monitor, we apply offline monitoring.

The results are depicted in Section 6.4.3 and analyzed in Section 6.4.5.

Hardware-in-the-loop Setup

The Hil. experiments were run on an Intel Pentium with a 1.8GHz and 1GB
RAM. The embedded-pc runs a unix system. As inter-thread communication, we
use shared memory for both the stream value delivery and the monitor output. To
simulate a pipe, we use a mutex protected list!!.

For the HiL simulation, a world and a flight mission was chosen. The world
Hillerse_ v2.1 and two different missions were used: Hillerse Standard-Testflug
HYV and Hillerse Standard-Testflug F'T. The worlds and the missions are depicted
in Figure 11 and 12. In both missions, a set of ordered waypoints was given and
during the planned flight, each waypoint had to be visited in a particular order.

In the experiments, we monitored the following components with their specifi-
cations in brackets: flight control (Listing 24), navigation (Listing 22), and mission
manager (Listing25, 26, and 27 as one specification). Considering the flight con-
trol specification, we evaluate all properties but transmit the relevant inputs to
the monitor.

For each experiment, first, we reset the dSPACE (the environment simulation)|2]
and select the world and the mission. Second, we initialize the navigation values
and manually start the logging/monitoring. Then, the mission is planned, up-
loaded, and started. Finally, after the last mission waypoint is reached, we stop
the logging/monitoring and the mission.

The impact of monitoring on the HilL simulation is reflected by the following
experiments. For each mission, all experiments flew the same planned route with-
out noticeable deviations. To validate the deviation, an online visualization of the
flight was observed. In order to indicate the impact of monitoring, we use the
average frequency computed by the monitor, if available, otherwise the average
frequency is computed due to offline monitoring on the logged flights. Ideally, the
frequency flow should remain unchanged, whether we use monitoring or not.

The results are depicted in Section 6.4.4 and analyzed in Section 6.4.5.

"'The monitor interface implementation can handle unix pipes but we ran into problems with
the embedded-pc pipes.



94 6 LoOLA in Practice

Figure 11: The Hillerse Standard-Testflug HV is depicted. Each waypoint shall be
visited in order. Between each waypoint, the UAV hovers, to orient itself towards
the next waypoint. The UAV is currently at the first waypoint.

Figure 12: The Hillerse Standard-Testflug F'T is depicted. Each waypoint shall
be visited in order. A spline is flown to visit them. The UAV finished the mission
and is currently at the last waypoint. The blue line is the actual flown path, with
monitoring.

6.4.3 Experimental Results - Software-in-the-loop Simulation

— Threads ... i Enumerates the running threads.
— EvalStep ...l Amount of values until evaluation step.
— AvgFreq ............ . Awverage frequency, computed by monitor.
— B Actual flight time.
— TestT Total jUnit test time.
— Overhead ...... Additional time due to monitoring, i.e. Tesge}ieei e;:?f;gfs”
— OfflineT ..................... Offline LOLA runtime on the created log file.
— #Belowl0Hz ...... Amount of times the planner frequency was below 10Hz.

We analyze the results in Section 6.4.5.
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Simulation: MissionPlannerPseudoOnlineBasic

Threads EvalStep | AvgFreq FT | TestT | Overhead | OfflineT
(Hz) | (sec) | (sec) (%) (sec)
Reference: - | etrl: 50.0 | 107.2 | 526.3 0 0.06
No Monitor - | mgr: 50.0 | 107.2 " " 0.12
used - | nav: 50.0 | 107.1 " " 0.14
ctrl monitor 1] ctrl: 50.0 | 107.2 | 523.4 -0.006 0.06
mgr monitor 1| ctrl: 50.0 | 107.2 | 524.1 -0.004 0.13
nav_ monitor 1| nav: 50.0 | 107.1 | 528.5 0.004 0.15
ctrl monitor 1] ctrl: 50.0 | 107.2 | 528.8 0.005 0.07
nav_ monitor 1| nav: 50.0 | 107.1 " " 0.15
ctrl monitor 1] ctrl: 50.0 | 107.2 | 530.6 0.008 0.06
mgr monitor 1| nav: 50.0 | 107.2 " " 0.12
nav_ monitor 1| mgr: 50.0 | 107.1 " " 0.15
ctrl monitor 10| ctrl: 50.0 | 107.1 | 530.0 0.007 0.05
mgr_monitor 10 | nav: 50.0 | 107.1 " " 0.11
nav_ monitor 10 | mgr: 50.0 | 107.1 " " 0.16
ctrl monitor 100 | nav: 50.0 | 107.1 | 524.5 -0.003 0.06
nav_monitor 100 | ctrl: 50.0 | 107.1 " " 0.14
ctrl monitor 100 | ectrl: 50.0 | 107.1 | 530.0 0.007 0.05
mgr monitor 100 | nav: 50.0 | 107.1 " " 0.11
nav_monitor 100 | mgr: 50.0 | 107.1 " " 0.14
ctrl monitor 1000 | ctrl: 50.0 | 107.1 | 530.2 0.007 0.05
mgr_monitor 1000 | nav: 50.0 | 107.1 " " 0.11
nav__monitor 1000 | mgr: 50.0 | 107.1 " " 0.14
Simulation: MissionplannerOnline
Threads | EvalStep | AvgFreq FT | TestT | Overhead | #Below10Hz
(Hz) | (sec) | (sec) (%)
Reference: - | mgr: 51.0 | 195.8 | 232.6 0 130
No Monitor - | nav: 50.0 | 195.8 " ! "
mgr monitor 1| mgr: 50.3 | 196.0 | 2324 -0,001 132
mgr _monitor 1| mgr: 50.4 | 194.7 | 232.6 0 145
nav_monitor 1| nav: 50.0 | 194.8 " ! "
mgr_monitor 10 | mgr: 50.4 | 197.0 | 234.6 0,009 124
nav_ monitor 10 | nav: 50.0 | 197.2 " ! "
mgr monitor 100 | mgr: 50.5 | 194.4 | 230.4 -0,009 135
nav_ monitor 100 | nav: 50.0 | 194.5 " ! "
mgr _monitor 1000 | mgr: 51.3 | 195.9 | 232.8 0,001 134
nav_monitor 1000 | nav: 50.0 | 196.0 " ! "
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Figure 13: Python plots for the flight path in the software-in-the-loop simulation
MissionplannerOnline in Section 6.4. The plots are ordered by the experiment
result table. The top left plot depicts the simulation only with mgr monitor run-
ning and bottom right depicts the simulation with mgr monitor and nav_monitor
running with EvalStep 1000.
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6.4.4 Experimental Results - Hardware-in-the-loop Simulation

— Threads (EvalStep) ... Enumerates the running threads and their eval-step.
— Online - AvgFreq ...... Average frequency, bold if computed by the monitor.
— Offline - AvgFreq ..................... Offline computed average frequency.

We use the respective specification for the offline analysis of the logged flight. The
experimental results are analyzed in Section 6.4.5.

Mission: Hillerse Standard-Testflug HV

Threads (EvalStep) | Online - AvgFreq Offline - AvgFreq
nav | ctrl | mgr | gps-p | gps-v | imu | mgn
(Hz) | (Hz) | (Hz) | (Hz) | (Hz) | (Hz) | (Hz)
No Monitor | 50.0 | 50.0 | 50.0 | 20.0 | 20.0 | 100.0 | 10.0
nav_ monitor (1) | 50.0 | 50.0 | 50.0 | 20.0 | 20.0 | 100.0 | 10.0
nav_monitor (1) | 50.0 - 50.0 | 20.0 | 20.0 | 100.0 | 10.0
ctrl monitor (1) | - [50.0 | - " " " "
nav_monitor (1) | 50.0 | - - 20.0 | 20.0 | 100.0 | 10.0
ctrl monitor (1) | - [50.0 | - " " " "
mgr_monitor (1) | - - | 50.0 " " " "
nav_monitor (100) | 50.1 - - 20.0 | 20.0 | 100.1 | 10.0
ctrl_monitor (100) | - |50.3 | - " " " "
mgr_monitor (100) | - - | 50.2 " " " "

Mission: Hillerse Standard-Testflug FT

Threads (EvalStep) | Online - AvgFreq Offline - AvgFreq
nav | ctrl | mgr | gps-p | gps-v | imu | mgn
(Hz) | (Hz) | (Hz) | (Hz) | (Hz) | (Hz) | (Hz)
No Monitor | 50.0 | 50.0 | 50.0 | 20.0 | 20.0 | 100.0 | 10.0
nav_ monitor (1) | 50.0 | 50.0 | 50.0 | 20.0 | 20.0 | 100.0 | 10.0
nav_ monitor (1) | 50.0 | - 50.0 | 20.0 | 20.0 | 100.0 | 10.0
ctrl monitor (1) | - [50.0| - " " " "
nav_monitor (1) | 50.0 | - - 20.0 | 20.0 | 100.0 | 10.0
ctrl _monitor (1) | - [50.0| - " " " "
mgr_monitor (1) | - - 1 50.0 " " " "
nav_monitor (100) | 50.0 | - - 20.0 | 20.0 | 100.1 | 10.0
ctrl_monitor (100) | - |50.2 | - " " " "
mgr _monitor (100) | - - | 50.2 " " " "
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6.4.5 Analysis and Evaluation

First, we analyze the software-in-the-loop experimental results. Afterwards, the
hardware-in-the-loop simulation results are considered. Finally, we analyze and
evaluate experimental results in general.

Software-in-the-loop Simulation

In Section 6.4.3, different variations of monitor threads with various evaluation
steps are used to evaluate the applicability of monitoring for SiL. simulations. Fval-
Step 1 represents that as soon as all streams received a single value, a LOLA eval-
uation step is executed. Whereas, FvalStep 100 represents that LOLA starts 100
consecutive evaluation steps whenever each stream holds 100 values. Therefore,
the responsiveness'? may suffer but in case LOLA causes frequency violations, the
number of violations could be reduced.

Considering the MissionPlannerPseudoOnlineBasic simulation, no deviations
from the average frequencies are detected and the flight time remains the same.
The required time to analyze the produced log files indicates that the flight is
similar to the flights in Section 6.3.

Considering the MissionplannerOnline simulation, slight deviations in the av-
erage frequencies are observable. Especially, increasing EvalStep leads to higher
average frequencies. The actual flight times slightly vary but, as Figure 13 shows,
the paths remain unchanged.

The amount of below 10Hz violations (#Belowl0Hz) indicate that adjusting
the EwvalStep might help to reduce the amount of violations. A step size of 10
seems to be reasonable. However, in order to confirm this observation, additional
experiments are required.

Further, for both SiLL simulations, the overhead, i.e. running the simulation
with monitoring, is below one percent and, thus, hardly measurable.

Hardware-in-the-loop Simulation
In Section 6.4.4, different settings of monitor threads with various evaluation steps
are examined. The FwvalStep is given in brackets next to the threads. To decide
the impact of monitoring, the frequencies of the components were evaluated and
the path of the UAV is manually observed. Throughout all Hil experiments with
FEuvalStep 1, the frequencies remain unchanged compared to not using a monitor.
Using an EwvalStep of 100, the frequencies minimally vary and in fact influence
the IMU frequency. Further experiments would be interesting, to reproduce this
observation.

12Violations are only detected after the required values are passed to the streams.
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Experimental Results in General

In SiL, the overhead is very small and the frequencies are unchanged. Frequencies
which deviate too much from the expected would directly impact the behavior of
the vehicle. In HiL, we focused solely on the frequency violations which mostly
remain unchanged. There, it is not possible to compute the overhead because we
manually start a mission and end the mission and, thus, we cannot guarantee the
same initial conditions. Further, we can only observe the online visualization to
recognize path deviations.

However, overall we can conclude that LOLA can be used for both SiL. and
HiL. simulations without significantly affecting the system. We showed that the
frequencies are unaffected and depicted the flight path in Sil. to show that no
changes occurred due to the mission planner.

6.5 Family of Specifications

Concluding this section, we identify common types of properties in the specifi-
cations. All of them were covered in Section 6.1. In Section 6.3 and 6.4, the
experiments show that most of them are applicable in practice.

e Bound Checks a < 10
e Range Checks a<10& a>0
e Cross Checks difference(a,b) < delta
e Sanity Checks counter[-1,0] + 1 = counter
e Data Analysis max(vel,vel_max[-1,0])
e Statistics Average frequency
e Plausibility Checks Signal jumps
e Pattern Recognition Phase detection
e Probabilistic Reasoning Sensor trust

e Health Reasoning Decision-making
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7 Conclusion

In this section, we provide a summary of the presented work and address some
future work. We consider possible extensions to the experimental setup, how
to improve unobtrusiveness, what extensions to the monitoring interface and to
the specification language LOLA are possible, and how to encourage the usage in
practice.

7.1 Summary

Runtime monitoring is a formal method for checking whether an execution of a
system satisfies a set of desirable properties. The properties can either be checked
at runtime or after the system has terminated by analyzing log files. A specification
language is used to formalize the properties and provides mathematical guarantees
on the reliability of the system.

In this thesis, we considered the stream-based specification language LOLA.
The general idea of LOLA is to generate a set of output streams based on a given set
of input streams. Streams are typed sequences of data. Output stream are defined
by an expression over input streams, constants, and other output streams which
allows to establish a correlation between several stream. The key feature of LOLA is
that previous, present, and future stream values can be accessed and included
in calculations which enables to express temporal properties and incrementally
computable statistical measures. With LOLA, we can formally define temporal
properties like after receiving a landing command, the height should decrease and
the ground should be reached within ten seconds or statistical measures like the
average frequency and the maximum deviation from the ideal frequency during the
execution.

The goal of this thesis was to elaborate the applicability of LOLA in the con-
text of unmanned aircraft. The research was carried out in collaboration with the
German Aerospace Center (DLR). In Section 3.1, we presented the DLR and indi-
cated the important aspects of autonomy concepts such as correctness, safety, and
system health management. Possible applications of runtime monitoring were pre-
sented to support the implementation of these aspects. For instance, monitoring
can be used to increase the situational awareness of the system state. By identi-
fying unintended (incorrect, unsafe) system states, notifications for violations can
be raised. Furthermore, we can use monitoring to reason about the error source,
given the identified system faults. By detecting the error source, a contingency
manager can initiate countermeasures to mitigate the error impact and, therefore,
improves the system health.

In practice, specification languages are often designed for a specific domain to
be able to express complex but essential properties of the domain in an under-
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standable and still efficient way. We examined the applicability of LOLA based
on discussions with DLR engineers. Involved working groups were: Sensor Fu-
sion and Environment Perception, Flight Control and Systems Integration, and
Mission Planning and Execution. We were able to collect and formalize multiple
properties in LOLA. Further, we chose to analyze the system in a bottom-up man-
ner from sensors validation to path execution. Reoccurring types of properties
that occurred in various specifications were identified. Those typed include simple
bound, range, cross and sanity checks along with more involved properties like
statistical measurements, anomaly detection, and even health reasoning.

To adapt to the domain requirements, new LOLA operators were introduced in
order to keep the specification concise and to increase the efficiency. In Section
5, we introduced keywords, freezing of stream values, and absolute stream access.
We were able to express generic specifications that do not require adjustment to
constant values for each individual flight, such as the initial height.

A further extension is the incorporation of prior domain knowledge, e.g. a
stream is monotonically increasing. Knowing that some stream values can never
reappear is the key idea of the switch operator introduced in Section 5.2. We
were able to take advantage of this knowledge and could avoid updating irrele-
vant parts of the computations in specifications, increasing the monitor efficiency.
To improve the user interaction, we extended online feedback, introduced offline
feedback, and allowed directly controlling LOLA. Considering online feedback,
we facilitate user notifications at different granularity levels. For instance, using
print s on a boolean stream s provides the user with each evaluated stream value
whereas trigger_once s provides only the value and the position where s holds
for the first time. Offline feedback was used to generate new data logs based on
currently evaluating data. Therefore, a post flight analysis can be carried out
on enriched or filtered data logs. With filtering, we can narrow down the faults
for properties that are not identified yet and, therefore, cannot be expressed in a
LoLA specification. Enriching data logs simplifies creating more expressive plots
supporting the reasoning process of engineers. Controls allow a user to exit,
reset, or pause the current LOLA evaluation. This is particular useful as early
test termination can be based on more sophisticated LOLA conditions and online
monitoring can be paused, e.g. when a countermeasure to abort the mission is
initiated or whenever monitoring affects the system significantly.

Our experiments on offline monitoring showed that LOLA is able to evaluate
streams both fast and memory efficient. This behavior carried over to online mon-
itoring where the overall system was almost unaffected by the additional workload
of monitoring. To achieve a better understanding of these results, we presented
some implementation details (cf. Section 6.2). Two main data structures were used
for the evaluation: the past index and the future index. The past index handles all
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evaluated stream values and the future index contains the values that are yet to
be evaluated. For both online and offline experiments, we used different monitor
settings along with the specification presented in Section 6.1 which entail most
of the desirable properties. For online monitoring, the monitors are weaved into
the system as threads since neither hardware nor software bus are currently avail-
able. Further, we deployed LOLA in software-in-the-loop and hardware-in-the-loop
simulations where all tests were passed without any deviations of the flight paths.
LoLA has proven to be very well suited to be applied in the field unmanned aircraft
for post-flight analysis and simulation purposes.

7.2 Future Work

In the following, to see LOLA flying someday, we discuss some aspects that require
further research and provide a basis for future work.

Expanding the Experimental Setup

We elaborate how the experiments could be further expanded. There are three
mayor ways to reach them. Based on further interviews, we could include more
properties in the specification. Especially for the high-level reasoning, further
properties are specifiable, e.g. collision detection for polygons. Furthermore, ap-
proximations for more involved properties such as pattern recognition, which are
currently handled by neural networks, could be examined. Longer and compu-
tationally more intensive missions could be carried out and analyzed. Further,
combinations of these points are possible.

Improving Unobstrusivness

In general, threads are suboptimal for the unobtrusiveness of the system since they
are directly related to the system under scrutiny. Outsourcing the monitoring into
an external process is the simplest way to cope with this problem. The process
could be run on the same PC or on an separate (monitor-only) PC. Preferably,
the external process receives the system values via a software or a hardware bus.
Hardware monitors could further increase unobtrusiveness.

Monitoring of Asynchronous Sensors

We depicted the contingency manager in Section 3.2. In order to identify error
sources, it can be useful to compare sensors arguing about similar system or en-
vironment parts. In order to do so, LOLA has to support the merging of different
sensor values which may be received asynchronously. In offline analysis, merging
can be based on timestamps. In online analysis, it might be beneficial to further
invest the method synchronize_values of the monitor interface. This method
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allows to transform several values of a stream into a single one based on a prede-
fined function. So far, we only considered the most recent value but considering
the maximum or average over multiple values should be further investigated.

Language Extensions

Considering extensions to the LOLA specification language, we already mentioned
sets and lists. Lately, a parametric LOLA version was published [25]. There, based
on invoked template stream instances, data can be carried along the stream. For
instance, we can monitor that arbitrarily many opened files, each with a unique
ID, are all closed eventually. For each opened file, a template instance is invoked
with the ID as key to identify its closing. In future, real time reasoning with
LoLA would be an interesting language feature. Real time bounds in the offset
operator, e.g. trigger s[0..10sec, true] could specify that within ten seconds
true should hold for the stream s.

Active Usage

Motivating engineers to use LOLA in practice is not an easy task. Many engineers
are included in several projects and their time to try out new tools is limited.
Presenting the analysis power and error findings might be a way to encourage
engineer to consider LOLA for their projects. Further, implementing the usage of
the dependency graph and macros (LOLA library) could also be helpful to ease
the writing of LOLA specifications. Using the dependency graph, a multithreaded
version of LOLA based on the strongly connected components could potentially
increase the performance. Additional, python plotting tools for online visualization
could be useful to illustrate the usage.



104 A Complete Extended LOLA Syntax

8 Appendix

A Complete Extended LOLA Syntax

(lola-format) = ¢ | (streamDef) (lola-format)
(streamDef) = (inputDef)

| (constantDef)

| (outputDef)

| (observable Behavior)

| (knowledge)

| (macroDef)
{constantDef) = ‘comst’ (type) (identifier) ‘:=" (literal)
(inputDef) = ‘input’ (basicType) (identifier list)
(outputDef) = ‘output’ (type) (identifier) ‘:=" (expr)

(identifier list) (identifier)

| (identifier) *,” (identifier_list)

Syntax 13: Structure
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(type) = (basicType) | (tuple)

(basic Type) = ‘bool’ | ‘int’ | ‘double’ | ‘string’
(tuple) = ‘C (tupleType) )’

(tuple Type) = (basicType) | °*,” (tupleType) |

| (tuple) [, (tupleType) |

<Zd€ntlﬁ67’> e ( Ca7_éz7|4A7_tz7 ) (éa7_éz7|4A7_tz7 | 407_497 | 4_7)*

(literal) ::= (boolLiteral) | (intLiteral) | (doubleLiteral)
| (stringLiteral) | (tupleLiteral)

(boolLiteral) = ‘true’ | ‘t’ | ‘false’ | ‘f’

(intLiteral) c= -1 (0-9) (‘0-9 )*

(doubleLiteral) n= -] (0-9) (‘0-9)*[] (‘0-9)*
(stringLiteral) ::= any string starting with ‘"’ and ending with ‘"’
(tupleLiteral) = O (tupleValue) ©)’

(tuple Value) = (literal)y | (literal) *,” (tupleValue)

Syntax 14: Literals
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{expr) n= (literal) | “C (expr) )’ | (unaryOp)

| (binaryOp) | (ifEzpr) | (switchExp)

| (keyword) | (streamAccess) | (functionOp)
(keyword) ;= ‘position’ | ‘last_position’

| ‘int_min’ | ‘int_max’

| ‘double_min’ | ‘double_max’
{expressions) = (expr) | (expr) ¢, (expressions)

Syntax 15: Expression
(unaryOp) = ‘1 (expr)
(binaryOp) = (expr) (comparison) (expr) | (expr) {(computation)
(expr)

<COmp(l7”ZSO’n,> — C<7 | £<=7 | (=7 | C!=’ ‘ (>=7 £>7
(computation) e L Rt R S B

| C+7 | L_? ’ (*7 ‘ ﬁ/? ‘ (%7 | (~)

Syntax 16: Operators

left-associative

right-associative

x, \, %

+’
&
|

— =
<

#, >, >

— )

~

Figure 14: Operator Precedence, highest at the top.
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(functionOp) = (numberFunction) | (stringFunction) | (tupleOp)

(numberFunction) = ‘abs’ ‘C (expr) )’

‘difference’ ‘(" (expr) *,” (expr) )’

‘atan2’ ‘C (expr) ‘,’ (expr) ‘)’

‘max’ ‘(C (expressions) ‘)’ | ‘min’ ‘(’ (expressions) ‘)’
‘sqrt’ ‘¢ (expr) [*,’ (doubleLiteral)]‘)’

‘log’ ‘C (expr) [‘ ’ (doubleLiteral)] ¢)’

os’ ‘(" (expr) )’ | ‘sin’ ‘C (expr) )’
‘tan’ ‘(’ (expr) )’ | ‘bin_to_int’ ‘C (expr) ‘)’
‘int’ ‘C (expr) )’ | ‘double’ ‘( (expr) )’
‘ceil” *C (expr) )’ | ‘floor’ ‘(C (expr) )’

e
‘round’ ‘C (expr) )’

4

(stringFunction) ‘contains’ ‘C (expr) ‘,’ (expr) ‘)’

‘equals’ ‘(" (expressions) )’

[

‘startswith’ ‘C (ezpr) ¢, (expr) )’

‘endswith’ ‘C (expr) ‘,’ (expr) )’

‘concat’ ‘(" (expr) ‘,’ (expr) )’
‘length’ ‘(" (expr) )’

(tupleOp) ‘get’ ‘C (expr) *,’ (intLiteral) ‘)’
‘extract’ ("(expr)*,’(intLiteral)|*,’ (intLiteral)|*)’

‘combine’ ‘(" (expr) ¢, (expr) )’

Syntax 17: Functions
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(ifExpr) n= ‘Af’ (expr) ‘{’ (expr) ‘} (elseEzpr)

(elseExpr) = | ‘elif’ (expr) ‘{’ (expr) ‘} (elseExpr) |
‘else’ ‘{’ (expr) ‘¥

(switchExpr) = ‘switch’ (expr) {’ (cases) (default) ‘¥’
(cases) =€

| ‘case’ (literal) ‘{" (expr) ‘¥

| ‘case’ (literal) ‘{’ (expr) ‘¥ (cases)
(default) = ‘default’ ‘{’ (expr) ¥

Syntax 18: Statements

(streamAccess) = (identifier) | (relativePos) | (absolutePos) |
(relativePos) = (offset) | (frozenOffset)

| (window) | (frozenWindow)
(absolutePos) = ‘# (offset) | ‘# (window)

Syntax 19: Streamaccess Operators
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(offset) = ‘[’ (offsetValues) *,” (00bV) ‘1’
(frozenOffset) = ‘[’ (offsetValues) *,” (0obV) *,’
(window) = ‘[’ (offsetValues) *..” (offsetValues)

" {o0b V') ¢, (binaryOp) ‘1’

(frozenWindow) ::= ‘[’ (offsetValues) .. (offset Values)

(frozenTime) ‘1’

‘" {o0bV) <, (binaryOp) *,’ (frozenTime) ‘1’

{00b V') = (identifier) | (literal)
(frozenTime) == (identifier) | (literal)
(offsetValues) = ( (intLiteral) | ‘last_position’ )

Syntax 20: Offset Operators
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(observableBehavior) ::= (onlineBehavior) [‘with’ (stringLiteral) |

| (offlineBehavior) ‘at’ (location)

| (controlCommands) | ‘with’ (stringLiteral) |
(onlineBehavior) = ‘trigger’ (condition)

| ‘trigger_once’ (condition)

| ‘trigger_change’ (condition)

| ‘print’ (identifier)

| ‘snapshot’ (condition)
(offlineBehavior) = ‘filter’ (identifier list) ‘if’ (condition)

| ‘tag’ ‘as’ (identifier list) ‘if’ (condition)

‘with’ (identifier list)

(controlCommands) = ‘exit’ (condition)

| ‘reset’ (condition)

| ‘pause’  (condition)
{condition) = (identifier) [ (comparison) (literal) |
(location) = (stringLiteral)

Syntax 21: Observable Behavior
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(priorKnowledge) (streamKnowledge) | (specificationKnowledge)

(streamKnowledge) ‘monotone_inc’ (identifier list)
‘monotone_dec’ (identifier list)
‘past_only’ (identifier list)

‘future_only’ (identifier list)

(specificationKnowledge) = ‘efficient_fragment’
| ‘inefficient_fragment’
| ‘evaluation_order’ (identifier list)

Syntax 22: Prior Knowledge

(macroDef)

‘macro’ (identifier) ‘C (typed parameterList)‘)’
‘L’ {macroBody) ‘¥’

= €

| ‘stream’ (type) (identifier)

| ‘expression’ (expr)

| (type) (identifier)

| (type) (identifiery *,” (typed_parameterList)

(typed_parameterList) ::

(macroBody) = ¢ | (macroBody) (lola-format)

Syntax 23: Macros
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