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Abstract— The paper presents a new control law for elastic
joint robots that allows to regulate the energy stored in the
system to a desired value. Being able to either remove energy
from the system or inject it, oscillations can be both damped
out and induced. Therefore the control law can be used for
asymptotic regulation to a desired configuration and (in cas of
additional constraints) generation of asymptotically stéle limit
cycles. Compared to other methods, we can formally guarange
the previous property keeping at the same time the control lev
simple and easy to implement. Furthermore, using the energy
stored by the intrinsic elastic elements in the joints, higrenergy
efficiency is achieved. Simulations and experiments are also
provided, in order to further validate the theoretical results.
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Fig. 1. The DLR Hand Arm System (HASy), used to validate theotbtical
results of the paper, and conceptual representation of ffezteof the
controller in the state space.

Elastic joint robots have been lately the focus of numerous
researchers because of the capability to perform highly
dynamical, explosive and cyclic motions. The energy storegerturbation hypothesis which overcome the problem using
in the elastic elements can be exploited to increase vglocibne of the motor side states as a virtual input [8]. Although,
and reducing the feort of the motors. However, the me- at this stage, the proof allows to conclude that the osicihat
chanical design of such systems introduces often addltiong due to the existence of an asymptotically stable limiteyc
nonlinearities in the system dynamics which, along with thenly for a single joint system. In this sense, what is presgnt
underactuation problem, make the controller design motgere, can be seen as a first step towards the extension to the
challenging. For these reasons, traditionally, the i@ elastic case of our previous results [2], where (consingini
elasticity of the joint has been seen as a disturbance the system to evolve on a 1 - dimensional submanifold) no
minimize both in the mechanical and control design phasesestriction on the number of joints of the fully actuatedabb

The focus of our research is to find new anfiiclent was made.
methods to produce periodic motions that can be used inSecondly, the same control law can be used to regulate
general and in particular for locomotion [1], [2], [3], [4], the robot to a desired configuration, independently on the
[5]. Nevertheless, the contribution of this work goes aliyua number of joints. Compared to classic results for elastittjo
in two directions. robots [9], [10] also a scaling of the torque produced by the

Firstly, we provide what is to our knowledge the firstelastic elements is included. On the other hand, recertilgrot
control law that can directly induce oscillations for anapproaches have been suggested where a control strategy
elastic joint robot with no strong simplifying hypothesis.based on the energy of the system was used to damp out the
We pursue the idea already presented in our previous workscillations of an elastic joint robot [11]. In that work the
of controlling the energy in order to produce a periodicuthors could not provide a formal analysis, nor ensure the
motion. As it was mentioned there, the energy of the elastiecover of the configuration where the robot was previously
elements can be used to sustain the oscillation. This is. With the work presented in this paper we can instead,
exactly what we achieve here in the nominal case. As wa&t the price of requiring a small knowledge of the system,
will show later, it is possible to obtain a periodic motion ofguarantee asymptotic properties and keep at the same time
the link while keeping the motor still. Basically, the motorthe control law simple and easy to implement.
pumps in the required energy and then stops, letting the The paper is organized as follows: in Section Il we
spring sustain the oscillation. The method presented hepgovide the dynamic equations describing the system and
solves the problem of orbital stabilization for elasticnipi all the assumptions required to obtain the main result of the
robots without considering the rigid case as an intermediapaper, which is presented in Section Ill. Section IV coBect
step, hence without requiring computation of higher ordesimulation and experimental results obtained implementin
derivatives [6], [7], filtering and state estimation, nongle  our control law for the DLR Hand Arm System [12] shown
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Mechatronics, German Aerospace Center (DLR), Wesslingrmaey. Way to excite or damp oscillations. Section V concludes our
gianluca.garofalo@dlr.de work with a short discussion and outline of future work.
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Il. PREREQUISITES indifferently given in terms of motor or link position, since

In what follows we will consider underactuated robotdh€ two are uniquely related through the functigqn —
with elastic joints that, due to the assumptions collected i Add|t|o_na!!y, given the assumptions (A2), (A3), the
[13], can be modeled as energy-like” function

M(@)g+ C(q, 9)a+ g(a) = 7(¢) (1a) H(6, .6, 9) = %QT M(a)g+U(6.q) - U(6.0(9) . (4)

BO+r(#)=u. (1b) is a positive semidefinite function of the state and in partic

where 6, 0,6, q € R" constitute together the state of theular
system being the motor position andj the link position, AN R
u € R" is the input to the system provided by the motors, H(0.0.6.9) =0 q=10(f).q=0 ©)

M(q) € R™" is the positive definite mass matri€(q,d) € vg € Q. The proof of this property can be easily derived

R™" is the Coriolis matrix,g(q) = VqUg(Q) € R" is the ysing Lemma 2 reported in the appendix.
gravity torque vectdrandUy(q) the gravitational potential,

¢ = 0 — q collects the deflections of the springs which [ll. M AIN RESULT
connect the motors to the links(¢) = VyUk(¢) e R is the | this section we present the main result of the paper. For
torque produced by the springs aui(¢) the correspondent e sake of clarity we first report a result about the invarian

potential function. . _ o principle [15, Lemma 2], which will be used later in the
In case the robot contains not only rotational joints, Weroof.

will always consider the subsel c R" in which all the | gy 1: et & be the positive limit sete - limit set)
prismatic joints keep bounded. In this case it is well knownys o hounded solution of a dynamical system. Given some

that the following proposition holds [14] _ technical assumptions [15],@! scalar function of the state
Proposition 1. For every matrix norm there existgauch v such thatWw > 0 along the flow of the system and
that indicating with E the set whereW = 0, then t andE
62Ug(q) have nonempty intersection. Moreover if £ does not reduce
AP <B. ¥qeQ. @) to a single point, then {0 E does not contain any stable
Assumptions: In addition, the following properties are equilibrium point.
assumed Theorem 1 (Main result): Given the system (1) and the

assumptions (A1) - (A3), leKy be a positive scalak, and

* Uk(¢) is a nonlinear scalar function (A1) b, two symmetric and positive definite matrices and finally

?Ui(9) let us denote with the tilde theftitrence between a variable
2 T 2

* ¢l <& OP? § <[l v&<Q (A2) and the correspondent desired constant value (indicatid wi
e B<m (A3) the subscript “d”), then the control input

where, since8 must be positive, clearly alsai,a, > 0. U =1(#)—KyH(6,q.0, Q)(T(d’) - 9(5(9))) — K¢ — Dgb ,
Assumption (A3) in particular, as explained in [10], states (6)
that -the robot should be designed properly. Namely’ tP\‘I?/ill produce a closed loop system that will always reach the
binding forces should grow faster than the diverging forceget
betweend and g, meaning that the joint dthess should be
suficiently high to prevent the robot from falling downunder Q= {(0, 0.6,6) | 6=6g,60=0,H(bqy 00,0 = Hd}
the load of its own weight.

In [10] the problem of constructing an online gravity@nd therefore:
compensation for an elastic joint robot based on the motor(a) for Hy = 0 has an asymptotically stable equilibrium
position was solved using a static mapping between motor  point in @, g, 6, 0) = x,, Wherey, = (64, q(6q), 0, 0)
and link positions. The basic idea is to find, for any motor (b) for Hy > 0 andn = 1 has an unstable equilibrium

position, the link position which allows the elastic elemnt point in 0,09,0,4) = xo wWhereyx, = (64,q(64), 0, 0)

in the joints to compensate for the gravity term. Defining and an asymptotically stable limit cycle defined®y-
U0, q) asU(#,q) = Ug(g) + Uk(@ — ), then assumptions {(9, 0,60,0) | 6=204,0=0,H(64,0,0,0) = Hd}.

(A2), (A3) allow to conclude that the functiog: R" — R" Proof: The proof is a bit cumbersome and therefore
defined by the implicit equation split in multiple parts. The goal is to show thet — Hqg

_ _ always. First we consider a Lyapunov function that shows
Vqu (e, q)l(e,a(e)) =9(a0) -7(0-a@)=0.  (3) the stability of the invariant se® of the closed loop system.
V@ € R", exists, is unique and is a ftBomorphism [9]. Using LaSalle’s invariance principle [16] we will then prev

Therefore, the desired configuration of the robot can p@at the equilibrium poinfy, and the set2 are the only
positive limit sets for the solutions of (1) with the control

with the symbolVx(-) we are simply indicating(%f in order to law (6). Finally, using Lemma 1 and depe_nding on the value
ease the notation. of Hg, the results (a) and (b) naturally arise.



Stability: The C! function of the state which holds, without contradicting assumption (A1),
. 1, -~ R P PR Yé¢., ¢, € R" if and only if ¢, = ¢,. This implies¢ = ¢,

V(0,q.6,0) = 5KnH (6,9.6,9) + 59 Kob + 56 BO (7) andq = q, whereg, and q, are constants. Consequently,

from (1a), we geig(qy) = 7o and from the uniqueness of (3)

's such that - - that q, = q(6o). Concluding, ifHp # Hq thent(¢) = g, and
V(6,0.6,0) =0 v(6,0,6,0) € Q therefore also in this cage= 6.
V(0.0,0,0) >0 V(6,0.0,0) ¢ Q Now we finally prove that = § = 0 = M = {x,,Q}. In

. . fact, in addition to the previous conditions we have 6,
and therefore a candidate Lyapunov function. Before COME o refore from (1b) and (6) it follows that

puting its derivative along the flow of the closed loop system
the same needs to be done for (4). To this end, it is useful —KH(HO - Hd)(r(ad -q) - g(ﬁ(ad))) =0. (15)
to first notice that

_ If Hp = Hg we getQ by definition, while in caséHg # H
VU (6. (6)) A i o

VoU (@, q)l(o,a(o)) = 8) thent(6q — q) = 9(q(#4)), that is7(¢) is constant and, as it
7(0 - q(0)) . has been shown before, this implies tijat q(6q), = 0 or
in other words €, g, 6, 0) = xo.

Asymptotic stability: Since M does not contain only
Q, we still cannot conclude tha is asymptotically stable.
Nevertheless, let us first consider the ciige= 0. Using (5)
VU (0, q(0)) = 9(q(8)) . (9) it can be egsily veri_fied that the positively in\_/griar)t _§kt
coincides withy,, which becomes the only positive limit set
and therefore resulg] is obtained. On the other hand, when

since the term depending &iyU (6, q)| 0.0 disappears due
to (3). From (3) it also follows thagéaia% = 7(6 - q(0)),
leading to

which finally is used to obtain respectively

H(0, g, 6, t) = gT(T(¢) - g(G(G))) (10) Hd.> 0 we can apply Lgmma 1 to show that the gquilibrium
: - T pointy, is unstable. This means that all the solutions, except
V(6,9.0,0) = -6 Dgb . (11)  for the trivial one 6(t), q(t), 8(t), 4(t)) = xo, ¥t > 0, will

The latter, being a negative semidefinite function of theesta CONVerge ta ast — co. To this end, the scalar functiov
ensures the stability ob. is chosen a¥V(#, g, 6, q) = -V(6, g,6, 9). In this way, for the

In order to refine the result (i.e. show thatis asymp- Closed loop system(6,q,6.q) > 0 and the seM, which
totically stable) we will look for the largest invariant st 1S the intersection of the positive limit set of the soluson

within the setE defined a% and the set
E={0.0.0.01 V@0.q0.0=0 .  (12) E={(6.0.6.0)] V(6.0.6.0)=0)
By virtue of LaSalle’s invariance principle, then everysol = {(0’ q.6,0) | W(6,9.0,q) = 0} :

tion of the system approached ast — co. Since from  contains no stable equilibrium points. In case= 1 the
(11) V(6.9.6,0) = 0 & 6 = O, then starting from the get ) is a closed orbit in the state space and therefore
condition® = 0, we will show in two subsequent steps thaty |imit cycle, proving result if). Namely, decreasing the

M = {xo, Q}. o . . value ofHg, the asymptotically stable limit cycle collides on
Invariant set: First we show tha#) = 0 = 6 = 0. {he ynstable equilibrium point, originating an asymptaitic
Fromé = 0 we can directly conclude th#= 6o, 9(q(6)) =  staple equilibrium point. -

9(q(6o)) = g, and, because of (10), ald®(6, g, 6, q) = Ho,
wherefo, g, andHo are constants. Moreover, from (1b) andA. Controller discussion
(6) we get The key feature of the proposed controller is in a torque
= _ feedback that, depending on the energy error, can be either
—Ku(Ho—H — Qo) — KolOo—04) =0, 13 " . L9 .
H( 0 d)(T(¢) go) 0( 0 d) (13) positive or negative and therefore intuitively able to eith

from which two cases are possible inject or dissipate energy. The gain of the feedback can be
_ additionally tuned if a generalization of the control law is
Ho = Hqg
used
Ho # Hqg

_ _ qm-1 n ¢ e~ _ D_ /
While from the first we can directly concludke= 6y, in the u=t(g) - KuH™(6. 0.6, q)(T(¢) g(q(0))) Kof = Db,

second case we ge{¢) = 7o, with 7o constant. We will  gbtained using the more general tegakH™(6, 0,6, @) in
now show that the latter condition in turn leadséte= 64.  the Lyapunov function, witim = 2k, k € N*. Obviously, the
From the definition ofr(¢) and the fundamental theorem of case examined so far is retrieved whesa 1.
calculus for line integrals, we get When used to produce an oscillation, the proposed con-
troller is expected to be venficient. As it was shown, after
Uk(#1) — Uk(@y) = 75 (1 — 14 > SAPSLLE , anef
1) ¢2) °(¢1 ¢2) (14) a transient in which the motors bring the energy to the désire
2As we will see later, this set coincides with the §in Lemma 1. level no more power is provided. by_them_ since the YemCity
This justifies the use of the same letter. goes to zero. Basically, the oscillation will be sustaingd b



. T . T
the springs indefinitely. Obviously, this can happen only ir aO=[o4 0 0 d rags a0 =[0 04 0 o rag/s

the nominal case while in reality there will be always frocti  §
taking out energy that the motors will have to inject agaiig
in the system.

Concerning the computational cost of the proposed contr® 5 WWW
law, from (6) it is clear that the mass matriM(g) and & -02

the total potential energy need to be computed in orde 1.6“%%“/%%&'
to evaluateH(0, g, 6, g). In addition, the gradient of the ; 155

potential functions and the functianare required. The latter _
can be computed using a fixed-point iteration or Newtoﬁ
methods to solve (3), as shown in [9] where also commens
concerning the féiciency of the approach can be found,_
Finally, the Coriolis and centrifugal terms which are the;" / ]
most costly are not required, as well as no higher orde > 4 6 8 100 2 4 & 8 10
differentiation of any of the involved expressions, which art t[s t[s

required in many nonlinear controllers, e.g. those based on

feedback linearization. Fig. 2. Link positions obtained applying our controller tt the joints
with Hg = 3J. Each column refers to a trial, while along the rows the
1V. VALIDATION same variable in the two filerent tests is shown. The same scale is used
. . . . to highlight the diferences. The two trials only ftér for the value of the
In this section we show the results obtained when applyingitial link side velocities. Although the same s@tis reached, the resulting

the controller proposed in Theorem 1 to the robotic system iibit in the state space is obviouslyfidrent.
Fig. 1, both in simulation and experiments. The DLR Hand
Arm System (HASYy) [12] is a highly integrated robot, which
aims to imitate the whole human upper limb in terms of
size, weight and range of motion. Variableffstess actuators
(VSA), whose intrinsic nonlinear compliance can be adpiste
by an additional motor, are used to replace the typically
impedance controlled, mechanicallyf&joints. As a result
the robot can, for example, better handle collisions witfi st
objects since part of the impact energy, which changes too
quickly for an active controller, is temporarily stored imet
elastic components. The system has more than 25 degrqzﬁﬁ& Visualization of the chaotic behavior through thegh plot of the
of freedom, 50 motors and 100 position sensors. In ouink side position and velocity of the second joint. The sioln does not
setup we will not adjust the $fhess on line so that the keep following the same trajectory as it should happen i cisa period
system dynamics can be described as in (1). Moreover, we

profit of the possibility of using only the upper arm to focus

our attention on the first four joints (which share the samgne actually followed by the system. Basically the system ca
mechanical design), as indicated in Fig. 1. be thought as a one joint robot for which the existence of
In order to show the behavior of our control law, we will an asymptotically stable limit cycle has been proved. Fig. 2
always conduct two tests. In the first one, we induce agupports the explanation. There the link positions of two
oscillation in the first joint while the motion is damped outtrials obtained applying the control law (6) to all the jaint
with a classic PD control in the remaining ones. In particulaof the robot with a strictly positive desired energy is shown
the axis are oriented in such a way that thfeet of the The only diference between the two trials is in the initial
gravity are negligible and therefore the dynamic couplingalue of the link velocities. Even though in both cases the
between the joints can be approximately compensated wiame sef) is reached, as it can be seen the orbit followed by
a high gain motor PD controller. In the other, we use outhe system is dierent. In particular the oscillation produce
control law to regulate the robot to a desired configurationp this case is the consequence of a chaotic behavior and not

which corresponds to ask for zero energy in the system. Theperiodic one, as the phase plot of the link variables of the
two tests will always be labeled as respectivedy 4nd ©)  second joint shows in Fig. 3.

in all the figures. Fig. 1 sums up the first test, highlighting .

the joints involved and their role. In addition, a conceptug® Smulations

interpretation of what happens in the state space is prdvide The simulations are carried out using MAT-
Imagining to have a three dimensional state space, th@ se_ AB/Simulink ®, where the algorithm and formulas
of constant desired energy can, for example, be thought agram [17] are implemented to compute all the quantities
sphere where the close loop system is bound to evolve. Thecessary for the control law and the robot direct dynamics.
additional constraints introduced through the PD cordroll In addition, in this section, all the plots will show with a
render one of the infinite many possible iso-energy orbis thblue line the performances of the controller in presence of
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generation (casea)) and damping of the oscillations (cas)(the error _, 0.01
always converges to zero, theffdrent behavior is only due to the value of 8 0
Hg. The blue line shows fferent performance in presence of a link sidey
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a non modeled link side frictior-d a, with d = 0.5 rad * Fig. 5. The left column &) collects the motor positions in case of limit

While this term is of course not harmful when the systemaycle generation, the righb) in case the oscillation is damped out. Along

is required to damp out the oscillations. it forces thdhe rows the motor position of the same joint in the two caseshiown.
’ Even though the robot starts from the desired configuratiom,initial non

controller to re"r_‘Je(_:t the |0§t energy dye t(_) the unforaseezero link side velocity acts as a disturbance, which is rece after the
energy leak. This is especially clear in Fig. 4 where theansient. The blue line showsfitirent performance in presence of a link

convergence of the errdFI (0’ a, ('9’ q) — H(0, a, ('9’ q) — Hg side friction unknown to the controller.
is shown, both for damping of the oscillations and limit

cycle generation. The fierent behavior of the system isg 4 % 5/\
simply due to a dterent value ofHgy, which isHy = 3J for § 2 = 0
limit cycle generation anddq = —1J for regulation to the _ % - g
desired configuratioh Concerning the value of the other® / % g o
parameters, the gains are chosen as g s 5
. KH = 5% § 2 % 2
. Kg=diag{20 20 20 20)Nm § 2 ZF’
o« Dg=diag(20 20 20 2 Nr'gjf T 0.5 w5
when the robot is controlled to the desired configurationy 0 E; 0%\’7
while 05 5 0 % % 5 10
o Ky = 05% t[s t[g
- Ky =2074 S y o
« Dy =20 B s Fig. 6. Link position _and ve!ocmes_ Wheg an initial velociperturbs @he
rad robot from the equilibrium point. Usinglq = —1J, after a short transient,

in case an oscillation is required to be induced. In althe system evolution brings back the robot to its initiakestd he blue line
the simulations the desired value of the motor pOSitiOl’l i%hows diferent performance in presence of a link side friction unkmaav

T e controller.
Oq = [0 0 n/2 0] rad, as it can be seen in Fig. 5 for
the two tests. It is worth to mention that the robot is always
initialized in the equilibrium position, but with a nonzerothe link positions, as well as the velocities, are shown from
initial link side velocity. The latter is always chosen to bewhich it can be seen that the initial oscillations are damped
2rad/s for the joints where the control law (6) is active,out using a non positive desired value ta(6, g, 0, ).
i.e. only the first joint in case of excitation and all the
joints in case of damping of the oscillations. This explain®. Experiments

why in Fig. 5, after a transient, the motors recover their ysing the same values of the parameters as in the previous
initial positions. Nevertheless, in casg > 0, a very small - sybsection, we conducted two tests with the real system. In
oscillation is present in the joints controlled with the pl®  the first one, the system is initialized in the equilibrium
PD law. This is not surprising since we are tying to makeyoint and we choosédg = 3J. Fig. 7 shows the “link-
a multi-joints system behave like a single joint one. For thgide energy” (black line) and its desired value (blue line).
same reason also the link side positions will have a couplegihen the operator slightly pushes the robot, it starts ngvin
oscillation and will qualitatively look like the ones in Fig,  away from the equilibrium point and oscillating around the
caseq(0) = [2 00 q rad/s. To conclude, in Fig. 6 desired value of the energy. As expected, the system does
not exactly converge to the desired value, but it exhibits a
3Asking for a negative desired value fbi(6, g, 6, g) has the only fect ~ behavior similar to the one observed in simulation in case
to increase the convergence speed and reduce residual ssedlations  of ynmodeled friction. Of course. due to noise and bigger
around the desired value due to numeric errors. The smaltestible value del . h h . |’ d | b
for H(0, g, 6, ) is zero, which is the one that will be reached. In Figh¥ ( mo. € uncer.ta'.nty than the S'm.u ated case, we also o S?rve
the plot is shifted of 1J to take thigfect into account. a bigger deviation from the desired value. When the desired
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qu[rad] Using Hq = 0J the system moves from one equilibrium point to the new

one defined by the new value 6§.

Fig. 8. Phase plot of the link side position and velocity & finst joint. The
value ofHy is switched on-line fronHy = 3J (black line) toHq = 0J (blue )
line), causing the system to move from the limit cycle to tigibrium  Shows a good convergence behavior.

point. Concerning the link side, in Fig. 11 the link velocities are
shown which prove that the robot can reach the new desired

. . . equilibrium point and no unwanted residual oscillations of
value is switched to zero, the energy converges to it without« |inks are present.

any residual oscillation.
Particularly interesting is the phase plot of the link vari- V. CONCLUSION

ables involved in the generation of the oscillation, shown In this paper a new control law for elastic joint robots has

in Fig. 8. There with a black Ilng is shown the behaviofaap, proposed. It allows, by simply changing the desired
when Hy = 3J and with a blue line whetlq = 0J. AS 516 of an “energy-like” function, for both regulation to a
It can k_’e seen, despite the presence_of_ noise and _mo%lsired configuration of the robot and generation of oscil-
uncertainty, the system does reach a limit cycle. Basicallyiions The last ones are produced by the elastic elements

what will be perturbed is the shape of the limit cyclepesent in the joints themselves, therefoféciency can be
itself. Adaptive techniques and tuning of the parameters cachjeved. It is clear, in fact, that being the motor velesit

of course reduce thesdfects. The spiraling convergence o gnce the energy reaches the desired value, no more
towards the asymptotically stable equilibrium point obtal power is provided by the motors. Moreover, it has been

when the desired energy is set to zero is also shown in the, en that the oscillation is due to the presence of an
same plot. It is worth to mention that the damping behav'oésymptotically stable limit cycle in the state space of the

of the system can be tuned throubla and Ky, since they  ¢nqeq 10op system, if the robot has only one joint. Further
will influence how quicklyH(@, g, 8, ) will converge to zero investigations to obtain a limit cycle also for a multi-jtsn

and therefore how quickly the link side oscillations will be,pot are currently under consideration, in order to extend

damped out.
In Fig. 9 both the motor and link positions of the first joint
are shown. It is interesting to notice that, although theanot = 1
is not fixed because of friction, the oscillations obtained 08 J\IM
the link side are still amplified compared to those requires 1
analyze the response of the system to a step in the desir “
value of the motor positions. These are reported in Fig. 1( o 2 4 6 8
where the blue lines show the desired values and the blac . t[g t[g
lines the real motor positions. As it can be noted, the system

Fig. 11. Link velocities obtained after a step in the desirestor position,

from the motor.
In the second testall the joints are involved and we
4In this experiment to show the high achievable performarafethe  With Hq = 0J. After a transient also the links reach the new desired
system we us&g = diag({400 400 400 4op %. configuration with zero velocity.

Gz2[rad/s]
o

3lrad/s|

03

o onvaA® Nomna
N
N
o

[e9)

Ga[rad/s]




the results of our previous work [2] from rigid to elasticrjoi
robots.

if (3), (19) and (20) are used. From the last inequality and
assumption (A3) the conditions on the total potential fiorct

APPENDIX U(#, g) follow directly, sincea; — 3 > 0. [ |
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(5). In particular we follow the idea used in [10] not only forNetworking Fund of the Helmholtz Association through a
the gravitational potential, but also for the elastic ptisn Helmholtz Young Investigators Group (Grant no. VH-NG-

in such a way that an upper bound for the total potential ca#08)-

be found.

Lemma 2: Given assumptions (A2), (A3) the total po-
tential functionU (@, q) = Ug(g) + Uk(0 — q), satisfies the
conditions

U(6.0) > U(6.q(6) V6.qeQ (16)
U(6.0) =U(0.q6) a=0q(6).6cQ.
Proof: Given any potential functiolp(y) it is always
possible to write

(1]

(2]

ou .
Ualr) = Uoe) = 20| (o) =latraxd . @D
X1
h H _ X2 X aZUo(,\/) u d
whereio(yy, x,) = e, le o gd'f Y. 5

Moreover, sinceio(y;,X,) IS path independent, we can
choose in particular the patigga) : [0,1] —» Q and x(y) :
[0.1]-Q

6]
€)= x1+7(x - x1)
X)) i=x+ /l(Xz _Xl)
such that evaluating the integral along them we obtain

Yt T9*Uo(x)
ff(Xz‘Xl) oy (Xz_Xl))’d/ld’Y-
0 o X W1 tyA02—X1)
(18)

If Uo(x) = Ug(q), we can take the absolute value and use
Proposition 1 to derive the following inequalities

: Lt U
ot < [ [ sup 52 oo - aff yaach
0 Jo vgeQ q
1
< Eﬁ”Qz— Q1”2 ,

(7]

(8]

El

[10]

[11]

(19)

while if Up(x) = Uk(¢), using assumption (A2) it follows
that

1 . 1
PRe (¢ - ¢1”2 <ly(91.9,) < 52 (62— 5151”2 . (20

whereig andi, are to be considered as the functigrwith
the correspondent potential function in it. Usingq(6), q)
andi, (@ — q(6), 6 — g) the following holds

U(6.q) - U(6. a(8)) = ig(q(6). o) + i, (0 — q(6). 0 — o)+

[12]

[13]

[14]

[15]

(9@ -0 - o)) (a- ). [
which leads to the inequality
U6, )~ U0, 50) < (er—A)la-aOF . (22)
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