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Abstract—Satellite Image Time Series (SITS) are widely used
in monitoring the Earth’s changes for various applications such
as land-cover evolution analysis. In this paper, we propose an
approach based on Latent Dirichlet Allocation (LDA) which
considers spatial and spectral information to measure the land-
cover changes in multispectral SITS. For our experiments,
we focus on the vegetation dynamics of the Doñana National
Park (in southwestern Spain) using a Landsat and a Sentinel-2
SITS dataset. The proposed approach represents each image by
Normalized Difference Vegetation Index (NDVI) and tiles it into
smaller patches. The patches are then modeled as Bag-of-Words
(BoW) and LDA is applied to them in order to discover the
latent structure of the image. The divergence between the latent
structures of any two consecutive images is then considered as
the measure of change. Results show that the changes measured
by the proposed approach can represent the vegetation dynam-
ics of the region of interest. Moreover, comparing the results
obtained from the two datasets demonstrates that using high-
level information allows the proposed approach to measure the
changes independent of the sensor. This will support long-term
monitoring through combining various available data.

I. INTRODUCTION

The availability of Satellite Image Time Series (SITS) has

broadened their applications to a wide variety of research

domains in recent years. They reveal the Earth’s changes

over time which allows monitoring, analyzing, and charac-

terizing the dynamics of various phenomena over the years. A

number of previous research studies in land-cover and land-

use analysis have demonstrated the necessity of long-term

SITS for characterizing natural variability trends in seasonal to

decennial scales [1]–[3]. Dı́az-Delgado et al. [1] used a long-

term time series of Landsat-5 and Landsat-7 images during

1974 to 2014 for assessing the hydroperiod trends of the

marshes (i.e., a wetland) in Doñana National Park. Throughout

their research, various maps have been created and validated

based on several in-situ campaigns. Tan et al. [2] applied

a classification-based approach to a long-term SITS dataset

for monitoring land-cover and land-use dynamics over Zigui

County, China. Costachioiu et al. [3] showed the benefits

of long-term SITS (over 25 years) in urban development

monitoring. They classified intra-annual image stacks in a

supervised manner and compared the results to population

dynamics.

Recently, the European Commission has founded an Earth

Observation (EO) programme, namely Copernicus, in order

to ensure the continuity between operational missions and

to provide reliable and up-to-date information for supporting

long-term global environment and security monitoring. The

operational needs of Copernicus are met through the launching

of the Sentinel missions, constellations of satellite pairs. For

example, the Sentinel-1 mission, providing Synthetic Aperture

Radar (SAR) data acquisitions with different spatial resolu-

tions (from 5 m to 30 m), attempts to provide continuity

to the ENVISAT mission that lost contact in 2012 [4]. In

the case of optical imagery, the Sentinel-2 mission, offering

multispectral images with 13 spectral bands in different spatial

resolutions (from 10 m to 60 m), aims at supporting the

Landsat mission [5] which is providing images with various

spatial resolutions (from 30 m to 120 m) since 1972.

In order to benefit from the continuity and complementarity

of the data provided by such missions, developing approaches

which are less sensitive to the different properties of the sen-

sors being used (e.g., resolution, spectra), is in high demand.

Ye et al. [6] proposed an approach for SAR SITS classifi-

cation based on Latent Dirichlet Allocation (LDA) generative

model [7] and characterized the images by their latent semantic

structures. They established a multilayer model between the

low-level image features and the high-level scene to learn

the latencies which are more robust against acquisition-related

dissimilarities between different images of a scene.

In this paper, we propose an approach for measuring the

land-cover changes in multispectral SITS based on LDA.

It considers spatial and spectral information to discover the

images’ latent structures which are then used to compute the

changes in the land-covers over time. Our experiments are

focused on the vegetation dynamics of the Doñana National

Park due to the essential role of its marshlands in western

Europe’s ecosystem [1]. In order to evaluate the general-

izability of our proposed approach for SITS datasets from978-1-5386-3327-4/17/$31.00 c©2017 IEEE



different sensors in support of the continuity missions, we

use a Landsat and a Sentinel-2 SITS dataset. Results show

that the changes measured by the proposed approach are

able to represent the vegetation dynamics of the study area.

Additionally, comparing the results obtained from the two

datasets demonstrates that using high-level information allows

measuring the changes regardless of the sensor. This will

help long-term monitoring through the combination of various

available data (e.g., continuity missions).

II. DATASET DESCRIPTION

Our study zone is the protected area of Doñana National

Park in southwestern Spain. The Doñana marshes are consid-

ered as the largest sanctuary for migratory birds in western

Europe. Therefore, monitoring its land-cover changes is in

high demand by decision-makers for an effective management

of the park [1], [8]. The Landsat and Sentinel-2 SITS datasets

used in our experiments are based on the WGS84 coordi-

nate reference system. The images are located between the

northwestern coordinates (-6.905383W, 37.221228N) and the

southeastern coordinates (5.957231W, 36.76N). The Landsat

dataset is composed of 18 multispectral images (nine Landsat-

5 and nine Landsat-7 images), of 3030×1474 pixels (the bands

with 30 m spatial resolution), acquired between September

2009 and August 2010. The Sentinel-2 dataset contains 14

multispectral images of the size 9362×4554 pixels (the bands

with 10 m spatial resolution), acquired from December 2015

to December 2016. Both datasets cover periods of one year

allowing to study seasonal land-cover changes.

III. METHODOLOGY

Multispectral images allow representing the most relevant

information to every application through spectral indices,

combinations of spectral bands (bs) validated based on the re-

flectance properties of the features of interest. In this paper, we

represent the multispectral images by Normalized Difference

Vegetation Index (NDVI), a green vegetation indicator, in order

to study land-cover dynamics. While for the Landsat images

NDV I = b4−b3
b4+b3

, for the Sentinel-2 images NDV I = b8−b4
b8+b4

.

LDA is a probabilistic generative model which discovers

the latent structures of data collections as sets of topics [7].

In our approach, LDA is applied separately to the NDVI

representation of each image to discover K topics, where

K = 7 based on a scientific guess. The topics are then used

for computing the changes between the images.

A. Applying LDA to the Images

The NDVI representations of the images are split into

smaller patches so that the corresponding patches of the

Landsat and the Sentinel-2 images cover the same area on

the ground. In our experiments, the patch sizes of 9 × 9 and

27 × 27 pixels were selected for the Landsat and Sentinel-2

images, respectively, due to their different spatial resolutions.

These patch sizes are compromises between small patches

keeping the semantic analysis simple and bigger patches

capturing the spatial context of objects. Then, we compute the

local primitive features of each image patch by vectorizing

a neighborhood of 3 × 3 pixels around every pixel which

results in a set of nine-dimensional feature vectors. After

that, for each dataset, 1% of all the computed feature vectors

are randomly sampled and k-means clustering is applied to

them in order to generate dictionary of NV visual words,

V = {v1, v2, ..., vNV
}. The number of clusters for both

datasets was empirically set to 50.

The patches are then modeled as Bag-of-Words (BoW),

where each d-th patch of the i-th image is repre-

sented as sequences of Nd visual word-tokens, wi
d =

{wi
1d, w

i
2d, ..., w

i
Ndd

}, where the visual word-tokens are drawn

from V . Next, LDA is applied to the BoW models in order

to discover the latent structure as a set of topics, T i =
{ti1, t

i
2, ..., t

i
K}. The topics are multinomial distributions over

the visual words, denoted by βi. The distribution of the topics

within each d-th patch is determined by a K-dimensional

Dirichlet random variable θid. In order to generate each d-

th patch of the image Ii, LDA chooses θid ∼ Dir(α), where

α parametrizes the Dirichlet distribution. Next, for each n-

th visual word-token, LDA samples a topic for the topic-

token zind from Mult(θid). Then a visual word is picked

for wi
nd from the multinomial probability distribution over

the visual word dictionary conditioned on the selected topic,

p(wi
nd|z

i
nd;β

i). For estimating the model parameters α and

β, and inferring the posterior distributions θ, LDA uses a

variational Expectation Maximization algorithm [7]. Using the

model parameters, the probability of each wi
nd is:

p(wi
nd|θ

i
d;α, β

i) = p(θid;α)
∑

zi

nd

p(zind|θ
i
d) p(w

i
nd|z

i
nd;β

i).

(1)

B. Computing the Changes Using LDA

For computing the changes between a sequence of two

images, the distribution of the generated words by LDA for

each d-th patch of the earlier image (Ii), which is computed

based on Equation 1, is compared to that of its corresponding

patch in the later image (Ii+1). To this end, to each image

patch its most frequent topic is assigned as:

wd → tmax = argmax
j

{p(tj |θd) p(θd|α)}, j ∈ [1,K]. (2)

Then the divergence of the topic assigned to every d-th patch

of Ii is computed to that of assigned to the corresponding

patch of Ii+1, using Kullback-Leibler divergence [9],

DKL(t
i
max||t

i+1
max) =

NV∑

l=1

p(vl|t
i
max) ln

p(vl|t
i
max)

p(vl|t
i+1
max)

. (3)

DKL is not symmetric as DKL(t
i
max||t

i+1
max) 6=

DKL(t
i+1
max||t

i
max); therefore, it fulfills the assumption

that the changes in SITS occur in chronological order.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Throughout our experiments we address vegetation changes

of three significant land-cover classes including two types of

irrigated agriculture fields (Rice and Berries) and Marshlands.



Rice Berries Marshland

Fig. 1: Manual annotation of the target land-cover classes.

Index Landsat (2009/2010) Sentinel-2 (2015/2016)

1 23 Sept – 09 Oct 01 Dec – 12 Dec

2 09 Oct – 02 Nov 12 Dec – 09 Mar

3 02 Nov – 04 Dec 09 Mar – 08 Apr

4 04 Dec – 29 Jan 08 Apr – 22 May

5 29 Jan – 06 Feb 22 May – 07 Jun

6 06 Feb – 03 Apr 07 Jun – 06 Jul

7 03 Apr – 27 Apr 06 Jul – 20 Jul

8 27 Apr – 05 May 20 Jul – 26 Jul

9 05 May – 21 May 26 Jul – 08 Aug

10 21 May – 06 Jun 08 Aug – 05 Sept

11 06 Jun – 22 Jun 05 Sept – 04 Oct

12 22 Jun – 30 Jun –

13 30 Jun – 16 Jul –

14 16 Jul – 01 Aug –

15 01 Aug – 25 Aug –

TABLE I: Time intervals corresponding to the indices of the

plots in Fig. 2 and Fig. 3.

In order to analyze the change dynamics for these land-cover

classes, a ground truth annotation was manually generated

based on the information provided in [1], [8] and [10], which

is shown in Fig. 1. The results were then validated based

on the previous studies of land-cover changes in the Doñana

National Park [1], [8], [10]–[13]. Moreover, the results were

qualitatively evaluated by a group of experts, knowledgeable

on the land-cover of the Doñana National Park.

Fig. 2 and 3 demonstrate the vegetation change dynamics in

the three land-cover classes, where TABLE I depict the time

intervals in which the changes were measured. Fig 2 (a) and (b)

represent the computed change as DKL for the Landsat and

Sentinel-2 datasets, respectively. In order to be comparable,

the results were normalized by the time intervals. According to

Fig. 2 (a), marshlands experience a significant change during

winter (04 Dec – 06 Feb) which is due to flooding. This

is consistent with the flooding cycle of the region reported

in [11]. Comparing to the results obtained from the Land-

sat dataset, Sentinel-2 dataset does not show a considerable

change in marshlands. According to [12], in 2015/2016 when

the Sentinel-2 images were captured the area was fully covered

by the flood water and the region experienced a dryer year

as compared to 2009/2010 when the Landsat images were

captured. Therefore, the range of the vegetation dynamics in

2009/2010 was larger than that of in 2015/2016.
Fig. 3 show the change dynamics for the target classes as

the differences between NDVI values of consecutive images

(blue curves) versus the change dynamics computed based on

our approach (red curves). The first and second rows present

the results based on the Landsat and Sentinel-2 datasets,

respectively. The figure demonstrates that the change dynamics

computed by our approach has similar patterns as the NDVI

does in the most cases. Fig. 4 visualizes examples of the
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Rice Berries Marshland

Fig. 2: Changes computed based on the (a) Landsat and (b)

Sentinel-2 datasets for the three target land-cover classes. The

time intervals are depicted in TABLE I.
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Fig. 3: Change dynamics as the differences between NDVI

values (blue curves) versus the change dynamics based on our

approach (red curves). (a–c) and (d–f) present results based

on the Landsat and Sentinel-2 datasets, respectively. The time

intervals are depicted in TABLE I.

vegetation changes computed by our approach. According to

Fig. 3 (d), large changes in marshlands occurred between

04 Dec and 06 Feb which is also obvious in Fig. 4 (a). In

February, the marshlands were covered by water and therefore,

there was only slight change in the water borders according

to Fig. 3 (d) and Fig. 4 (b). This means that the flood started

draining and new vegetation was growing instead. In April and

May, almost all the flooding water drained from the region

and small plants were growing resulting a large degree of

vegetation change in the marshlands, Fig. 3 (d) and Fig. 4 (c).

As the next example, we analyze the rice paddies’ dynamics.

According to Fig. 3 (a) and (d), from late May to early

July there were significant changes in both datasets. This

period is the beginning of the rice plantation seasons and

therefore, according to [12], the vegetation mass increases

steeply. However, after these periods, the change in the

vegetation mass decreases exponentially until the rice grains

become straw. As more grains turn yellow, the change exhibit

a quadratic growth until the harvest time, from late September

to late October. Fig. 4 (d–f) and (g–i) visualize the vegetation

changes in rice fields between May and August based on the

Landsat and Sentinel-2 datasets, respectively. According to



(a) 04 Dec – 06 Feb (Landsat) (b) 06 Feb – 03 Apr (Landsat) (c) 03 Apr – 05 May (Landsat)

(d) 21 May – 06 Jun (Landsat) (e) 06 Jun – 30 Jun (Landsat) (f) 30 Jun – 01 Aug (Landsat)

(g) 22 May – 07 Jun (Sentinel-2) (h) 07 Jun – 06 Jul (Sentinel-2) (i) 06 Jul – 08 Aug (Sentinel-2)

min max 

Fig. 4: Demonstration of the vegetation changes computed by our proposed method. (a–c) in marshlands between December

and May based on Landsat, (d–f) in rice fields between May and August based on Landsat, and (g–i) based on Sentinel-2.

Fig. 4 (d) and (g), some rice paddies experienced a consid-

erable change in May 2010, whereas in May 2016 the whole

rice plantation area largely changed. While in June 2010 the

change increased in the rice paddies, in June 2015 the changes

slightly decreased, as seen in Fig. 4 (e) and (h). In both years,

the vegetation mass of the rice paddies experienced a gentle

change in July, Fig. 4 (f) and (i). Additionally, comparing the

computed changes in Fig. 4, the rice paddies were cultivated

more homogeneously in 2015, as the whole area was changing

similarly. According to Fig. 3 (b) and (d), the Landsat dataset

shows a significant vegetation mass change in the berry fields

in October 2009; however, according to the Sentinel-2 dataset,

in 2016 the fields experienced this change in August.

V. CONCLUSION

In this paper, we proposed an approach for land-cover

change analysis based on LDA. For our experiments we

used a Landsat and a Sentinel-2 SITS dataset of the Doñana

National Park. Results show that the changes measured by

the proposed approach is able to represent the vegetation

dynamics of the study area. Additionally, comparing the results

obtained from the two datasets demonstrates that using high-

level information allows the proposed approach to measure the

changes regardless of the sensor. This will help long-term land-

cover monitoring by combining various available data. For a

future work, one can further analyze the changes measured by

the topics based on other spectral indices.
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