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Abstract— In this paper we review and extend some classic
results on rigid body dynamics, in order to give a symbolic
expression of the different derivatives of the matrices of the
dynamic model of a general tree-structured robot. In what
follows the matrices are differentiated with respect to time,
state and dynamic parameters. Obviously from the derivatives
of the single matrices it is possible to recover the derivatives
of the direct and inverse dynamic functions and classic results
like the regressor matrix. Moreover an iterative algorithm is
sketched which allows to compute all these derivatives as well
as the kinematics and dynamics of the robot.

I. Introduction

Because of the steady increase of the complexity of
robotic systems and their simulation and control, the dynamic
equations of motion of the robot have been analysed since
decades. Both through the Lagrangian and the Newton-Euler
approach these equations were derived and used by many
authors with different purposes and from different points
of view. Either for simulation or control both the direct
and inverse dynamic problem have been considered [1].
Among the first works on inverse dynamics for serial chain
robots there are those of Uicker [2] and Stepanenko and
Vukobratovic [3] who formulated the recursive Newton-Euler
algorithm. In order to obtain a more efficient computation,
later Orin et al. [4] reformulated their work. Hollerbach [5]
showed that also the Lagrangian formulation could provide
an equally efficient algorithm and finally Silver [6] provided
the equivalence of the two methods. Using also the results of
Vereshchagin [7], for both the inverse and the direct dynamic
problem algorithms are available withO (n) complexity.
Other authors investigated the possibility of using more
elegant and efficient tools to write the dynamics. Important
are the works of Featherstone [8], Rodriguez [9] and Park et
al. [10], where spatial operator algebra and Lie groups are
respectively used. On the other hand the necessity of solving
identification problems brought Atkeson et al. [11], Khosla
and Kanade [12], as well as Kawasaki and Nishimura [13] to
introduce the regressor matrix. Later Gautier and Khalil [14]
focused on the determination of the minimum set of inertial
parameters to reduce the computational cost and simplify
the identification. The linearity in the dynamic parameter
suggested the development of adaptive controllers like the
first one in [15] by Craig et al. In order to avoid acceleration
feedback, alternative algorithms were developed by Hsu et
al. [16] and Middleton and Goodwin [17], but it was espe-
cially thanks to the introduction of a novel regressor matrix
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that Slotine and Li [18] proved the global asymptotic stability
of their controller completely avoiding any information on
the current acceleration. An excellent algorithm to compute
such regressor matrix was presented in [19] by Yuan and
Yuan.

More recently the introduction of flexible joints has risen
the need of computing the derivatives with respect to time of
all the matrices of the dynamic model [20], [21], [22]. The
solution of other problems and analysis requires, instead,
to differentiate the matrices with respect to the state. The
controllability analysis of underactuated manipulators [23]
motivated Müller [24] to provide an efficient factorisation
for the inverse of the inertia matrix, in order to compute
its partial derivatives. On the other hand for optimisation
problems the derivative with respect to the state of the direct
and inverse dynamic function were provided in [25] and [26].
The linearisation of the dynamics is also useful in state
estimation problems and in general whenever the use of the
extended Kalman filter [27] is required.

From the discussion it follows that the problem of dif-
ferentiating the direct and/or inverse dynamic functions is a
well known and analysed problem, however a summary and
generalisation in which the derivative of each matrix of the
dynamic model is provided with respect to time, state and
dynamic parameters, it is still not present. This is the main
contribution of our paper. To this end we first present in the
next section the formulation of the dynamics for a system
like the one sketched in Fig. 1, based on the works [6], [28],
[29]. In this way we will provide the symbolic expression of
each matrix of the dynamic equation, which in the following
sections will be differentiated with respect to either time,
or state or dynamic parameters. Finally we will sketch an
iterative algorithm, totally analogue to the outward recursion
of the Newton-Euler algorithm, which will provide a simple
way to compute the derivatives. It is worth to notice that, as
it will be clear from the following analysis, the computation
of all the matrices and their derivatives is mainly solved
after the computation of the direct kinematics and differential
kinematics.

For the reader not familiar with twists and wrenches we
have collected in the appendix the expression of the matrices
used in the rest of the paper. For the twist coordinates we
have chosen the convention with the linear part for the top
three rows and the angular part for the bottom ones [28].
All the other matrices are defined accordingly. Nevertheless,
throughout the paper we avoid to write the explicit expression
of the matrices, so the reader used to the opposite convention
will have no problem to follow the equations.
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Fig. 1. The mechanical systems considered in the paper are general
branched connections of rigid bodies.

II. The Newton-Euler equation in body coordinates

Let us first consider a frame attached to a rigid body
(which will be indicated with the indexk) in movement with
respect to a spatial frame (which will be indicated with the
index 0). Using the body twistνk and the body wrenchf k,
the equation of motion can be written as

d
dt

(

Ad−T
0,k Λkνk

)

= Ad−T
0,k f k , (1)

whereΛk is the constant body inertia matrix and Ad0,k is the
adjoint matrix which uses an element of the Lie group (the
homogeneous transformation matrix from the inertial to the
body frame) as a linear mapping on the Lie algebra [28].
Computing the time derivative in (1) we obtain

Λkν̇k − adjT0,k Λkνk = f k , (2)

where Ȧd
−1
0,k = − adj0,k Ad−1

0,k, being adj0,k the Lie bracket
matrix which uses an element of the Lie algebra (the body
twist νk) as a linear mapping on the Lie algebra itself [28].
Finally using the property adj0,k νk = 0 we can add the term
Λk adj0,k νk to (2) without changing the equation, so that it
can be rewritten as

Λkν̇k +Ψkνk = f k , (3)

whereΨk =
(

Λk adj0,k − adjT0,k Λk

)

.
Remark 1: SinceΨk is skew symmetric (Ψk = −Ψ

T
k ) and

Λk is constant, the propertẏΛk = Ψk +Ψ
T
k is satisfied.

Remark 2: Due to the important property adj0,k νk = 0 we
can conclude that ˙σk = Ad0,k ν̇k, whereσk is the spatial twist.

Let us assume now to haveN bodies. TheN equations
of motions in the form of (3) can be written stacking the
twists in ν = col(νk), the wrenches inf = col

(

f k
)

and
using the block diagonal matricesΛ = blkdiag(Λk) and
Ψ = blkdiag(Ψk), where k = 1, ...,N. If the bodies are
constrained to each other, then it is possible to project each of
the equations in the form of (3) in the space orthogonal to the
constraint reaction forces. Using a minimal set of coordinates
q to identify the configuration and assuming a mapping in
the formνk = Jk q̇, then this is possible throughJT

k , so that

JT
[

ΛJ q̈ +
(

ΨJ + ΛJ̇
)

q̇
]

= τ − JT
Λγ , (4)

where J = col(Jk) and eachf k = f kc
+ f kγ + f kτ has been

split in

• constraint reaction forces (which disappear after the
projection, i.eJT

k f kc
= 0),

• the weight (which is linear inγ = col
(

γk
)

, beingγk the
body gravitational acceleration, i.ef kγ = −Λkγk),

• all the other external forces (which after the projection
correspond toτ, i.e JT

k f kτ = τ).
Using Remark 2 we can writeγk as the product of a configu-
ration dependent part and a constant part, i.e.γk = Ad−1

0,k γ0,
whereγ0 is the constant spatial gravitational acceleration1.

Equation (4) can be written in a more compact way as

Mq̈ + Cq̇ + g = τ , (5)

where

M =
∑

k

JT
k Λk Jk , (6a)

C =
∑

k

JT
k

[(

Λk adj0,k − adjT0,k Λk

)

Jk + Λk J̇k

]

, (6b)

g =
∑

k

JT
k Λk Ad−1

0,k γ0 , (6c)

k = 1, ...,N. While Λk is constant, each of the matrices
Jk, Ad−1

0,k and adj0,k are state dependent and are the only
quantities that must be computed to use the formulas in (6).

Remark 3: The vector g is the mapping of the weight
wrenchmγ0 in the configuration space, wherem is the total
mass. Since the weight wrench can always be thought to be
applied in the total centre of mass (CoM), it is clear that
the transpose of the matrix multiplyingγ0 in (6c) is related
to JCoM , which maps the velocity ˙q into the CoM velocity.
Writing g in terms of stacking matrices, we derive

JCoM =
1
m

PT
ΛJ , (7)

where P is the matrix obtained taking only the columns of
col

(

Ad−1
0,k

)

, k = 1, ...,N which multiply the linear part ofγ0.

III. Parameters differentiation

In order to compute the derivative of (6) with the respect
to the dynamic parameters, we will take advantage of the
linearity of the matrices in the parameters themselves.

Proposition 1: If υk andωk are the linear and angular part
of the twistνk respectively, then the momentumΛkνk can be
written as

Λkνk = A(νk)πk , (8)

where

πk =
[

mk mk rT
k Ixxk Iyyk Izzk Ixyk Ixzk Iyzk

]T
, (9)

and rk is the position of the centre of mass of thek − th
body with respect to its own frame (see Fig. 1). Moreover,
the rows ofA(νk) ∈ R6×10 for the linear momentum are

Aυ =
[

υk ω̃k O3×6

]

∈ R3×10 , (10)

and the ones for the angular momentum are

Aω =
[

0 −υ̃k ˜̃ωk

]

∈ R
3×10 , (11)

1The angular part ofγ0 is always zero, while assuming for example that

the third axis is the vertical one, then the linear part will be
[

0 0 g
]T

,
where g is the gravitational acceleration constant.
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Proposition 2 (Parameters differentiation): Given the ex-
pression of the dynamic matrices in (6) and the factorisation
presented in Proposition 1, then the derivatives of (6) with
respect to the dynamic parameters are

∂M j

∂πkh

=JT
k A(J j

k)
h , (13a)

∂C j

∂πkh

=JT
k

(

A(adj0,k J j
k + J̇

j
k)

h − adjT0,k A(J j
k)

h
)

, (13b)

∂g
∂πkh

=JT
k A(Ad−1

0,k γ0)h , (13c)

where, for example, with the superscripth we indicate the
h − th column of the corresponding matrix.

Proof: Let us just consider the computation for the
inertia matrix, since the same can be repeated for the others.
From (6) we can write

M j =
∑

k

JT
kΛk J j

k . (14)

Applying the factorisation in Proposition 1 we can write
Λk J j

k = A(J j
k)πk. Differentiating the expression with respect

to πkh , we prove the proposition.
Remark 4: From (6) and Proposition 1 is also possible to

easily compute the Slotine-Li regressorY
(

q, q̇, q̇r, q̈r
)

. Using
π = col(πk), the identity Mq̈r + Cq̇r + g = Y

(

q, q̇, q̇r, q̈r
)

π

holds, where

Yπ =
∑

k

JT
k

(

A(αk) − adjT0,k A(Jk q̇r)
)

πk , (15)

αk = Jk q̈r+adj0,k Jk q̇r+ J̇k q̇r+γk andk = 1, ...,N. Rewriting
(15) in terms of stacking matrices we obtain the expression
of the regressor

Y = JT blkdiag
(

A(αk) − adjT0,k A(Jk q̇r)
)

, (16)

k = 1, ...,N. Given the Slotine-Li regressor, the classic
regressor can be obtained replacing ˙qr = q̇ and q̈r = q̈.

IV. State differentiation

Although quite involved, the key point for the computation
of the derivatives with respect to the state is to find a
convenient factorisation for adj0,k; similarly to what we did
in Sec. III for the momentum. From (6), we can conclude
that the derivatives ofM, C and g can be computed if
the derivative ofJk, J̇k, Ad−1

0,k and adj0,k are available. The
computation ofJk and all its necessary derivatives is treated
in Sec. VI, so here we focus on the other two matrices.

In this section (with an abuse of notation) we will use
blkdiag(a) to indicate a block diagonal matrix with the
elementa repeated six times on the diagonal.

Proposition 3: The matrix adj0,k can be factorised as the
product of a constant matrix2 W ∈ R6×36 and a block diagonal
matrix Vk ∈ R

36×6

adj0,k =WVk , (17)

whereVk = blkdiag(νk) andW selects the necessary entries
from the twistνk to produce either̃υk or ω̃k.

Proposition 4: Given the factorisation of adj0,k in Propo-
sition 3 and the identityJk q̇ =

∑

h Jh
k q̇h, it follows that

∂Ad−1
0,k

∂qh
= − adjJh

k
Ad−1

0,k , (18)

∂ adj0,k
∂q̇h

= adjJh
k
, (19)

where adjJh
k

is the matrix computed usingJh
k ∈ R

6, instead
of νk ∈ R

6, while

∂ adj0,k
∂qh

= adj∂Jk
∂qh

q̇ , (20)

where in adj∂Jk
∂qh

q̇ this time νk ∈ R
6 has been replaced by

∂Jk
∂qh

q̇ ∈ R6.
Proof: Let us start considering

∂Ad−1
0,k

∂q
q̇ = Ȧd

−1
0,k = − adj0,k Ad−1

0,k , (21)

where, using Proposition 3, we can rewrite adj0,k as

adj0,k =W blkdiag
(

Jh
k q̇h

)

=
∑

h

W blkdiag
(

Jh
k

)

q̇h . (22)

Substituting (22) in (21), we obtain an equality that, being
true∀q̇ ∈ Rn, leads us to

∂Ad−1
0,k

∂qh
= −W blkdiag

(

Jh
k

)

Ad−1
0,k , (23)

which is equivalent to (18). On the other hand the differen-
tiation of (22) with respect to ˙qh results in (19), while the
one with respect toqh results in (20).

Proposition 5 (State differentiation): Given the expres-
sion of the dynamic matrices in (6) and the factorisation
presented in Proposition 4, then the derivatives of (6) with
respect to the state are

∂M
∂qh
=

∑

k

∂JT
k

∂qh
Λk Jk + JT

kΛk
∂Jk

∂qh
, (24a)

∂C
∂qh
=

∑

k

∂JT
k

∂qh

(

Ψk Jk + Λk J̇k

)

+ JT
k Λk
∂ J̇k

∂qh

+ JT
k

[(

Λk adj∂Jk
∂qh

q̇ − adjT∂Jk
∂qh

q̇
Λk

)

Jk +Ψk
∂Jk

∂qh

]

,

(24b)

∂C
∂q̇h
=

∑

k

JT
k

[

(

Λk adjJh
k
− adjT

Jh
k
Λk

)

Jk + Λk
∂ J̇k

∂q̇h

]

, (24c)

∂g
∂qh
=

∑

k

(

∂Jk

∂qh

T

Λk − JT
kΛk adjJh

k

)

Ad−1
0,k γ0 , (24d)

2In the appendix we give the expression ofW.



wherek = 1, ...,N andC is the only matrix which depends
on bothq and q̇.

V. Time differentiation

Obviously the derivatives of (6) with respect to time could
be computed using the chain rule and (24). Nevertheless, if
the derivatives with respect to the state are not required for
the considered application, it is more efficient to directly
differentiate (6) with respect to time. This is quite clear
considering that the derivative of a matrix with respect to
a vector is an order three tensor, while the derivative with
respect to a scalar is also a matrix.

Proposition 6 (Time differentiation): Given the expres-
sion of the dynamic matrices in (6), then the derivatives of
(6) with respect to the state are

Ṁ =
∑

k

J̇
T
k Λk Jk + JT

kΛk J̇k , (25a)

Ċ =
∑

k

J̇
T
k

(

Ψk Jk + Λk J̇k

)

+ JT
k Λk J̈k

+ JT
k

[(

Λkȧdj0,k − ȧdj
T
0,kΛk

)

Jk +Ψk J̇k

]

,

(25b)

ġ =
∑

k

(

J̇
T
kΛk − JT

kΛk adj0,k
)

Ad−1
0,k γ0 , (25c)

wherek = 1, ...,N.
From (25) it is clear that the only additional necessary
matrices are:̈Jk andȧdj0,k. The latter can be easily computed
using ν̇k = Jk q̈ + J̇k q̇k, instead ofνk, as can be recognised
taking the derivative of each entry of adj0,k. The computation
of J̈k is treated in Sec. VI.

Remark 5: Notice that once again the passivity property
is satisfied. In fact, since eachJT

k

(

Λk adj0,k − adjT0,k Λk

)

Jk is
a skew symmetric matrix, then

C + CT =
∑

k

J̇
T
k Λk Jk + JT

kΛk J̇k = Ṁ ,

k = 1, ...,N.
Regarding high order derivatives, we can conclude saying

that each additional differentiation of the dynamic matrices
with respect to time, requires the propagation of an additional
derivative of J̇k according to the algorithm in Sec. VI and
the knowledge of an additional time derivative of ˙q ∈ Rn.

VI. I terative Algorithm

Here we will show how to computeJk and its derivatives,
which, as seen in the previous sections, are fundamental for
the computation of all the matrices and their derivatives.

As already mentioned, the computation of the Jacobian
will be carried out with an iterative procedure which will
propagate the matrices from the root to the leaves of the
tree structured robot. This is completely equivalent to the
outward recursion of the Newton-Euler algorithm and, like
the latter, it is based on the coordinate transformation forthe
velocities, which can be formulated as

νk = Ad−1
p,k νp + ξk , (26)

where bothp and k are used to indicate a frame attached
to a rigid body, whileξk gives the relative velocity between

these two bodies. In the following we usek for the current
link and p for its parent3. Writing (26) in terms of Jacobians,
we obtain an equality that, being true∀q̇ ∈ Rn, leads us to

Jk = Ad−1
p,k J p + Ξk , (27)

whereΞk is a constant matrix completely determined by the
type of interconnection between the bodies4, such thatξk =

Ξk q̇. This concept, as discussed in [30], allows the joints
to be completely general, with any number of degrees of
freedom up to and including six5. Differentiating (27) with
respect to time, we have

J̇k =Ad−1
p,k J̇ p − adjp,k Ad−1

p,k J p , (28)

J̈k =Ad−1
p,k J̈ p − adjp,k Ad−1

p,k J̇ p

− ȧdjp,k Ad−1
p,k J p − adjp,k J̇k ,

(29)

which is used for the computation of (6), (13), (24), (25).
Moreover, because of the property

∂ J̇k

∂q̇
=
∂

∂q̇

(

∂Jk

∂q
q̇
)

=
∂Jk

∂q
, (30)

the needed derivatives with respect to the state are

∂Jk

∂qh
=Ad−1

p,k

∂J p

∂qh
− adj

Ξ
h
k
Ad−1

p,k J p , (31)

∂ J̇k

∂qh
=Ad−1

p,k

∂ J̇ p

∂qh
− adj

Ξ
h
k
Ad−1

p,k J̇ p − adjp,k
∂Jk

∂qh
, (32)

which is used for the computation of (24).
The formulas derived so far can be collected in:

Algorithm Iterative computation of the kinematics
Given q and its derivatives, for each body

• Compute the homogeneous transformation matrixTp,k

(for example through the product of exponentials for-
mula)

• Compute Ad−1
p,k (throughTp,k)

• Compute adjp,k and adj
Ξ

h
k

(throughξk andΞk)
• Propagate the Jacobian and its derivatives (eq. (27) -

(32))
• Propagate Ad−1

0,k (Ad−1
0,k = Ad−1

p,k Ad−1
0,p)

• Compute adj0,k (throughνk = Jk q̇)

which provides the informations for
1) dynamic matrices (6),
2) CoM Jacobian (7),
3) Slotine-Li regressor (16),
4) Parameters derivatives (13),
5) State derivatives (24),
6) Time derivatives (25).

Notice that, by definition, the parent of a frame attached
to a root body of the structure is the spatial frame. This

3If the bodies are numbered according to a so called regular numbering
scheme [8], it is guaranteed that during the iteration the parent’s quantities
are computed befere those of its children.

4Notice how in (27) we need only “local” informations, meaning that
Ad−1

p,k andΞk are given by the connection between the link and its parent.
5This is particularly important to model floating base robots.



means that for these bodiesJ p and J̇ p are matrices of zeros,
while Ad−1

p,0 = Ad−1
0,0 is the identity. These are actually the

informations which trigger the propagation.
Before concluding the discussion of the necessary compu-

tations in the algorithm, two points are worth to be clarified.
Remark 6: The last two steps are only necessary for the

computation ofg andC. In particular since Ad−1
0,k is only used

to computeγk, whose angular part is always zero, the only
information needed from Ad−1

0,k is R−1
0,k (see the expression

of the adjoint in the appendix). This suggest to replace the
propagation of Ad−1

0,k with the more efficient RT
0,k = RT

p,k RT
0,p.

Remark 7: The matrixΞk is clearly constant for revolute
and prismatic joints. For example, in case of a serial chain
robot with revolute joints, only thek−th column ofΞk is non
zero. Its linear part is given by−ek×ck, while the angular part
is given byek, whereck is a point on the axis of the screw
whose direction is given by the unit vectorek while qk gives
the amount of rotation around the axis (the screw coordinate
of the rotational motion [28]). Unfortunately usingq and q̇
as input for the algorithm,Ξk will not be constant for other
types of joints (e.g. universal joints). Nevertheless, choosing
a different velocity inputw it is still possible to use a constant
matrix Ξk. A clear example is the case of a free joint6, used
when modelling free floating base systems. In this case if
w itself containsξk, thenΞk is a selection matrix, such that
ξk = Ξkw. Because of this choice ˙q = Γ(q)w, whereΓ(q) is
responsible for the mapping from angular velocity to rate of
change of Euler angles, which can introduce representation
singularity [1]. MoreoverΓ(q) will appear when applying
the chain rule in (21) and (30). For example (30) becomes

∂ J̇k

∂w
=
∂

∂w

(

∂Jk

∂q
Γ(q)w

)

=
∂Jk

∂q
Γ(q) . (33)

VII. Comparisons and practical applications

The implementation aspects, the evaluation of the com-
plexity of the algorithm sketched in Sec. VI and the com-
parisons with different approaches are beyond the scope of
this paper. The same argumentations that motivated Ploen
in [29] to provide the single matrices, rather than the solution
of multiple particular inverse dynamic problems, apply also
in our case. Even the regressor could be computed solving
multiple inverse dynamic problems, but an explicit analytic
form enables inspection of the physical properties of the
manipulator, such as the determination of the minimum set
of inertial parameters. The reader interested in alternatives to
the algorithm presented in Sec. VI and to the comparisons
and performances is then referred to the works of Orin and
Schrader [31], Park [32] and Jain [33], where these topics
are extensively treated.

As practical applications, we have implemented the com-
putation of the matrices in (6) for the control algorithms
of the robot shown in Fig. 2. TORO is a torque controlled
humanoid robot developed at the Institute of Robotics and
Mechatronics, German Aerospace Center (DLR). It has 25

6A free joint is a joint which allows the motion along and around all
the three directions.

Fig. 2. TORO (TOrque controlled RObot) and its kinematics.

revolute joints, each equipped with position and torque
sensors. Using a computer with an IntelR© Xeon R© Processor
W3530 (2.80 GHz, 4 physical cores), 100 runs of the algo-
rithm take an average of 0.244 ms each. For the derivatives,
we compared the time necessary to compute the matrices
in (6) at two different instants and the one necessary for an
extended version of the code, where even the matrices in (25)
are provided as output. The average ratio between the two
approaches is 0.71 in favour of the latter. The improvement
would be even significantly higher when the differentiation
with respect to the state is required. In this case each matrix
must be computed twice for each state variable and scales
then with the number of joints.

As future application we also plan to use (16) and (24)
for identification, optimisation and adaptive algorithms.

VIII. Conclusion

In this paper we have considered the dynamic equations
of a system of interconnected rigid bodies. The focus was
essentially on the computation of the matrices of the dynamic
equations and their derivatives, even though more than this
can be easily computed once a clear formulation of the
dynamic is available (for example the Slotine-Li regressor
and the CoM Jacobian). We started with a formulation of
Newton’s third law in terms of twists and wrenches to obtain
closed form expressions for the matrices of a branched con-
nection of rigid bodies. This results in the possibility of com-
puting the derivatives in a straightforward way. Dependingon
the application (control of elastic joint robots, optimisation,
identification, etc. ), different types of differentiation are
needed (time, state or dynamic parameters). A Newton-Euler
like outward recursion for the propagation of the Jacobian
matrices, together with the formulas and remarks in the
paper, allows the reader to easily implement a library where
all the necessary informations for simulation and control can
be computed. Although the complexity was not analysed, the
computation is expected to be quite efficient since it is based
on just the first step of the Newton-Euler algorithm.

Appendix

Here we give the expression of the matrices used through-
out the paper, in caseνk =

[

υT
k ωT

k

]T
.



Given the rotation matrixRp,k ∈ S O (3) and the position
vectorpp,k ∈ R

3 as in Fig. 1, the corresponding homogeneous
transformation matrix, adjoint and Lie bracket matrices are

Tp,k =

[

Rp,k pp,k

0T 1

]

,

Adp,k =

[

Rp,k p̃p,k Rp,k

O3×3 Rp,k

]

, adjp,k =

[

ω̃k υ̃k

O3×3 ω̃k

]

.

According to this convention

Λk =

[

mk E3 −mk r̃k

mk r̃k Ik − mk r̃2
k

]

,

A (νk) =

[

υk ω̃k O3×6

0 −υ̃k ˜̃ωk

]

, W =
[

Wω Wυ

O3×18 Wω

]

,

Wω =



















































0 0 0
0 ez −ey

0 0 0
−ez 0 ex

0 0 0
ey −ex 0



















































T

Wυ =



















































0 ez −ey

0 0 0
−ez 0 ex

0 0 0
ey −ex 0
0 0 0



















































T

,

whereIk is the inertia tensor with respect to a frame oriented
as the body frame and with the origin in the CoM of the rigid
body,0 ∈ R3 andex, ey, ez are such that

[

ex ey ez

]

= E3,
being E3 ∈ R

3×3 the identity matrix.
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