Green Propellant Substituting Hydrazine: Investigation of Ignition Delay Time and Laminar Flame Speed of Ethene / Dinitrogen Oxide Mixtures

Th. Kick, J.H. Starcke, C. Naumann*
Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

Abstract
The combustion properties of propellants like ethene/dinitrogen oxide mixtures that have the potential to substitute hydrazine/dinitrogen tetroxide in chemical propulsion systems are investigated. In support of CFD-simulations of new rocket engines powered by green propellants ignition delay times and laminar flame speeds of ethene/dinitrogen oxide mixtures diluted with nitrogen have been measured at atmospheric and elevated pressures aimed for the validation of reaction mechanism. Furthermore, the diluents argon and carbon dioxide have been tested with respect of the influence of their chaperon efficiencies on ignition delay time.

1. Introduction
Hydrazine gives the best performance and reliability as a rocket fuel, but it has a high freezing point and is too unstable for use as a coolant. Hydrazine derivatives like monomethyl hydrazine (MMH) and unsymmetrical dimethyl hydrazine (UDMH) are used for spacecraft propulsion applications in different technological contexts. But all fuels have the same disadvantage: they are highly toxic. Today, hydrazine consumption for European space activities is in the order of 2-5 t per year. However, if the impact of the REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) regulation should come into full force in the upcoming years, REACH will severely restrict its use in Europe, although the propellant may remain available from current sources. Nevertheless, green propellants for European space activities are an accepted challenge for research and for technology development. Similar to research programmes in the U.S. initiated by DARPA [1-2], DLR investigates the combustion properties of propellants like ethene/dinitrogen oxide mixtures that have the potential to substitute hydrazine/dinitrogen tetroxide in chemical propulsion systems [3-4]. Data from model combustors operated at DLR’s rocket propulsion test site at Lampoldshausen (Germany) in combination with investigations of fundamental combustion properties provide valuable test cases to be analysed by CFD computations, thus gaining better insights to the specific design requirements of new rocket engines powered by green propellants.

2. Specific Objectives
This work aims to validate a public domain reaction model for the simulation of ethene / dinitrogen oxide combustion. Ignition delay time measurements with different diluents and laminar flame speed measurements of nitrogen diluted C2H4/N2O-mixtures at atmospheric and elevated pressures provide a comprehensive validation data basis that could help to contribute to the understanding of the combustion of green propellants and supporting CFD simulations with a validated reaction scheme.

3. Experiments
3.1. Ignition Delay Times
The experiments were carried out at DLR’s shock tube facility at Stuttgart. The shock tube used has an internal diameter of 98.2 mm. It is divided by aluminium diaphragms into a driver section of 5.18 m and a driven section of 11.12 m in length. Driver and driven section are separated by a small intermediate volume establishing a double-diaphragm operation. The driver section was loaded with mixtures of helium and argon controlled by Bronkhorst mass flow controllers to achieve tailored interface conditions. The driven section was pumped down to pressures below 10^-6 mbar by a turbomolecular pump. Stoichiometric mixtures of C2H4 / N2O diluted with argon, nitrogen, or carbon dioxide were prepared manometrically in stainless steel storage cylinders, which were evacuated using a separate turbomolecular pump. Gases used were delivered by LINDE AG (N2O: 99.999%, C2H4: 99.95%, diluent N2: 99.9995% (ECD), Ar: 99.9999%, CO2: 99.9993%). Dilutions of 1:5 with argon, nitrogen and a bath gas mixture containing 30% CO2 / 70% Ar, and dilution of 1:2 with CO2 were applied to stoichiometric C2H4 / N2O mixtures. Due to the very short deflagration-to-detonation times, the dilution reduces the dynamic load to the shock tube during the post-ignition period after shock-heating the reactive mixtures to initial pressures of \(p = 1, 4 \) and \(16 \) bar behind reflected shock waves. The shock speed was measured over three 200 mm intervals using four piezoelectric pressure gauges (PCB 113B24). The temperature and pressure behind the reflected shock wave were computed from the measured incident shock speed and the speed attenuation using a one-
dimensional shock model. The estimated uncertainty in reflected shock temperature is less than ±15 K for argon as bath gas in the temperature range of our measurements.

Ignition was observed by two detection methods. First, by measuring pressure profiles with piezoelectric gauges (PCB 113B24 and Kistler 603B) located at a distance of 10 mm to the end plate. Both pressure gauges were shielded by either 1 mm polyimide or RTV106 high temperature silicone rubber to reduce heat transfer and thus signal drift. Second, for determining ignition delay times, the CH* emission at 431 nm, at the same measurement plane 10 mm to the end plate (radial) and through the end plate window (axial), was selected by narrow band pass filters (Hugo Anders, FWHM = 5 nm), detected with photomultipliers (HAMAMATSU R3896) and amplified by logarithmic amplifiers (FEMTO HLVA-100). All ignition delay time values shown in this paper were determined by measuring the time difference between the initiation of the system by the reflected shock wave at the end plate and the occurrence of the CH* maximum at the side port 10 mm away (see Figure 1).

Figure 1: Pressure and emission profiles for a stoichiometric 20% (C$_2$H$_4$ / N$_2$O) + 80% N$_2$ mixture at initial $T = 1173$ K and $p = 13.7$ bar

This allows for a good comparability to simulations. Furthermore, ignition delay times were corrected by an experimentally derived blast-wave propagation time delay and were compared at the highest temperatures within each series to the end plate emission characteristics for validation. The experimental setup typically allows measurements of ignition delay times up to 8 ms depending on the temperature and the gas mixture. Nevertheless, deviations at lower temperatures, i.e. at longer ignition delay times, and at higher pressures are promoted by post-shock compression effects due to the attenuation of the reflected shock front interacting with the growing boundary layer. Usually, pressure profiles of non-reactive mixtures without distortion due to heat release provide information about the post-shock compression dynamics, and a pressure profile $p = p(t)$ can be derived to be used when modelling ignition delay times.

3.2. Laminar Flame Speed

A high pressure burner system was used to measure the laminar flame speed of preheated C$_2$H$_4$ / N$_2$O gas mixtures diluted 1:2 with nitrogen. The experimental setup consists of the burner housing with the pressure control system, exhaust gas heat exchanger, the ignition system, and the flame holder. Calibrated Bronkhorst mass flow controllers were used for regulating fuel, oxidizer, and diluent as well as the air co-flow. The burning gases were delivered by LINDE AG (N2O: 99.95%, C2H4: 99.95%, diluent N2: 99.999%). The flame holder is made of copper and heated to 473 K. Bulk temperature and gas temperature in the plenum were monitored by type-K thermocouples. Contracting nozzles of different outlet diameters (2.0 to 8.0 mm) were used to stabilize the flame at different equivalence ratios and pressures. Typically, one change in nozzle diameter across the complete range of fuel equivalence ratios at one pressure was sufficient.

Figure 2: Photography of a conical flame for 50% (C$_2$H$_4$ / N$_2$O) + 50% N$_2$ at $T_{preheat} = 473$ K, ambient pressure, and an equivalence ratio of $\phi = 1.5$

Digital images of the flames were captured by a CCD camera (La Vision, Imager pro) in combination with a telecentric zoom lens (Navitar, 12x). From these images, contours and cone angles were calculated by using an edge detection algorithm. Figure 2 provides a visual impression of a rich flame at ambient pressure without housing.
proposed by Powell et al. [8], and lastly, the high
temperature dissociation reactions for N₂, NO, and
CO completed the modification. This reaction model
will be referred to as ‘GRI3.0(ext.).’

Modelling of the ignition delay times was
performed with an adapted version of CHEMKIN II
[9] with constant pressure option to ensure better
compatibility among the various mixtures, whereas
the laminar flame speed calculations were done with
Cantera’s ‘Free Flame’ model [10].

5. Results and Discussion

5.1. Ignition Delay Time

In the following figures the results of ignition
delay time measurements are presented for pressures
of \(p = 1, 4 \) and 16 bar and different bath gas
compositions, i.e. collisional partners ‘M’. Figure 3
shows the ignition delay times and modelling results
for \(M = N₂ \). For \(p = 1 \) bar the discrepancy with
respect to deviation of apparent activation energy is
noticeable. The deviation for low temperature
measurements at \(p = 16 \) bar is caused by the post-
shock compression as described in section 3.1 and
unaccounted for in the modelling (\(p = const. \)). The
ignition delay time reduction due to initial pressure
increase is reproduced.

![Figure 3: Ignition delay time of stoichiometric
C₂H₄/N₂O-mixture diluted 1:5 with \(M = N₂ \) at initial
pressures of 1, 4 and 16 bar modelled with \(p = const. \)](image)

Next, Figure 4 shows the ignition delay time
measurements for \(M = Ar \). The discrepancy with
respect to deviation of the apparent activation energy
at \(p = 1 \) bar seems to be less pronounced than for \(M = N₂ \).
However, monatomic argon is extremely sensitive to
post-shock gas dynamics. At initial pressures of \(p = 4 \)
and 16 bar, the post-shock compression causes the
acceleration of the reactive system towards ignition
due to the dynamic temperature increase at low initial
temperatures (e.g. Figure 4 for \(T < 1250 \) K).

![Figure 4: Ignition delay time of stoichiometric
C₂H₄/N₂O-mixture diluted 1:5 with \(M = Ar \) at initial
pressures of 1, 4 and 16 bar modelled with \(p = const. \)](image)

Changing the bath gas from argon to a composition
consisting of 30% CO₂ and 70% Ar results in ignition
delay times illustrated in Figure 5. Here, the reactive
systems’ apparent activation energy at \(p = 1 \) bar
seems to change at \(T = 1500 \) K, i.e. \(T^{-1} = 6.5 \times 10^{-4} \) K⁻¹.
Moreover, the effects of post-shock compression at
lower temperatures are attenuated compared to \(M = Ar \)
in Figure 4.

![Figure 5: Ignition delay time of stoichiometric
C₂H₄/N₂O-mixture diluted 1:5 with (30% CO₂ / 70 %
Ar) at initial pressures of 1, 4 and 16 bar modelled
with \(p = const. \)](image)

For a better overview, all three series at a pressure of
\(p = 1 \) bar and with the same dilution of 1:5 are
arranged in Figure 6. The tendency of the reaction
mechanism predictions with respect to the effective
collision efficiency of the bath gases, i.e. CEF(30%
CO₂ + 70% Ar) > CEF(N₂) > CEF(Ar), seems to be
reproduced by the experiments, although the slopes
are deviating.
5.2. Laminar Flame Speed

Laminar flame speeds of C\textsubscript{2}H\textsubscript{4}/N\textsubscript{2}O-mixtures have been measured at a dilution of 1:2 with nitrogen and at a preheat temperature of 473 K. Increasing the preheat temperature to 473 K anticipated the expected heat transfer to the nozzle, at least for pressures of \(p = 1 \) and 3 bar. At a pressure of \(p = 6 \) bar, compensation due to the nozzle’s bulk material was not sufficient any more. Although not measurable in the bulk, heat transfer to the outmost rim of the nozzle’s exit seemed to have increased the unburned gas temperature above 473 K, so that laminar flame speeds at \(p = 6 \) bar overlapped with those at \(p = 3 \) bar as can be noticed in Figure 8.

The predictions of the extended GRI3.0 reaction mechanism ‘GRI3.0(ext.)’ can also be seen in Figure 8. As expected from the comparison with the ignition delay time measurements for \(M = \text{N}_2 \) at \(p = 1 \) bar (see Figure 3) simulated laminar flame speeds are too slow. Also for \(p = 3 \) bar predicted laminar flame speeds are too slow compared with the measurements. If the measurements at \(p = 3 \) bar already suffer from excess heat transfer—as those at \(p = 6 \) bar do—cannot be denied unambiguously. But the trend of the measurements starting at \(p = 1 \) bar to \(p = 3 \) bar does not support this.

6. Conclusions

This contribution reports on the ignition delay and laminar flame speed measurements of diluted C\textsubscript{2}H\textsubscript{4}/N\textsubscript{2}O – mixtures. Initial pressures for ignition delay time measurements were \(p = 1, 4 \) and 16 bar, whereas laminar flame speeds were measured at pressures of \(p = 1, 3 \) and 6 bar, resp. Diluents for the ignition delay time measurements were nitrogen, argon, and a mixture of 30% CO\textsubscript{2} and 70% Ar, all at a dilution of \(d = 1 : 5 \), whereas carbon dioxide was applied at a dilution of \(d = 1 : 2 \). For the laminar flame speed measurements nitrogen at a dilution of \(d = 1 : 2 \) was used.

The GRI 3.0 reaction model has been extended with respect to collision enhancement factors and, amongst others, within a subset of sensitive nitrogen reactions according to the work of Powell et al. [8], referred to as ‘GRI3.0(ext.)’. Despite of this, predictive capability with respect to laminar flame speed remained poor. With respect to ignition delay time, largest deviations remain for stoichiometric mixtures at a pressure of \(p = 1 \) bar.
The result with respect to the validation targets (a) ignition delay times at $p = 1, 4$ and 16 bar and (b) laminar flame speed at $p = 1$ bar are not sufficiently good, so that improvement of the gas phase reaction model is the next step towards CFD combustor simulations. In addition, further investigations on high temperature hydrocarbon / nitrous oxide reaction systems and species are recommended to improve our knowledge on the elementary reaction kinetics and thermodynamics involved.

Acknowledgements

The authors thank Juan Ramon Diaz Moralejo, Abhishek Verma, Helena Eulalia Cano Fornos, Alexander Vollmer, and Bhaskar Bhatia for their support carrying out the experiments.

References

