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Abstract— In this paper we address the problem of gener- of this vector field via a passive control law. In case of a
ating asymptotically stable limit cycles for a fully actuated closed integral field, the system thus converges to a closed
multibody mechanical system through a feedback control law orbit in the configuration space. In [5] additionally a non-

Using the concept of conditional stability the limit cycle @n be . trol acti dt hi laf
designed for a lower dimensional dynamical system describg passive control action was proposed to achieve regulation o

how the original one evolves on a chosen submanifold and the final velocity along the vector field. In contrast to [4],[
the corresponding velocity space. Moreover, the controllecan ~ we aim at achieving a stable limit cycle in the state space,
be split up in two parts that can be independently designed which is achieved by regulating a virtual energy function in
and analyzed in order to reach the constraint submanifold ad 5 56 gimensional submanifold of the configuration space.
then produce the oscillation. Even if designed assuming aer This virtual functi ists of the phvsical kiaet
dimensional system, the limit cycle implies a periodic motin IS virtua ener_gy unction ponSIS SO Q physical kiae
for the whole system. energy and a virtual potential energy, which represents an
additional design element in the controller. In future wark
I. INTRODUCTION we plan to utilize the freedom in choosing this potential for
As shown in [1], [2] walking and running can be effec-achieving energy efficient motion in mechanical systemb wit
tively described as periodic tasks. In these cases it is mogempliant actuation.
important to stay on a prescribed orbit in the state space,
rather than following the exact position in time along the
desired curve. For these applications tracking a trajgctor Consider thel-DOF system
might not be the best solution, as already addressed in [3], B _ . )
[2]. Moreover in the latter the need of controlling the energ G+ dH (¢,4) ¢+ wq=0, (1)

of the system to a desired value was already recognized.\%ered -~ 0 g(q ) = H(q,4) — Hy and Hy > 0 is

this paper we solve the problem of generating a stable Iimf'ﬁe desired value of the Hamiltonian, definedfgq, 4) =
cycle for the system using directly the information on its

L (¢* +w?q?). The termdH (q,q) ¢ forces the system to

energy level. 2 - D ,

o) ) ... reach alwaysH,, obtaining a limit cycle defined by the set

Similar approaches to the problem of orbital stablllzatlorkd —{q,q | H(q,q) = Hy).

have been already shown in [4], [S], [6]. IrP][ [5] the While for a 1-DOF system., is a closed orbit in the
authprs extend the pot_entllal field controller adding POWElstate space (corresponding to a limit cycle), this is no tru
continuous terms, while in [6] the concepts of virtual, ,, nop system. The idea is then to force the system to
constraint and feedback linearization are used to obtain &« on a 1-dimensional submanifold of the configuration

clos_ed loop §ystem that generates its own periodic Stabéﬁace and produce there a limit cycle, as sketched in Fig. 1.
motion. In this paper we formulate the problem based on

the nullspace dgcomposition _introduced_ in [7] and gsed for Consider a fully actuated-DOF system, with dynamic
nullspace compliance control in [8]. In this way we thinkttha uation

several advantages can be achieved. Compared to [6] we taek

advantage of the passivity property of the system and do not M(@)g+C(q,49)qg+g(q) =71, 2
completely alter the original dynamics of the system thioug ] _ i
feedback linearization. Moreover, we completely sepatae WNe€reg, g € R" is the state of the systenr, € R” is the
problem of producing the limit cycle from the virtual con-NPUt M (g) € R™*" is the mass matrixC’ (¢, ) € R"*"
straints, instead of modifying the latter for achieving fingt. 1S the Coriolis matrix angy (g) € R™ is the gravity vector.
Nevertheless it should be also mentioned that in [6] the molé®t US assume that (g) = 0 defines al - dimensional
complicated problem of controlling an underactuated systeSuPmanifold, wheree : R™ — R"~! andJ (q) € RU"~Dxn

is considered, which here we do not take into account yef the full rank Jacobian matrix of the mapping. -
In [4] a passive control action is designed which allows to OMitting the dependences, the system can be written in

decouple the motion along a vector field from the remaininff?® form

Il. MAIN IDEA AND SYSTEM DESCRIPTION

motion. The system is then forced to follow an integral curve g=J™Mg+ zTy
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Fig. 1. Conceptual illustration of the main idea of the paper

whereJ ™™ and Z relate the old statég, ¢) to the new state
0 . Tan

(g, x,v), while
o el T

Az
A= [ \
are the inertia matrix and the Coriolis matrix after the aman
of variables.

IIl. CONTROLLER AND STABILITY ANALYSIS
In [9] we proposed the control law

et ([ Sl - 1058]) o

where D,, K, are constant positive definite matrices
d, > 0andU (q) is a virtual potential energy. With the
previous controller we obtain the closed loop system

g=J™M&+Z"

-D,
-TT

&=A," (ot 4+ Dy + K, x)
ou™

dq

(6)
b =A;" (I‘nv +d,Hv+ Z

which can be proved to have an asymptotically stable limits)

cycle. The proof of this result is based on

Theorem 1 (Asymptotic stability): Let €2 be an invariant
set forx = f(x), wherex e ¥ CR™and f : X — R™
is a Lipschitz continuous function, and I&t(x) be aC!
function defined inB, () C X such thatV (x) > 0 Vx €
B, (), V(Q) =0andV (x) <0Vx € B, (). If Qis
asymptotically stable conditionally to the largest posity
invariant set4 within M = {x € B, (Q) | V (x) = o},
then () is asymptotically stable.

The function

Va

1 1
=-&T"A e+ 2" K, x| (7)

2 2

is a C!' positive semidefinite function with negative
semidefinite derivative for the system (6).

The set

A = {(q,2,v) | z(q) =0, & =0} is the largest invari-
ant set withinM, since it is an invariant set and(q) = 0
is a necessary condition for an invariant set withi, i.e.
if (q) # 0 we leaveM.

To prove that) = {(q,v) | x(q) =0, H(q,v) = Hy}
is asymptotically stable conditionally td, we can consider
the Lyapunov function

1

1 2
s (3@ U@ ) . ®
with x (g) = 0 . We then conclude that an asymptotically
stable limit cycle for the whole system is obtained.

IV. CONCLUSIONS

We have addressed the problem of generating asymptoti-
cally stable limit cycles, for multibody mechanical system
To this end we have generalized the results for the staloiity
equilibrium points with positive semidefinite function®in
[10], in order to study the stability of limit cycles. The mai
result of the paper is that with this approach we can force
the system to evolve on a submanifold and the corresponding
velocity space where a limit cycle is designed, which can be
proven to be an asymptotically stable invariant set for the
whole system.
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