Performances and limitations of metal supported cells with strontium titanate based fuel electrode: *a step towards the next generation of solid oxide cells*

<u>**R. Costa*1**</u>, F. Han¹, P. Szabo¹, V. Yurkiv², R. Semerad³, L.Dessemond⁴ <u>*remi.costa@dlr.de</u>

German Aerospace Center, Stuttgart, Germany
 University of Illinois, Chicago, USA
 Ceraco GmbH, Ismaning, Germany
 CNRS-Universite des Alpes, Grenoble, France

Knowledge for Tomorrow

Motivation: towards the next generation SOC

1 st gen.	2 nd gen.	3 rd gen.	4 th gen.
ESC	ASC	MSC	
Limited power density Robustness	High power density Sulfur poisoning Fast thermal cycling Redox Cycling	High power density Sulfur poisoning Fast thermal cycling Redox Cycling	High power density Sulfur resistant Thermal cycling Redox Cycling Low cost
Stationary Transportation	Stationary Transportation	Stationary Transportation	Stationary Transportation

Flexible architecture for multiple applications Which materials for the next generation of SOCs?

Why metal Supported Cells ?

- To Replace ceramic components by metals
- Operating temperature > 600 °C
- Atmosphere: Hydrogen / or Synthetic Gas, Air
- Reversible operation

Table 1

Summary of candidate support metals.

Metal	CTE (ppm K ⁻¹)	Cost (\$/kg 2009)	Relative oxidation resistance
NiCrAlY	15-16	63	Excellent
Hastelloy-X	15.5-16	22	Excellent
Ni	16.5	18	None ^a
Ni-Fe (1:1)	13.7	9	None ^a
300-Series stainless steel	18-20	2	Poor
400-Series stainless steel	10-12	2	Very good

Note that CTE of electrolytes (YSZ, CGO, LSGM) are 10-12 ppm K⁻¹.

M.C. Tucker / Journal of Power Sources 195 (2010) 4570-4582

Key performance factors

Robustness

Red-ox cycles

Selection for the next generation with metallic substrates

- Improving durability of the metallic substrate
 - Implementing alumina forming alloys
- Enhancing Sulfur tolerance and redox stability at the anode
 - Perovskite based anode materials
- Improving gas tightness while reducing thickness of electrolyte
 Thin film multi layer electrolyte
- Avoiding High T sintering in reducing atmosphere
 - o low T processing in air

 $La_{0,1}Sr_{0,9}TiO_{3-\alpha}$

screen printing

Materials

Cathode : $La_{0,4}Sr_{0,6}Co_{0,2}Fe_{0,8}O_{3-\alpha}$ Electrolyte: 8-YSZ / 10-CGO Composition of the anode: CGO-LST (w/o 5-10%Ni)

Metallic substrate at the fuel side

Manufacturing

DLR.de • Chart 8 > FDFC2017 > R.Costa • Performance & Limitation of MSCs > 1st of February 2017

MSC with ferritic steel substrate

DLR.de • Chart 9 > FDFC2017 > R.Costa • Performance & Limitation of MSCs > 1st of February 2017

MSC with Metal Foam Substrate

Microstructure: Hermiticity of the electrolyte

Gas tightness improved by 1 order of magnitude (compared with PS) Material consumption reduced by 1 order of magnitude

- PVD: 1,2mg/cm² of YSZ + 1,5mg/cm² of CGO
- PS MSCs: 20mg/cm² of YSZ

Performance

ITM (ferritic stainless steel) vs NiCrAI (w. LST:NIO) (Anode Functional Layer: LST:CGO w 5-10wt%Ni) – 16cm²

@ 750°C 1slpm H_2 (w. H_2O)/ 2slpm air

OCV: ca. 1V (!!! Pinhole !!!) (Electronic transport in electrolyte?)

Power density at 0,7 V ca. 320 mW/cm² (improved up to 450 mw/cm²)

Performance nearly independant in tested condition from the substrate (Manufacturability)

Interfaces and Electrodes aged during operation Metal foam substrate - operation 1500 hours

Degradation of interfaces multi-layer electrolyte

interfaces in Electrolyte

Fine pores in the PVD layer Sintering of the nano-porous Layer

No measured influence on leak rate Impact on apparent resistivity of the layer an ionic transfer (?)

Cation diffusion

Increase of electronic transport?

DLR.de • Chart 14 > FDFC2017 > R.Costa • Performance & Limitation of MSCs > 1st of February 2017

Degradation of interfaces *Redox cycles (30 min in O*₂ @750°C)

No fatal failure of the electrolyte O NiCrAl « armored » substrate?

Performance still affected Cracks due to repeated volume expansion of nickel during oxidation

Ni rearrangement?

Up-scaling

- O size up to 90 mm x 100 mm
- O moderate OCV (!!! pinholes !!!)
- O Power density for 1 level stack at 166 mW/cm² @ 750 °C and at 0,7 V

1cm

O adapt sealing solution in order not to age the interfaces and electrolyte (Low T sealing)

Conclusion & Perspectives

- metal supported cell with LST were produced. Processing route has been designed to tackle requirements for manufacturing.
- **O** Thin film electrolyte technology developed and demonstrated.
- Power Density > 400 mW / cm² at 750°C and 0,7V is obtained. Addition of nickel was necessary to enhance kinetic at the fuel electrode.

- OCV drop of less than 2% for 50 forced redox cycles (30 min in Oxygen) at 750°C
 Integrity of the electrolyte is maintained but delamination of Anode functional layer is observed
- **O** Cell-Architecture can be up-scaled at stack size and is economically realistic

O Degradation of the interfaces in the multi-layer electrolyte (Lower operating T)
O Both fuel electrode are subject to degradation (new set of materials)
O Investigation in electrolysis operation

Acknowledgements

This work was funded by the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n°303429.

Thanks for your attention!

