
 
Performances and limitations of metal supported cells 

with strontium titanate based fuel electrode:  
a step towards the next generation of solid oxide cells 
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Motivation: towards the next generation SOC 
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4th gen. 
 

High power density 
Sulfur resistant 
Thermal cycling 
Redox Cycling 

Low cost 
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Limited power density 
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Flexible architecture for multiple applications 
Which materials for the next generation of SOCs? 
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Why metal Supported Cells ? 

1st gen. 
 

2nd gen. 
 

3rd gen. 
 

ESC 
 

ASC 
 

MSC 
 

Electrolyte 

Cathode 

Anode 

M.C. Tucker / Journal of Power Sources 195 (2010) 4570–4582 

 To Replace ceramic 
components by metals 

 Operating temperature > 
600 °C 

 Atmosphere: Hydrogen / 
or Synthetic Gas, Air 

 Reversible operation 
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Key performance factors 

Materials Manufacturing 

Microstructure / Architecture 

Function 

Catalysis 
Sealing 

TEC 
Reactivity 

… 

Robustness 
Red-ox cycles 

Contact 
Fuel Utilization 

Gas Transport 
Balance of Plant 

Life Time 
Reliability 

Start-up time 
Poisoning 

… 

 To produce kWh 
 To store Energy 
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Selection for the next generation with metallic substrates 

 Improving durability of the metallic 
substrate 
o Implementing alumina forming alloys 

 
 Enhancing Sulfur tolerance and redox 

stability at the anode 
o Perovskite based anode materials 

  
 Improving gas tightness while reducing 

thickness of electrolyte 
o Thin film multi layer electrolyte 

 
 Avoiding High T sintering in reducing 

atmosphere  
o low T processing in air 

screen printing 

La0,1Sr0,9TiO3-α 
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Materials 

Foam NiCrAl #01 
450µm pore size 

La0,1Sr0,9TiO3-α 

Metallic substrate at the fuel side 

+ 

NiO + La0,1Sr0,9TiO3-α (50:50) 
2 

ITM 
With 5-10wt% catalytic nickel 

Cathode : La0,4Sr0,6Co0,2Fe0,8O3-α 
Electrolyte: 8-YSZ / 10-CGO 
Composition of the anode: CGO-LST (w/o 5-10%Ni) 

1 
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Manufacturing 

Firing air  
1000°C 

screen printing 
or lamination 

Anode deposition 

 
dip-coating + 
pressing or 
commercial 

Substrate Electrolyte deposition 

Dip-coating + PVD 
(T<1000°C) 

Infiltration of catalytic 
Nickel (ca. 5wt%)  

Firing air  

Cathode deposition 

screen printing 

Electrochemical 
Testing 

 Tmax processing: 1000°C 
 Atmosphere: air or low Po2 for PVD coating 
 No pre-reduction of La0,1Sr0,9TiO3-α 
 Conditioning and testing of cell at max. 800°C 

 No Plasma Spraying 



MSC with ferritic steel substrate 
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MSC with Metal Foam Substrate 
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Microstructure: 
Hermiticity of the electrolyte 

P. Szabo, etc. , ECS Trans. 25 (2) (2009) 175–185. 

SOA MSCs DLR 2010 

2016 

GDC-YSZ Electrolyte 

LSCF Cathode 

LST-GDC(7%Ni) Anode 

Substrate 

3 µm 

100 µm 

Gas tightness improved by 1 order of magnitude 
(compared with PS) 
Material consumption reduced by 1 order of 
magnitude 
 
 PVD: 1,2mg/cm² of YSZ + 1,5mg/cm² of CGO 
 PS MSCs: 20mg/cm² of YSZ 

!!! Sensitive to Pinholes!!! 
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Performance 
ITM (ferritic stainless steel) vs NiCrAl (w. LST:NIO) 

(Anode Functional Layer: LST:CGO w 5-10wt%Ni) – 16cm² 

@ 750°C 1slpm H2 (w. H2O)/ 2slpm air 
OCV: ca. 1V (!!! Pinhole !!!) (Electronic transport in electrolyte?) 

Power density at 0,7 V ca. 320 mW/cm²  (improved up to 450 mw/cm²) 
Performance nearly independant in tested condition from the substrate (Manufacturability) 

 

ITM (ferritic stainless steel)  NiCrAl (w. LST:NIO) 
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degradation of interfaces 
contact between ionic conductors 
  

degradation of electrodes 
anode & cathode  

increase of Rs and Rpol  
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Interfaces and Electrodes aged during operation 
Metal foam substrate - operation 1500 hours 

Assignment of 
degradation based 
electrokinetic 
modeling 

V. Yurkiv et al., Journal of Power Sources, 287 (2015) 58 - 67  



Degradation of interfaces 
multi-layer electrolyte 

Fine pores in the PVD layer 
Sintering of the nano-porous Layer 

 
No measured influence on leak rate 

Impact on apparent resistivity of the layer an 
ionic transfer (?)  

 
 
 

2 µm 

> FDFC2017 > R.Costa  • Performance & Limitation of MSCs > 1st of February 2017 DLR.de  •  Chart 13 

200 nm 200 nm 

Cathode (Cobalt source) 

CGO 

8-YSZ 

Anode LST - CGO 2 µm 

Cation diffusion 

interfaces in Electrolyte 

8-YSZ NP 
8-YSZ PVD 

CGO PVD 

Increase of electronic transport? 
 
 
 

Before After 



Degradation of interfaces 
Redox cycles (30 min in O2 @750°C) 

No fatal failure of the electrolyte 
 NiCrAl « armored » substrate? 
 
Performance still affected  
Cracks due to repeated volume expansion of 
nickel during oxidation 
 
Ni rearrangement? 
 
 
 

 
 

 
 

ASC (5x) 
OCV drop > 20% 

MSC (50x) 
OCV drop < 2% 

Pow
er density (m

W
 / cm

2) 
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ΔPD≈30% 
ΔPD≈70% 



Up-scaling 

 size up to 90 mm x 100 mm 
 moderate OCV ( !!! pinholes !!!) 
 Power density for 1 level stack at 166 mW/cm2 @ 

750 °C and at 0,7 V  
 adapt sealing solution in order not to age the 

interfaces and electrolyte (Low T sealing) 
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Test running… 

1cm 



Conclusion & Perspectives 
 metal supported cell with LST were produced. 

Processing route has been designed to tackle 
requirements for manufacturing. 

 Thin film electrolyte technology developed and 
demonstrated. 

 Power Density > 400 mW / cm2 at 750°C and 0,7V is 
obtained. Addition of nickel was necessary to 
enhance kinetic at the fuel electrode. 

 OCV drop of less than 2% for 50 forced redox cycles (30 min in Oxygen) at 750°C 
 Integrity of the electrolyte is maintained but delamination of Anode functional layer is observed 
 
 Cell-Architecture can be up-scaled at stack size and is economically realistic 
 
 Degradation of the interfaces in the multi-layer electrolyte (Lower operating T) 
 Both fuel electrode are subject to degradation (new set of materials) 
 Investigation in electrolysis operation 
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Thanks for your attention! 
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