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ABSTRACT 
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Transportation is one of the most important needs of a modern human being. It sustains 

(either directly or indirectly) the basic human needs such as food, education and his 

livelihood. Humans spend considerable amount of time in transit. Transportation is also 

not without its dangers. An estimated 1.25 million people died in the year 2013 in road 

traffic accidents
1
. With the advancements in electronics, smarter and faster sensors can 

help reduce some of these road traffic accidents. Detection of an obstacle is an essential 

aspect in avoiding collisions. The aim of this thesis report is to address the challenge of 

road surface detection. The thesis work begins with the implementation of the v-

disparity road surface estimations and proposing certain variations that offer subtle ad-

vantages. Additionally the free space estimations through 3D occupancy grid maps 

(OGM) have also been implemented. A novel ‘extended’ u-disparity OGM is proposed 

that has certain advantages to the standard OGMs. All these road surface detection algo-

rithms are evaluated with the training datasets prepared by Karlsruhe Institute of Tech-

nology.   

 

                                                 
1
 http://www.who.int/gho/road_safety/mortality/traffic_deaths_number/en/ 
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1. INTRODUCTION 

Mankind has come a long way since discovering the wheel. In the beginning the carts 

and chariots were driven by ox and horses. Even then the transportation had a certain 

degree of autonomy in transit. Then came automobile, it was both a boon and a bane, 

the speed offered by vehicles is unquestionable but it also demanded utmost attention 

from the driver. Since then man has persevered diligently to improve the automobile 

and also the roads they tread on. The advent of electronics has swept the globe with a 

wave that has brought television, computers, cellphones to the shores far and wide. It is 

the fusion of electronics and automobiles that this thesis work is willing to bridge.  

1.1 Motivation 

With the ever increasing world human population, improving economies, personal 

transport is no longer a luxury. With each passing year, the same tarmac of road is being 

shared by increasing number of people. According to WHO approximately 1.2M people 

died in road accidents in 2010. Pedestrians and cyclists are most vulnerable in road ac-

cidents since they do not have the protective shell like the automotive do and face near-

ly full brunt of the collision impact. Advanced Driver Assistance Systems (ADAS) has 

tremendous potential in reducing the road accidents. Road scene perception is made 

through a multitude of sensors to reinforce robustness. This perception forms a basis on 

top of which safety critical functions are built to support, warn and even intervene to 

keep the traffic constituents safe. The introduction of Electronic Stability Control (ESC) 

in vehicles has brought about a notable decrease in road accidents [27].  At the Trans-

portation Systems department of the DLR Institute, studies related to ADAS are being 

conducted on the Vehicle Simulators. These simulators have a cockpit similar to vehi-

cles on the road. Synthetic road scene images are projected in front of the cockpit to 

simulate various driving scenarios to study the response of the drivers and their interac-

tions with the ADAS technologies in development. Such studies are very important to 

assure that introduction of new safety features in vehicles work in harmony with the 

driver rather than causing discord. With the improvements in IT, smartphone and inter-

net connectivity; access to quality entertainment is literally in the grasp of common 

man. This is both a boon and a bane. Entertainment in leisure is good, but on the road it 

is dangerous. A distracted person is unfit to walk the streets let alone drive a vehicle 

with immense momentum; where response time is measured in seconds. In Germany 

cyclists can be fined if they access their phones even to check the time when waiting for 

green signal at the intersections. Several studies have concluded that human error is the 

main cause of road accidents [28]. Considering the previous statement, one cannot 
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completely eliminate humans from the driving scene; the accountability for autonomous 

driving accidents is still in debate. There are several systems designed to introduce a 

safety buffer between the driver and different vehicle functions. Brake-by-wire, steer-

by-wire and drive-by-wire are systems that do not translate human commands perfectly 

into action. In other words, human commands act as input to these systems that take 

decisions with a priority on vehicle safety. ABS and ESC are two systems that are quin-

tessential examples of such systems and these are elaborated in section  2.3 and 2.4. 

Although the human commands are altered to some degree in these systems, human 

input can seldom be rejected. Various regulations prevent handing over control to com-

puters in safety critical functions where human lives are at stake; blaming a software 

bug is much easier than a human in the court of law. Monotonous development in 

ADAS alone does not ensure decrease in road accidents, one also has to cater to the 

appeal of the general public and lawmakers to welcome progressive change and encour-

age development. A good example is - Continental receiving Automated Driving Test-

ing License for testing autonomous driving in the roads of Nevada State of USA. Acci-

dents are also an expensive affair. Road accidents in 2010 amounted to 32999 deaths, 

3.9M injured people and 24M damaged vehicles; the total cost of these unfortunate 

events amounted to $242 billion [29].  

All the above points highlight the importance of ADAS systems and their pursuit in 

vehicle safety. Ground surface detection forms a critical part of road scene interpreta-

tion.  It defines the boundaries of drivable surface area for a vehicle. The importance of 

road surface detection lies in the fact that we can learn about the surface that the vehicle 

can tread on and also this knowledge assists us to easily and reliably detect obstacles 

within a scene presented based on the 3D data. All objects that protrude above the de-

tected road surface (above a certain threshold) can be classified as obstacles. This crude 

object detection can serve as a preprocessing step to limit the search window of vehicle 

detections. To bring any autonomy into vehicle driving, we should detect the surface we 

should tread on.  

1.2 Approach 

The work of this master thesis is concerned with free space/ground plane detection. 

Throughout this thesis report – ground surface, ground plane, road plane, road surface 

are synonymously used since there is practically no difference in road or ground as far 

as their 3D presentation is concerned. Various ground surface and free space detection 

algorithms have been studied. This study has been restricted to solutions that are not 

heavy on computational load. This requirement rules out the machine learning algo-

rithms like those that make use of support vector machines and their variants for road 

surface detection [15]. The road surface detection algorithms based on 3D dimensional 

data are particularly simple to implement and offer reasonable robustness. This behavior 

is due to the fact that the external world as seen from the vehicle dashboard can be 
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modelled to a great degree of simplicity. Theoretically there are numerous solutions 

available that provide 3D data of a scene. RADAR, LIDAR, ultrasonic, stereo camera 

sensors are some examples of technologies that have been successfully tried and tested 

in vehicles to this effect. RADAR and LIDAR offer accurate 3D scene data but the 

technology is not as affordable as the camera. Ultrasonic technologies rely on the sound 

signals for calculating the distance to the reflecting surface. The accuracy of the ultra-

sonic sensors depends on the ability to accurately predict the speed of sound in the envi-

ronment of operation. Speed of sound depends on the carrier medium (air), its tempera-

ture, pressure, etc. Furthermore the dynamic weather conditions and vehicles in motion 

make the estimation challenging still. In contrast, the sensors LIDAR and SONAR de-

pend on the speed of light. This is a far more stable entity than the speed of sound. 

There is one drawback with using light for distance calculations and that is the sheer 

magnitude of speed of light. It takes 67 nanoseconds for light to make a round trip of 

10m. This implies that an error of 10% in sensor stopwatch introduces a distance error 

of 50cm. Using stereo camera the advantage is two-fold; one can generate the 3D data 

using the stereo computation and have access to the light reflecting from the scene. 

Thus the focus of the thesis has been on using the 3D data from the stereo camera for 

road surface detection. Different algorithms using derived data from stereo camera have 

been studied. These are implemented in the Visual Studio 2008 build environment using 

OpenCV 2.4.6 library. The algorithms are also analyzed for robustness, accuracy and 

speed of execution. Part of the research contribution of this thesis lies in this analysis. 

Furthermore, based on the analysis of these algorithms, certain improvements are sug-

gested that make them more suitable for the challenge in discussion. These novel algo-

rithms are implemented and their results are studied; this forms the other research con-

tribution of the thesis. Due to the nature of this combined analysis and suggested im-

provements for the ground surface detection algorithms; the implementations of algo-

rithms and study of suggested improvements has been seamlessly integrated into Sec-

tions 4.2 & 4.3. Detailed analysis of the ground surface detection algorithms have been 

carried on benchmark dataset. Their accuracy and speed of execution has been tabulat-

ed.  

 My tasks during the thesis can be broadly classified as follows:  

 Study of the road surface detection algorithms. 

 Implementation of these algorithms and analyzing their pros and cons 

 Suggesting improvements in algorithms wherever possible 

 Evaluation of the different algorithms implemented. 

The constitution of this thesis in each section is as follows. Section 2 starts with the lit-

erature review undertaken to learn the current state of different technologies. Section 2 

also presents common ADAS systems and the image processing basics that are used in 

this thesis. Furthermore, section 2 also details the implementation of the road plane es-

timation using v-disparity images and occupancy grid maps. Both the existing ap-
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proaches have been implemented, analyzed and certain improvements are proposed 

wherever necessary. Section 3 charts the various evaluation statistics. Section 4 presents 

the contributions made throughout the thesis work. Section 5 draws the main conclusion 

from the thesis work and finally Section 6 lists the various references used in this report. 
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2. LITERATURE REVIEW AND STUDY OF ADAS 

TECHNOLOGY 

2.1 Literature Review  

The thesis work started with literature review to get myself acquainted with the current 

trends in driver assistance systems with a focus on use of camera in this field. Use of 

dense stereo images to extract road surface, obstacles has been detailed by Florin Oniga 

and Sergiu Nedevschi [2]. The author generates the 3D points from the images and uses 

them for two purposes. The first one is to fit a quadratic road surface to these points and 

isolating structures that deviate significantly from this model and the second one is to 

compute the density map and noting that - vertical structures concentrate points within 

the grid cell upon which they are projected. These two estimates are fused to form a 

complete estimate of the road plane and obstacles.  

In [4] the disparity computation yields not only the disparity images but also their vari-

ance. This variance along with the ego motion of the vehicle is used for Kalman filter-

ing of disparity images. The filtered disparity images are used to generate the occupancy 

grid maps. The occupancy grid maps are also subjected to Kalman filtering to mitigate 

outliers. The authors make use of 3 kinds of grid maps; Cartesian, polar and column 

disparity. Segmenting these grid maps is carried out using dynamic programming algo-

rithms 

Don Murray and Jim Little [5] implement an obstacle detection feature in a mobile ro-

bot equipped with stereo cameras. Using the stereo images, disparity images are gener-

ated. The highest disparity along each column is assumed to be the obstacle that is clos-

est to the robot in the column. This way a map indicating the nearest obstacle along 

each row is charted and serves as the obstacle boundary. One thing to be noted is that in 

our context because the highest disparity along every column will almost always be the 

road, hence this implementation will be of little use.  

The disparity images tend to be poor when the image fails to offer distinct feature to 

match in right and left images. This is especially true for road pixels which are fairly 

uniform. To overcome this shortcoming, the authors of [6] prepare a set of candidate 

lines in v-disparity that can correspond to the road plane, they score these candidate 

lines with the matching cost of a wide window (in stereo image) at select rows and at 

the disparity provided by candidate lines. And the line with the least cumulative match-

ing cost is assumed to correspond to the road. It should be noted that as with most if not 
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all v-disparity based ground plane estimation algorithms, the assumption that majority 

of pixels in each row correspond to the road - heavily influences the outcome accuracy. 

With modern dense disparity images the v-disparity approach outlined in [9] provides 

good ground plane estimates with little computational footprint. The approach presented 

relies on the assumption that along each image row, the road pixels form the majority. 

This assumption tends to be violated at large distances from the ego-vehicle hence the 

ground plane estimates also tend to be compromised. To account for road surfaces that 

are not flat or exhibit significant deviation from flat surface, the authors of [7] suggest 

the use of B-splines to fit the points belonging to road. The authors illustrate the short-

comings of line, envelope, quadratic and cubic curve fitting and state that B-splines su-

persede these. Also the B-spline fitting is done to points in the world coordinates rather 

than the v-disparity to better accommodate the points at large distances from the vehi-

cle.  Custom scene maps generated and stored offline (similar to google street view) are 

used to localize the vehicle in [8]. These maps are generated manually and include 

among others the lane markers, curbs, and GPS location where they are observed. The 

stereo images in real time are matched to find correspondence to this digital map which 

ascertains the location, orientation and provides information that is very close to ground 

trut. The inertial measurement unit tracks the real-time changes in vehicle position as-

sisted with a Kalman filter, while the Digital maps keep the drift in check, similar to 

several indoor positioning systems in smartphones. A more recent publication [17] ad-

dresses the issue of road surface detection with stereo camera data and providing results 

real time. The author thresholds the u-disparity image to eliminate potential obstacles’ 

pixels in disparity image. This ‘filtered’ disparity image is used to generate the v-

disparity image. Instead of fitting lines or predefined geometric models to the v-

disparity, the authors claim that the road surface pixels are most likely to correspond to 

the maxima along image rows of the v-disparity. 

Table 1. Comparison of different road surface detection algorithms 

Authors Sensors Input Output Advantages   Disadvantages 

Florin 

Oniga et al. 

[2] 

Stereo 

camera 

Disparity 

image 

Road sur-

face, side-

walks, ob-

stacles. 

Detailed classifica-

tion of traffic par-

ticipants, Simple 

implementation 

Use of several 

constant 

thresholds 

Labayrade 

et al. [9] 

Stereo 

camera 

Disparity 

image 

Road sur-

face 

Simple and fast 

road surface detec-

tion 

Fixed road 

surface model 

H. Badino 

et al. [4] 

Stereo 

camera 

Disparity 

image 

Free space Good free space 

detection upto the 

obstacles 

Slow dynamic 

programming 

segmentation 

Meiqing 

Wu et al. 

[17] 

Stereo 

camera 

Disparity 

Image 

Road sur-

face 

Robust road surface 

detection with real-

time estimates 

Use of con-

stant thresh-

olds 
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2.2 ADAS and machine vision 

The flight control systems on board the Fighter jet F-22 Raptor runs on 1.7 million lines 

of code. The new Boeing 787 Dreamliner which flies with about 300 passengers on 

board runs on about 6.5 million lines of code. In contrast an automobile, for instance a 

premium segment car runs on 100 million lines of code [25]. An automobile runs this 

volume of code on 70-100 microprocessors, which are in turn embedded in Electronic 

control units (ECU). Figure 1 gives an overview of which automotive functions are de-

pendent on such ECUs. Automobiles have ECUs for control of systems like engine, 

powertrain, instrumentation, suspension, steering, brakes and infotainment (in-car enter-

tainment). An engine control unit controls the spark plug ignition which burns the fuel 

in the engine cylinders; a critical function for conversion of fuel to kinetic energy. An 

engine control units must make sure that an engine does not stall when there is no throt-

tle input from the driver, this speed is called the idle speed. It should be a compromise 

between minimizing the energy loss during idle and reliably keep the engine running. In 

modern engines the engine control unit also controls the valves that feed the engine cyl-

inder with fuel. The mixture of air and fuel fed into the cylinder is called charge and 

depending on the ratio of fuel and air, the charge can be either ‘rich’ or ‘lean’. This is 

also one of the functions of an engine control unit, to observe a good balance between 

performance and efficiency. A transmission control unit reads the engine speed and cur-

rent operating state from various sensors (Wheel speed sensor, Engine speed sensor) 

and decides the appropriate time to shift gears (in automatic transmission vehicles). 

Transmission control unit also makes sure that the clutch engages and disengages the 

engine to the drivetrain in an optimum fashion. It must also make sure that the transmis-

sion fluid temperature is within operating temperature range.  

There are complex vehicle systems that make sure that the driver is in control even un-

der extreme operating conditions. These systems work in close cooperation with multi-

ple ECUs sharing information, sensor readings to make sure that the vehicle is stable 

and has traction at all times. Following section introduces two of the most popular and 

effective ADAS systems Anti-lock Braking Systems (ABS) and Electronic Stability 

Control (ESC), followed by an overview of vision based ADAS. Thereafter the flow of 

image information from image acquisition to image processing is detailed within the 

framework of OpenCV. 
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2.3 ADAS: Anti-lock Braking System (ABS) 

Humans like all animals respond with impulses to external stimuli. When faced with an 

imminent head on collision, a human driver stomps on the brakes as hard as he physi-

cally can. This force on the brake pedal is so high that it commands the brake calipers to 

bite the brake discs or drums with enough force to ‘lock’ the wheels relative to the cali-

pers and the wheels stop rotating immediately. This means that the vehicle skids on the 

road surfaces until it comes to a halt either from continued skid or from a collision. 

There are two very important reasons why wheel skid is not a favorable braking strate-

gy. First, we know that the maximum static frictional force is higher than the maximum 

kinetic frictional force between two surfaces (In Figure 2 𝑓𝑠 refers to static friction and 

𝑓𝑘 to kinetic). In other words to extract the maximum frictional force from the tire/road 

surface pair (and hence stop within the shortest distance), we need to keep the wheel at 

the limit of grip (near the apex of plot in Figure 2). The second reason why skids are not 

favorable is that during a skid the steering input has very limited effect on the direction-

al control of the vehicle. This implies that the driver is almost at the mercy of the sur-

roundings to halt his car in a safe manner. 

 

Figure 1. ECU dependent car functions [26] 
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The function of the ABS system in vehicles is to keep the wheel turning during hard 

braking so that the driver can have some steering control at the same time to brake the 

wheels at the limit to extract max frictional force from the road surface and stop the 

vehicle in shortest possible distance. A standard ABS system reads wheel speed from 

sensors on each wheel. When it detects a sudden drop in wheel speed from one of the 

sensors, the system immediately decreases the brake pressure on this wheel so that the 

wheel starts rotating again at speeds similar to those of the other wheels. Note that even 

while driving under normal conditions with traction on all 4 wheels, we can observe 

certain difference in wheel speeds, especially during turning. The ABS systems are de-

signed to accommodate these minor variations.  

2.4 ADAS: Electronic Stability Control (ESC) 

Figure 3 presents two extreme conditions that are observed when cornering at high 

speeds. We turn the steering wheel while negotiating a turn. The steering wheel in turn 

commands the front wheels to turn in the corresponding direction (assisted by the power 

steering). Under normal driving conditions the turning moment required to keep vehicle 

in traction on the curve is derived from the 4 wheels. When the front wheels fail to pro-

vide the necessary grip to keep the vehicle on curve, they skid and the vehicle under-

steers. 

 

Figure 2. Static (𝑓𝑠) and kinetic friction(𝑓𝑘) 
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When the rear wheels fail to provide the necessary grip, they skid and the vehicle over-

steers. ESC has been designed to obviate the above situations. To detect such situations 

the ESC reads the driver intention (steering position) and the vehicle actual trajectory 

(gyroscopes, accelerometers). If the actual vehicle rotation is lower than the driver’s 

intention, understeer is detected and vice versa. To counter understeer, the ESC brakes 

the right rear wheel to produce the additional moment to negotiate the curve. To counter 

oversteer, the ESC brakes the front left wheel. Note that in both understeer and over-

steer situations the ESC brakes the wheels that still remain in traction.  

 

Figure 3. Understeer and oversteer 
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2.5 ADAS: Vision based 

Vision based ADAS systems make use of images as sensory input to offer vehicle safe-

ty functions. The following is the description of the scope of these systems and the de-

gree of environment perception they achieve.  

2.5.1 The scope 

Historically the cameras have been used in cars for lane departure warning and blind 

spot detection. Nowadays the cameras are used in a much larger capacity. These sys-

tems are responsible for sensing the vehicle’s surroundings and create a virtual safety 

net. For instance, when the vehicle senses another vehicle on the adjacent lane, switch-

ing to this adjacent lane can be prohibited to avoid collision, particular attention has to 

be paid to the probability of vehicle detection, probability of its estimated position, ve-

locity and finally the probability of a possible collision in case of lane switch consider-

ing the host vehicles kinematic parameters. Such systems are designed to assist the 

driver and not hamper his will to drive so a compromise between safety and driver’s 

freedom has to be reached. A very crude classification of vision based systems in vehi-

cles can be made on the processing stage of the image data – low level vision (image 

processing, stereo vision, optical flow), medium level vision (object detections) and 

high level vision (tracking detected objects and their influences on host vehicle). The 

vision based ADAS has to function in diverse driving conditions (rainy, sunny, night, 

tunnels, hairpin turns, within-city, highways traffic jams and all probable combinations 

of these). Vision based ADAS offers safety and comfort functions like presenting the 

blind spots for a driver without being overwhelming, augmented vision capabilities dur-

ing night, fog, snow, rain, etc. The augmented scene can be projected on a display or the 

windscreen itself. Critical information such as sign boards (speed limits, sharp turns) 

current driving lane, detected traffic constituents (pedestrians, cyclists, etc) can be pro-

jected onto the screen.  

2.5.2 Environment perception 

A traffic scene can be segmented as – an ego vehicle (host vehicle), ground surface (of 

which road is a subset), other traffic participants (vehicles, pedestrians, cyclists), traffic 

signs and barriers. Ego motion describes the absolute kinematics of the vehicle in the 

real world frame. Vision based environment perception includes computation of the 

following key parameters. 

Distance computation is achieved reasonably well with stereo camera data. But chal-

lenging driving conditions like rain, snow, sun glare, etc limit the scope of its effective-

ness. To improve robustness the data is supplemented with that from other sources like 

Laser range finders, RADAR, etc. Scene motion estimation is made for image pixels to 
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have a better understanding of the dynamic scene flow. Pixel displacement is studied 

between image frames and the motion estimates are then made for the scene Figure 4. 

Pixels exhibiting ‘similar’ motion generally belong to the same objects in scene.  

Obstacle detection is based on data from multiple sources like mono camera, stereo 

camera, LIDAR, RADAR, etc. Traffic constituents like other vehicles, pedestrians, cy-

clists, etc constitute as obstacles. Obstacles detection can be made either in every frame 

or the detected obstacles can be tracked over multiple frames. Object state parameters 

like position, velocity etc are useful in finding the object in subsequent frames and sav-

ing computational cost in making new detections in every frame. Vehicle tracking is an 

important aspect in collision detection and avoidance. Trajectories of the ego vehicle 

and that of its neighboring entities are used to predict collisions in near future. Tracking 

of vehicles is a much easier proposition than that for pedestrians; mainly because of the 

changing stance and hence appearances of walking humans, furthermore high relative 

velocity between the ego-vehicle and pedestrians generally adds a lot of inter image 

frame variance in the same pedestrian appearance. This makes tracking pedestrians a 

more difficult preposition that tracking neighboring vehicles. Detection of surrounding 

infrastructure (road surface, marked lanes, traffic signs, etc) can also be achieved with 

vision based systems in vehicles. Road surfaces detection is a key contribution of this 

thesis work and will be discussed in greater detail in sections that follow. Traffic signs 

and signboards can be detected and the information contained within extracted to aug-

 

Figure 4. Optic flow vectors are tangent to the direction of motion of the pixels 
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ment the driver’s scene perception. A typical approach to traffic sign detection would be 

to extract known traffic sign patterns (triangular, polygonal structures) from image 

frames, extract feature contained within these patterns and compare them with a lookup 

data base for sign boards to find the meaning.  

Complete scene analysis needs the understanding of the current traffic related compo-

nents, their kinematic parameters and the study of their near future impact with the ego 

vehicle. An intelligent vehicle speed regulator takes into account the current speed regu-

lations indicated by the signboards, the speed of the vehicles in the immediate vicinity. 

Modern cars are fitted with futuristic functions like automated parking in mid segment 

cars. This functionality requires 360 degree surround view, which is made available 

through ultrasonic and/or close range RADARS. Intelligent headlamp control adjusts 

the beam of the headlamps based on the traffic scene. This control is introduced to max-

imize the visible road for the driver while at the same time not dazzling the oncoming 

vehicles’ driver unnecessarily.  

2.6 Image Acquisition 

The process of capturing the light reflected from a scene and presenting this information 

as an image can be termed as image acquisition. The light incident on an object is ab-

sorbed by the surface of the object itself and the spectrum of light that is not absorbed 

gets reflected and this reflected light carries a definite spectrum of light that is perceived 

as the color of the object. The geometry that governs the capture of these rays are im-

portant to build suitable camera models, which in turn help us to reconstruct the 3D 

world once we have the stereo images. One simple but useful model is the pinhole cam-

era model. A pinhole is an imaginary aperture in a plane (pinhole plane) of infinitesimal 

thickness and zero aperture. The rays are allowed to pass through the plane through this 

aperture alone. This pinhole model is not sufficient to gather enough light for real cam-

era image and we make use of lenses to gather more light. Unfortunately this leads to a 

more complex camera model and also introduces distortions in images. All these factors 

affect the reconstruction of the real world given the stereo camera geometry and hence it 

is important to study the following topics. 

2.6.1 Pinhole camera model 

In this camera model a single ray from any point on the object surface and passes 

through an imaginary hole of zero diameter on the pinhole plane and is caught on an 

image plane; refer Figure 5. The size of the image on the image plane is calculated by 

the formula  𝑥 = −𝑓
𝑋

𝑍
; note that the negative sign indicates that the image is inverted, 

as can be seen from the top frame in Figure 5. A minor rearrangement of the pinhole 

camera model (bottom frame of Figure 5) can make the math simpler. In this simpler 

model the rays still reach the hole in the pinhole plane, en route they strike the image 
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plane such that the image remains upright while the size remains the same as in the pre-

vious model. 

 Principle point is defined as the point where the image plane intersects the optic axis. 

The center of image plane is usually considered as the origin of frame coordinates. Dur-

ing manufacturing the center of image plane cannot be made to absolutely coincide with 

the principle point, which implies we need a correction term to accommodate the offset 

parameters (𝑐𝑥, 𝑐𝑦). Thus  

 

Figure 5. Equivalent pinhole camera models 
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𝑥𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑓𝑥
𝑋

𝑍
+ 𝑐𝑥; 𝑦𝑠𝑐𝑟𝑒𝑒𝑛 = 𝑓𝑦

𝑌

𝑍
+ 𝑐𝑦 

 

(1) 

 

2.6.2 Projective Geometry 

The relation that maps the points 𝑄𝑖 in the real world coordinates (𝑋, 𝑌, 𝑍) to the points 

in the image space with the coordinates (𝑥, 𝑦) is termed as projective transform. The 

projection of the points in the physical world into the camera coordinate frame is math-

ematically expressed below. 

  

[
𝑥
𝑦
𝑤

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] . [
𝑋
𝑌
𝑍
] 

 

(2) 

 

The parameters 𝑐𝑥, 𝑐𝑦, 𝑓𝑥 , 𝑓𝑦 are characteristic of the camera and are called camera 

intrinsic parameters. The matrix in the middle in above equation is therefore called the 

camera intrinsic matrix. In addition to the above nominal intrinsic parameters there are 

other undesired parameters that characterize the camera behavior (image acquisition). 

These parameters will be discussed in the next section.  

Consider the point P (X, Y, Z) in Figure 13, where (X, Y, Z) are in reference to the co-

ordinate frame in real space. The dotted line originating from this point meets two optic 

centres 𝑂𝑙 and 𝑂𝑟 of the left and right cameras respectively. The image planes of the left 

and right cameras are presented as parallelograms with normals originating from 𝑂𝑙 and 

forming 𝑍𝑙 for the left camera and vice versa. The point where the dotted line meets the 

image plane represents the image of the point P in the respective camera image. 

Through simple geometric transformation equations, the image (u, v) made by point P 

in the left and right cameras have been presented in [9]. These equations are also pre-

sented in this report as equations 18 & 19. 

2.6.3 Lens distortion 

Although it is possible to mathematically devise a lens that produces no distortion, the 

lens manufacturing is never perfect. Furthermore to save manufacturing cost, spherical 

lenses are manufactured instead of the ideal parabolic lens. Also there are errors arising 

during placement of lens and image sensor. Two main distortions that appear in images 

due to all these inaccuracies are the radial and tangential distortions. Radial distortions 

are irregular spacing of image pixels radially about the principal axis. Figure 6(a) gives 
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an intuitive presentation of the radial distortion and the reason for this. This arises due 

to the fact that the refractive power of lens is higher around the edges of the lens than 

near the principle axes. The radial distortions are typically zero around the center and 

increase as one moves away from the principle axes. The second form of lens distortion 

is the tangential distortion. This arises due to the fact that the image sensor surface can 

never be ‘perfectly’ normal to the principle axes. Non uniform glue distribution further 

accentuates the problem as shown in Figure 6(b). 

2.6.4 Camera calibration 

The above two sections described the camera intrinsic parameters (the focal lengths and 

offset errors) and the distortion errors. Camera calibration is a process that is carried out 

to find the parameters that quantify camera intrinsic as well as the distortion behavior. 

Each object that is in view of the camera field of view can be represented in the carte-

 

Figure 6. Lens distortions (a) radial distortion; (b) tangential distortion 
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sian frame of reference as 3 translational parameters (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) and 3 rotational parame-

ters (𝑅𝑥, 𝑅𝑦, 𝑅𝑧). Hence there are 6 unknown positional parameters for each object view. 

Furthermore we have 4 unknown camera intrinsic parameters. Usually we use a chess-

board from which the corners of the squares are easy to pinpoint by image processing 

algorithms. By capturing the images of chessboard in various orientations we can ascer-

tain the camera intrinsic parameters using OpenCV functions.  

2.7 Stereo computation 

A stereo camera is a pair of cameras that share the same image plane and whose optic 

axes are separated by a fixed distance. The coordinate frames assigned to left and right 

cameras can be seen in Figure 13. Note the frame assignment to the camera image 

frames in the figure. The frame assigned to actual images used in OpenCV has a similar 

orientation but is translated to the top left corner of the image when looking along +ve 

Z-axis and the axes unit is pixels.  

Given the position vector of a point 𝑃⃗ = [𝑥 𝑦 𝑧]𝑇w.r.t the ground frame of reference and 

assuming zero camera inclination (i.e. 𝜃 = 0), we will prove that 𝑧 is a function of the 

camera image coordinates of this point in the left and right frames i.e. 

 𝑧 = 𝑓(𝑖𝑚𝑔𝑐𝑙
𝑝 , 𝑖𝑚𝑔𝑐𝑟

𝑝 ) (3) 

 

Where  𝑖𝑚𝑔𝑐
𝑝 = (𝑢𝑐

𝑝, 𝑣𝑐
𝑝) represents the image of point 𝑝 in camera 𝑐. The subscript cl 

and cr refer to the left and right camera respectively. 

And (𝑢, 𝑣) are the pixel coordinates with 𝑢 being the column and 𝑣 being the row. 

Assume that the position vector of the left and the right camera frames are given by 

𝑂𝑐𝑙
⃗⃗ ⃗⃗  ⃗ & 𝑂𝑐𝑟

⃗⃗⃗⃗⃗⃗  with 

  

𝑊𝑖𝑡ℎ 𝑂𝑐𝑙 ⃗⃗ ⃗⃗ ⃗⃗  = [𝑂𝑐𝑙𝑥 𝑂𝑐𝑙𝑦 𝑂𝑐𝑙𝑧]
𝑇 = [

−𝑏

2
 ℎ 0]

𝑇

 

 

(4) 

  

𝐴𝑛𝑑 𝑂𝑐𝑟 ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [𝑂𝑐𝑟𝑥 𝑂𝑐𝑟𝑦 𝑂𝑐𝑟𝑧]
𝑇 = [

𝑏

2
 ℎ 0]

𝑇

 

 

(5) 

 

The position vector of Point 𝑃 w.r.t the left and right camera frames is given by 

𝑃𝑐𝑙
⃗⃗⃗⃗  ⃗ & 𝑃𝑐𝑟

⃗⃗⃗⃗  ⃗. Using the triangle law of vectors we can write 
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𝑃𝑐𝑙
⃗⃗⃗⃗  ⃗ = [𝑃𝑐𝑙𝑥 𝑃𝑐𝑙𝑦 𝑃𝑐𝑙𝑧]

𝑇
= 𝑃⃗ − 𝑂𝑐𝑙

⃗⃗ ⃗⃗  ⃗ 
 

(6) 

 

Using the rule of similar triangles we can write 

  
𝑃𝑐𝑙𝑥

𝑢𝑐𝑙
𝑝 = 

𝑃𝑐𝑙𝑦

𝑣𝑐𝑙
𝑝 = 

𝑃𝑐𝑙𝑧 +  𝛼

𝛼
 

 

(7) 

 

By substitution of equation (6) in (7) we get 

  

𝑓𝑜𝑟 𝑙𝑒𝑓𝑡 𝑐𝑎𝑚𝑒𝑟𝑎 
𝑥 +

𝑏
2

𝑢𝑐𝑙
𝑝 = 

𝑦 + ℎ

𝑣𝑐𝑙
𝑝 =

𝑧 + 𝛼

𝛼
 

 

(8) 

  

𝑓𝑜𝑟 𝑟𝑖𝑔ℎ𝑡 𝑐𝑎𝑚𝑒𝑟𝑎 
𝑥 −

𝑏
2

𝑢𝑐𝑟
𝑝 = 

𝑦 + ℎ

𝑣𝑐𝑟
𝑝 =

𝑧 + 𝛼

𝛼
  

 

(9) 

 

 

Comparing the above two equations we can draw the following conclusions 

 𝑣𝑐𝑙
𝑝 = 𝑣𝑐𝑟

𝑝
 (10) 

  

𝑎𝑛𝑑 𝑢𝑐𝑙
𝑝 − 𝑢𝑐𝑟

𝑝 = ∆= [
𝛼

𝑧 + 𝛼
] 𝑏 

 

(11) 

 

Assuming 𝛼 ≪ 𝑧 we can write the above equation as 

  

∆= [
𝛼. 𝑏

𝑧
] 

 

(12) 

 

The term ∆ is known as disparity which represents the separation of the image of an 

object in two stereo cameras (usually along the x-axis or the image columns). Note that 
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in the derivation of the above equation we assume zero camera inclination (i.e. the angle 

made by the camera about the horizontal axis). Now that we understand disparity imag-

es being representative of the 3D scene data; we introduce two images that are derived 

from disparity images: v-disparity and OGM. Almost all our road surface detection al-

gorithms are based on these images hence it makes sense to introduce them here. 

2.7.1 v-disparity (v-disp) 

This image is a formed by calculating the disparity histogram along image rows. Since 

disparity image provides the disparity for all image pixels, the v-disparity image is 

formed by calculating the disparity histograms along each image rows. Fig. 7 presents a 

good illustration of v-disparity from a synthetic scene.  

2.7.2 Occupancy Grid Map (OGM) 

OGMs are grid maps where the vertical surfaces get highlighted. With stereo images we 

get disparity images from stereo computation. From the disparity images we can calcu-

late the real 3D coordinates of each pixel. We then project this cloud of points onto a 

flat horizontal grid with cells of certain size. A simple projection is made by calculating 

the number of points that lie within an imaginary cuboid formed by extending OGM 

cell vertically in both directions. This number represents the occupancy for the cell. A 

more complex projection can also be done to smooth the cell occupancy. Figure 31 pre-

sents a good illustration of OGM for a scene with an obstacle placed before the camera. 

Vertical surfaces remain vertical even when the ground surface exhibits tilt about the 

horizontal axis, which is why OGMs are effective on non-horizontal surfaces as well. 

This is one of the key reasons that the thesis work considers OGMs for ground surface 

detection as an alternative to use of v-disparity for the same 

2.8 Image processing 

Image processing is as the name implies the processing of images to extract either trans-

formed images or relevant parameters of interest. Image is a multi-dimensional matrix 

with individual elements (also known as pixels) representing the scene as either gray-

scale intensity or color.  

2.8.1 Smoothing 

Image smoothing (also known as blurring) is the process of ironing sharp changes in 

intensity or color of pixels. One of the simplest blurring operations is done by equating 

the intensity of a pixel to the mean of the intensity of its surrounding pixels.  
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Gaussian smoothing is one of the most popular smoothing algorithms and involves the 

convolution of a Gaussian kernel and the image matrix, refer Figure 7. In simple terms 

it is weighed average of pixel intensity where the weights are defined within the kernel 

and the size of kernel defines the degree of smoothness. Following is the mathematical 

representation of convolution. 

  

𝐻(𝑥, 𝑦) =  ∑∑𝐼(𝑥 + 𝑖 − 𝑎𝑖, 𝑦 + 𝑗 − 𝑎𝑗)𝐺(𝑖, 𝑗)

𝑚

𝑖=0

𝑛

𝑗=0

 

 

(13) 

 

Where 𝐻(𝑥, 𝑦)is the intensity of the resulting image pixel; (𝑚, 𝑛) is the size of the 

kernel; (𝑎𝑖, 𝑎𝑗) are the anchor coordinates on the kernel. This kernel can be either sym-

metric or asymmetric about the horizontal and vertical axes. Asymmetric kernels are 

particularly useful in preserving features that have a known direction of presentation 

within images. Road lanes present themselves in a certain angle range when viewed 

from a dashboard, non-uniform smoothing is useful in preserving lane markings in such 

images [11]. A more complex and computationally intensive smoothing is the edge pre-

serving smoothing. This smoothing is particularly important when we are interested in 

extracting the geometric structures (lines, edges) from an image and not interested in 

pixels that exhibit gradual change in intensity. Smoothing images is very beneficial 

when cluster segmentation is carried out on images. Clusters are blobs in images that 

have similar presentation in intensity, color or geometric structure. Presence of outli-

ers/noisy pixels within images greatly affects the image clustering algorithms. Image 

smoothing is helpful in mitigating the effect of noisy pixels in such algorithms.  

 

Figure 7. Gaussian smoothing [12] 
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2.8.2 Image segmentation 

Image segmentation is the process of segmenting the image into regions of interest, this 

is done so as to either transform the image into something more manageable or decrease 

the size of the data being handled. Thresholding is the simplest method of image seg-

mentation where the segments are made based on the intensity of the pixels. For in-

stance, when we observe pixel intensity from 0-255 in an image we could convert this 

grayscale image (grayscale images have pixel intensity variation from black to white) 

into a binary image (binary images have pixels that are either black or white) by setting 

a threshold say 125 pixels. Pixels having intensity above 125 (gray) can be assumed 

white and the rest black. Although crude, such algorithms are very useful in machine 

vision applications in automation where speed of execution is a priority. Counting the 

number of pellets that lie on a conveyor belt can be achieved by using such segmenta-

tion algorithms in conjunction with a clustering algorithm. Segmentation algorithms can 

be tailored to extract only the pixels of interest. For instance, in the game of tennis play-

ers are allowed to challenge the decision of the line judges on where the ball landed. 

The arbitration is carried out by a machine vision system where the camera tracks the 

tennis ball on court. The images captured by the camera can be processed with a seg-

mentation algorithm that filters everything apart from yellow pixels from the image. 

This algorithm is not very robust since there might be yellow colored clothes, adver-

tisements and so on. In reality, the images are processed based on the difference ob-

served in two successive images. Since the tennis ball is the fastest travelling entity on 

court, the difference in the two images is bound to include the ball pixels in high pro-

portion. To consolidate this detection further, one can segment the difference image at 

yellow color. Thresholding is based on a threshold which can be either constant or vari-

able. A more sophisticated thresholding technique is using the adaptive threshold where 

instead of using a fixed threshold to segment whole of image matrix, a threshold value 

is calculated for each pixel of the image by considering a intensity of pixels within a 

square window in the neighborhood of the pixel. Such adaptive thresholds perform bet-

ter when segmenting images that have non uniform noise (for instance non uniform il-

lumination). Figure 8 presents the advantage of adaptive thresholding when segmenting 

a chessboard image to segment the black checkers from the white. Such thresholding is 

spatial since the threshold is a function of the position for which the threshold is calcu-

lated. Temporal adaptive threshold is calculated using time as a factor. 
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Opposite of image smoothing is highlighting intensity/color variation within image. 

Such transformation is termed image gradient. Image gradient is also an inbuilt function 

in OpenCV [12]. It is a convolution of certain gradient kernels and the image matrix.  

Figure 9 presents the gradient of an image, notice how the edges that are have sharp 

intensity gradient across them get highlighted in the gradient image. Image gradient is a 

powerful tool in object detection because most of the objects have a silhouette that pre-

sents itself with a sharp intensity gradient and using Image gradient we can extract this 

 

Figure 8. Binary and Adaptive thresholding [12] 

 

Figure 9. Image gradient [12] 
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silhouette effectively. Furthermore gradient kernels can be designed to exhibit sensitivi-

ty to gradients along particular directions, such sensitivity is very useful when identify-

ing lines that are known to present themselves at certain nominal angles. For precise 

angular sensitivity, larger kernels must be used, although this adds computational costs 

to the convolution operation. Canny filter is another image processing tool that high-

lights edges in images. OpenCV also has functions for Canny filter [12]. In this thesis 

work it will be used to highlight the line features from v-disparity images. 

2.8.3 Line and Plane fitting 

Line and plane fitting as the name suggests is the process of fitting lines and planes to 

cluster of points. One of most popular and effective line fitting algorithm in image pro-

cessing is the Hough transform. The algorithm generates candidate lines with different 

slopes and intercepts and scores them based on how well they fit the point cluster. 

OpenCV has inbuilt functions that fit lines to point clusters using Hough transform. Let 

us assume that the point (𝑥0, 𝑦0) in an image lies on family of lines described by the 

inclination and intercept (𝜃, 𝜌). Figure 10 presents the geometry behind Hough trans-

form. 

 
Figure 10. Hough transform basics. (a) Point in image space (𝑥0, 𝑦0); (b) lo-

cus of lines that pass through point (𝑥0, 𝑦0); (c) locus of line inclination and in-

tercept that pass through point (𝑥0, 𝑦0) 

 This implies that each point in an image traces a curve in the slope-intercept plot (𝜃, 𝜌). 

All points on this curve in (𝜃, 𝜌) describe a unique line in image space that passes 

through (𝑥0, 𝑦0). Hence multiple points in image space trace multiple curves in the 

(𝜃, 𝜌) space. If all  the points in the image space (x, y) are collinear, then all curves in 

the (𝜃, 𝜌) space meet at a unique point. For a cluster of image pixels, when we sum the 

(𝜃, 𝜌) plots corresponding to individual image pixels, the maxima observed in (𝜃, 𝜌) 

plots correspond to the lines that best ‘fit’ the image pixels.  

OpenCV does not have an inbuilt plane fitting function. Given a set of points 

[𝑥𝑖   𝑦𝑖  𝑧𝑖 ]𝑖=1:𝑚. We assume that the points are related by a linear equation and lie on a 
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plane having equation 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐. We find the parameters of the plane that mini-

mize the sum of squared errors between 𝑧𝑖 and the plane value 𝑎𝑥𝑖 + 𝑏𝑦𝑖 + 𝑐. Note that 

we are not minimizing the normal Euclidian distance of the point from the estimated 

plane, rather considering the difference along z-axis as error and subsequently minimiz-

ing the sum of such squared errors. From [23] we note that this is a simple problem of 

matrix calculation and one inversion. 

  

𝐴𝑥 = 𝐵 
 

(14) 

 

𝐴𝑥 = 𝐵 (14) 

Where 

  

𝐴 =

[
 
 
 
 
 
 
 
 ∑𝑥𝑖
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𝑚

𝑖=1

∑𝑥𝑖𝑦𝑖
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𝑚
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∑𝑥𝑖𝑦𝑖

𝑚
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∑𝑦𝑖
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𝑚
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;   𝐵 =  
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 ∑𝑥𝑖𝑧𝑖

𝑚

𝑖=1

∑𝑦𝑖𝑧𝑖

𝑚
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∑𝑧𝑖

𝑚
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 & 𝑥 =  [
𝑎
𝑏
𝑐
] 

 

(15) 

 

 

2.9 A theory of detections 

Detections are usually based on a simplified or abstract representation of the object to 

be detected. For example when detecting lanes one assumes that lanes are elongated 

bright structures on a dark background [11]; what follows is the search to find pixels in 

Image that fit this representation. This simplification of the detection process has a catch 

– the detections of the object are only as good as the abstract model we assume. The 

higher the detail in abstract model, the more robust the estimation is. But higher detail 

in abstract model comes will mean more detailed comparison between the model and 

the unknown object to be classified and subsequently more computational load and 

slower detections. Hence one must always make a compromise between the detail of the 

model and the computational load. 

The definition of the abstract model also depends on the constraints of the system. For 

instance in cancer diagnosis we are in no rush to get the results, the robustness of the 
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model and hence the detection accuracy is stressed. One might argue that in road sur-

face detection, accuracy is just as important, but we do compromise with the detection 

accuracy because we get road detections real time and by tracking the objects over time 

(and hence between frames) we have a stronger prognosis of the road surface. We do 

not always have such luxury with medical diagnosis; for instance patient’s exposure to 

X-rays is limited since it harms the immune system. The classification of road surface 

algorithms, that are most relevant in choosing the camera, is whether we should to de-

tect road surfaces with mono camera or stereo camera images. The accuracy of estima-

tion is dependent on the data with which the estimation is made. A more accurate esti-

mation can almost always be made with more relevant information. With stereo camera 

images we get the depth information in addition to the pixel intensity/color of the ob-

jects, information that is critical to detection algorithms that are based on topographic 

abstract road surface models. 

2.10 v-disparity approach to  ground surface estimation 

One abstract model of the road that provides real time detections is the assumption that 

the road is flat. This model implies that the road points along an image row have the 

same depth and hence the disparity. So indirectly we search for pixels along rows that 

share a particular disparity. In reality the road pixels along an image row do not neces-

sarily have the same depth; instead the disparity of road pixels along a row can be as-

sumed a Gaussian distribution about a certain disparity. A disparity histogram along the 

rows of the image highlights the Gaussian distribution. The disparity histogram for all 

the image rows can efficiently be represented in a v-disparity. 

Labayrade [9] first presented this concept describing the use of v-disparity images to 

model ground plane. u-disparity [10] and v-disparity represent the disparity histograms 

along columns and rows of a disparity image. The column number of u-disparity image 

corresponds to the column of the disparity image along which the histogram is calculat-

ed; the row number of the v-disparity corresponds to the row number of the disparity 

image along which the histogram is calculated. In both u-disparity and v-disparity im-

ages the intensity represents the number of pixels that share this disparity (i.e. the 

strength of the histogram) along the column and row respectively. Ideally the roads are 

assumed flat and horizontal and the vehicles as flat vertical structures perpendicular to 

the road surface. This highly abstract model of the surroundings has the mathematical 

implication that the road surface has constant disparity along the rows and the obstacles 

surfaces have constant disparity throughout. Hence ideally –  

 The points sharing a disparity along a row should correspond to either roads or 

obstacles.  

 The points sharing the disparity along columns are exclusively obstacles.  
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The above two postulates can be put to effective use with the help of v-disparity and u-

disparity as shall be illustrated in this report. What follows is the construction of v-

disparity image as detailed in [9]. Let the disparity image generated from stereo images 

be represented by 𝐼∆. Let the v-disparity image be represented by 𝐼𝑣∆
. The intensity val-

ue at the position (𝑖, 𝑗) for an image 𝐼𝑚𝑔 is represented as 𝐼𝑚𝑔(𝑖, 𝑗); where 𝑖 corre-

sponds to the image column while 𝑗 corresponds to the image row. The v-disparity is 

calculated as follows. 

  

𝐼𝑣∆
(𝑖, 𝑗) =  ∑ 𝐹(𝑖, 𝑗, 𝑘)

𝐼∆ 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

𝑘=1

 

 

(16) 

 

Where the function F is defined as 

  

𝐹(𝑖, 𝑗, 𝑘) = 1 𝑖𝑓 { 𝐼∆(𝑘, 𝑗) = 𝑖 } 
= 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

(17) 

 

The v-disparity images are generated from the disparity images. The intensity of the 

points in this image is equal (or proportional when scaled) to the number of pixels that 

share this disparity in the same row. Hu and Uchimaru [10] further these concepts to 

generate u-disparity maps similar to the v-disparity. Figure 12 presents an illustration 

for u and v-disparity. 

The window in top left shows a disparity map of a corridor with intermittent cavities in 

both side walls. On the corridor floor a solid sphere, cone and a rectangular block are 

placed with increasing depth from the camera. Using this disparity image the u-disparity 

and v-disparity images are presented in the top right and bottom left windows respec-

tively. Neglecting the roof of the corridor, this disparity map is a good model of the ac-

tual driving situations. The floor can be analogous to the road plane in front of the ego-

vehicle. The walls on either sides of the corridor can be building, rail guards or vehicles 

in adjacent lanes. The objects on the floor are analogous to obstacles in the path of the 

vehicle. The cavities can be the cross roads to the ego-lane. These features have com-

plex representation in the 3D world making it difficult to hypothesize their presence. 

Here lies the advantage of the u-disparity and the v-disparity. The road/ground plane 

presents itself as a lower bound to the v-disparity map. With the exception of roads that 

have adjacent railway tracks (with elevation lower than that of road), adjacent footpaths 

(with elevation lower than that of road), this assumption is true for most of the real 

world situations. The obstacles’ surfaces perpendicular to the ground plane represent a 
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collection of points vertical in the v-disparity image. Intersection between the road 

plane in v-disparity and the extrapolated obstacle pixels gives us the contact point of the  

obstacle to the ground plane. The distance of the ego-vehicle from this obstacle can be 

calculated with this contact point location. The side walls present themselves as hori-

zontal lines in u-disparity image. These side walls are analogous to vehicles (especially 

trucks with containers that have vertical surfaces) in adjacent lanes in real world frames. 

It has been proved in this report that for low camera pitch angles a flat horizontal road 

presents itself in the v-disparity image as a straight line. Hence we fit a straight line to 

the v-disparity image to find the road/ground plane. 

2.10.1 Derivation of equation for road pixels in v-disparity -  

The equations that relate image pixels (u, v) to their corresponding location in the world 

frame (X, Y, Z) are derived with certain assumptions in [9]. We present these equations 

below – 

 
Figure 11. Illustration of u-disparity (bottom left) and v-disparity (top-

right)generated from the disparity image (top-left); real image (bottom right) 
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𝑢 =  
𝛼𝑋 + 𝑢0 (𝑌 + ℎ) sin 𝜃 + 𝑢0 𝑍 cos 𝜃 − ((𝛼𝜀𝑖 𝑏)/2)

(𝑌 + ℎ) sin 𝜃 + 𝑍𝑐𝑜𝑠 𝜃
 

 

(18) 

  

𝑣 =
(𝑌 + ℎ)(𝛼 cos 𝜃 + 𝑣0 sin 𝜃) + (𝑣0 cos 𝜃 − 𝛼 sin 𝜃)𝑍

(𝑌 + ℎ) sin 𝜃 + 𝑍𝑐𝑜𝑠 𝜃
 

 

(19) 

 

  

𝜀𝑖 = −1 𝑓𝑜𝑟 𝑙𝑒𝑓𝑡 𝑠𝑡𝑒𝑟𝑒𝑜 𝑖𝑚𝑎𝑔𝑒𝑠 𝑎𝑛𝑑 + 1 𝑓𝑜𝑟 𝑟𝑖𝑔ℎ𝑡. 
 

(20) 

  

𝑑 =  
𝛼𝑏

(𝑌 + ℎ) sin 𝜃 + 𝑍 cos 𝜃 
 

 

(21) 

 

Standard assumptions in derivation of equations 18 & 19 are –  

 Stereo image planes are parallel and at the same height w.r.t the world coordi-

nate frame 

 Camera ‘roll’ and ‘yaw’ angles w.r.t the ground frame is zero.  

 Camera focal length and sensor pixel density is same along the horizontal and 

vertical axes 

The parameters above correspond to frame attributes indicated in Figure 13. The 3 co-

ordinate frames are represented by 𝑅𝑎- road frame ,𝑅𝑐𝑟 - right camera frame & 𝑅𝑐𝑙 - left 

camera frame.  

𝜃  represents the angle between optic axes of cameras and horizontal (Pitch angle). ℎ  is 

the height of the camera from the ground surface. 𝑏  (stereo basis) is the distance be-

tween the stereo cameras. 

The image coordinates of the projection of the optical center will be denoted by 

(𝑢0, 𝑣0). Camera focal length expressed in pixels as 𝛼. 

 

Figure 12.  
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Assuming the road is flat i.e. Y=0 greatly simplifies the above equations. The partial 

derivative of row 𝑣 against the 𝑍 coordinate can be derived as – 

  
𝜕(𝑣)

𝜕(𝑍)
=  

−ℎ𝛼

(ℎ sin 𝜃 + 𝑍 cos 𝜃)2
 

 

(22) 

 

Also since disparity is a function of depth Z as described in equation (21), we can write 

the partial derivative of disparity w.r.t depth Z as – 

 

  
𝜕(𝑑)

𝜕(𝑍)
=  

−𝛼𝑏 cos 𝜃

[(𝑌 + ℎ) sin 𝜃 + 𝑍 cos 𝜃]2
 

 

(23) 

 

Using this equation we find the partial derivative of depth ‘Z’ w.r.t ‘disparity’ – 

 

 

 
Figure 13. Coordinate frame assignment and relevant parameters 
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𝜕(𝑣)

𝜕(𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦)
=  

𝜕(𝑣)

𝜕(𝑍)
 .

𝜕(𝑍)

𝜕(𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦)

=  
−ℎ𝛼

(ℎ sin 𝜃 + 𝑍 cos 𝜃)2
 .
[(𝑌 + ℎ) sin 𝜃 +  𝑍 cos 𝜃]2

−𝛼𝑏 cos 𝜃
  

 

(24) 

 

For datasets that have cameras on vehicle at zero inclination i.e. 𝜃 = 0. The above 

equation (24) is simplified to – 

  
𝜕(𝑣)

𝜕(𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦)
=  

ℎ

𝑏
 

 

(25) 

 

In other words the set of points in the v-disparity image that correspond to road pixels 

appear as a line with constant slope. This is true for certain datasets like the one provid-

ed by KIT [14], [15].Therefore detecting the ground plane is equivalent to detecting a 

line in the v-disparity map. 

2.10.2 Detection of road surface in v-disparity map 

The generated v-disparity images are treated with a Canny filter and then fed into the 

Hough transform. OpenCV Hough converts the given intensity image into a binary im-

age with all non-zero pixels represented as 1 and then finds the lines within such image. 

Since we are interested in only the lines that correspond to pixels which high intensity 

(high intensity corresponds to disparity shared by a larger fraction of row pixels) we use 

Canny filter to eliminate majority of the low intensity pixels. It has been proved that for 

a flat horizontal road, the road pixels constitute a straight line in v-disparity [9]. Hence 

we detect lines in v-disparity to find the road pixels in images. OpenCV function for 

progressive probabilistic Hough Transform HoughLinesP [12] is used to generate pos-

sible candidates for lines in v-disparity that could represent the ground surface. A score 

is assigned to each candidate line. This score is the summation of intensity of v-

disparity pixels lying directly on the candidate line. The line with the maximum score is 

elected to best represent the ground plane. Disparity of the image pixels is compared 

with the ‘expected’ disparity of the road pixels at the pixel location. If the difference in 

these two disparities is within a fixed tolerance, then the pixel is highlighted as a road. 

Figure 14 presents the first attempt at road surface estimate. Note the ground plane is 

highlighted with negated disparity (if it is estimated that the pixel belongs to road, the 

disparity of the pixel is inverted). Thus stark contrast in the left frame of Figure 14 rep-

resents the road/obstacle boundary. 
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The roads that are not flat will not generate a straight line in v-disparity. To accommo-

date the non-linear v-disparity cloud of points that result from such roads a poly line fit 

to v-disparity image is employed; this gives a better representation of the road than the 

single line fit [9]. Hence the Probabilistic Hough transform was fed sections of the v-

disparity rather than the whole image. The results of this modification are presented in 

Figure 15. Note that the Hough transform is not obligated to generate line that span the 

entire width of the window. This is the reasoning for presence of some gaps in the 

ground plane estimated in Figure 15. 

For an image row, the road pixels are almost always the farthest points (from the cam-

era) when compared to other pixels in this row. Mathematically this translates to them 

having the lowest disparity.  

 
Figure 14. Road plane estimate inverted in disparity image (left) 

 
Figure 15. Poly line fitting of v-disparity (left) and road surface highlighted in 

yellow in the right image. 
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Thus one can assume that the points with the lowest non-zero disparity along each row 

of v-disparity correspond to the road pixels. With this assumption the v-disparity points 

with lowest disparity along each row are isolated and then fed into the probabilistic pol-

yline Hough transform. Figure 16 presents the road plane estimated with this assump-

tion. The image formed by accumulating the minimum disparity along each row will be 

referred to as the ‘minrow’ within this report. 

The Hough lines detected in each segment shown in Figure 16 were further extrapolated 

to fill the gaps seen in the road plane estimated. Figure 17 presents the extrapolated 

lines and the corresponding road plane estimated. Note that there are still some gaps 

 
Figure 16. poly line fitting to minrow v-disparity (left)and colored road esti-

mate 

 

Figure 17. Extrapolated poly line fitting to minrow v-disparity (left) and road 

surface estimate highlighted in blue on the right 
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visible in the estimated road plane due discontinuities persisting between the polylines 

extrapolated (one such discontinuity can be seen at the last Hough line in the minrow 

image). 

An alternate approach to the road estimation is by obviating the use of Hough transform 

entirely. The minimum disparity along each row (referred to as minrow) is used as a 

nominal measure of the disparity for road pixels along that particular row. Hence an 

alternate representation of road pixels in v-disparity will be the pixels that correspond to 

the lowest nonzero disparity along each row. The middle frame in Figure 18 shows one 

such representation. The disparity of the road pixels is allowed a tolerance. This ap-

proach is faster than the above approach since we no longer use Hough transform in the 

estimation. Figure 18 presents the minrow estimation without use of Hough transform.  

With this assumption the ground surface is a locus of points in v-disparity that hold the 

least non-zero disparity along each row. Disparity increases with the point elevation in 

3D space according to equations in [9]. Since obstacles/vehicles must always be on top 

on the road surface, they do have higher disparity compared to pixels in the same row 

and hence get eliminated in the middle frame of Figure 18 leaving behind the points that 

do correspond to roads. Note that a constant horizon row is assumed in subsequent re-

port to limit the road surface estimate. 

Roads which are not horizontal or flat, roads that have some banking angle do not have 

a constant disparity along the image rows. Instead the disparity of pixels along each row 

is spread across a finite bandwidth. The above minrow disparity approach fails misera-

bly in such scenarios. Figure 19 presents an illustration where such behavior is ob-

served. The left frame presents the v-disparity, the middle frame presents the minrow 

disparity and the right frame presents the estimate. All points below the fixed horizon 

row are assumed to correspond to road surface in the middle frame of Figure 19. 

To accommodate such presentations of the road plane we can devise an adaptive toler-

ance to accommodate the road pixels. Another approach to handle such scenarios is to 

eliminate points in v-disparity that do not belong to the road plane; the points that be-

long to vehicles, buildings, trees, other traffic participants, and claim that the remaining 

points must belong to the road surface. We know that majority of such points protrude 

from the slanted line (or band in case of banked roads) representation of the road plane 

in v-disparity. We make a fair assumption that every point other than the road appear as 

near vertical clouds of points in the v-disparity image. Hence partial derivative of the v-

disparity w.r.t the x-axis highlights these undesired points. We subtract these points 

from the absolute derivative and eliminate majority of the non-road points in v-

disparity. Figure 20 presents an illustration of this approach. 

On the left is the image of 
(𝜕(𝑣−𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦))

𝜕𝑢
 and on the right is the image of 

(𝜕(𝑣−𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦))

𝜕𝑣
. After subtraction of the left image from the absolute derivate we get the 
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image shown in left of Figure 21. This image still has some points scattered above the 

slanted line representation. We can discard the points that are outside a fixed tolerance 

around the nominal slanted line representation. This filtered v-disparity is used to gen-

erate road plane estimates. Figure 22 shows the same banked image as Figure 19. It is 

clear that this partial derivative approach provides better road plane estimates on banked 

roads. 

 

 

Figure 18. Road plane estimation without Hough transform 

 

Figure 19. Failure of minrow approach in roads that are not flat. 
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Figure 20. Partial derivative of v-disparity w.r.t x on the left(highlights verti-

cal structures) and w.r.t y on the right 

 
Figure 21. Separation of partial derivative w.r.t x from absolute derivative of 

v-disparity (left) and after eliminating outliers (right). Red circle shows the elim-

ination of outliers. 
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2.10.3 Refined v-disparity post obstacle elimination 

The state of ground plane estimates implemented so far has been summarized in Figure 

23. These estimates are based on the disparity images corresponding to the stereo pair of 

the scene presented. Two of the above 3 algorithms (Top and bottom frame Figure 23) 

assume that roads in front of the ego vehicle are flat. This assumption is not always true. 

A recent publication [17] eliminates obstacles by thresholding u-disparity. Figure 24 

presents a GUI with trackbar to set the obstacles’ threshold in u-disparity. Figure 24 

reflects changes when the threshold is updated so that a nominal threshold for obstacle 

elimination can be selected easily. Once the obstacles are eliminated as mentioned 

above, the disparity map is updated to discard pixels belonging to obstacles. This new 

disparity map is used to generate the v-disparity. Bottom left frame of Figure 24 and 

Figure 25 present such updated v-disparity. Notice that vertical could of points that are 

characteristic of the obstacles are significantly suppressed. Furthermore, [17] also pre-

sents an approach for estimation of horizon. It is based on the assumption that the v-

disparity curve rises only up to the horizon, Figure 25 presents the horizon thus estimat-

ed as a green dot. To see how the ground plane estimation algorithms (whose results are 

shown in Figure 23) would fare with this updated disparity map, we plot the estimates 

using the original and updated disparity maps in Figure 26. The improvements in 

ground plane estimates can be observed around the obstacles themselves. 

 

 

 

Figure 22. Improved estimation of road surface with partial derivative separa-

tion 
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Figure 23. The 3 ground plane estimate algorithms. Top frame - direct line fit 

to v-disparity, middle frame – minrow disparity estimate, bottom frame – line fit 

to filtered v-disparity. 

 
Figure 24. The OpenCV GUI to set the obstacle threshold (trackbar at the top 

of frame) in u-disparity(below the trackbar to the right) and visualize change in 

the v-disparity (bottom left) and the real image (bottom right) 
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While the estimates with original disparity image tend to classify vehicle bumpers as 

ground plane, the estimates with the updated disparity map (post obstacle elimination) 

are much more disciplined around vehicles. Instead of assuming any particular road 

model (flat, quadratic or spline) the authors in [17] claim that once the obstacles are 

eliminated in disparity images, the maximum number of points that share a particular 

disparity belong to the road. Such points have the highest intensity in v-disparity and the 

author calls them the Initial Ground Profile (IGP). Figure 25 above presents the points 

corresponding to max intensity along each row (IGP) in v-disparity image as blue dots. 

 

 
Figure 25. Left frame presents the v-disparity after the obstacles are eliminat-

ed in disparity image. Middle frame presents the max intensity along each row 

in v-disparity as blue points. Right frame presents the horizon as the green dot. 

In all three frames, the ground profile as dictated in [17] is colored blue 
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Figure 26. The 3 ground plane estimates in the left half of image used the orig-

inal disparity image for estimation. The 3 ground plane estimates in the right 

half of the image used the disparity images where the pixels corresponding to 

obstacles had been discarded. 

 
Figure 27. Near vehicle triangle window (yellow) in front of ego vehicle to 

trigger warning. The road surface estimation is colored green..  
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2.10.4 Near vehicle warning function 

An additional function that can be designed with the disparity data is to detect the clos-

est obstacle (vehicle) in front of the ego-vehicle. This detection can serve to discard the 

ground plane detection in the situation where the distance to the front vehicle is too less. 

In such cases the ground plane will not be the most predominant part in the image and 

therefore violate the v-disparity assumption. A triangular window is spread in front of 

the ego vehicle and the population of road pixels in this window is studied. If the per-

centage of the road pixels in this window is below a threshold, a warning message is 

triggered. Figure 28 presents one such window in green in front of ego vehicle. 

Figure 29 presents the warning on a real image. Note that since we have defined road 

estimate confidences (will be discussed in section 4.1) to be valid only when the max 

intensity along the v-disparity row is higher than a threshold, fewer rows have confi-

dences defined in this figure. This leads to a lower average confidence for the entire 

estimate. Since the vehicle search window in Figure 28 is fixed, on a curved road the 

vehicle in front of the ego vehicle will be detected much later than when it were to ap-

proach head on. A more effective window will be one that tracks the ego-vehicle trajec-

tory (by tracking the steering wheel and assuming the driver is not so aggressive that the 

vehicle skid is significant) and adapts the lane window accordingly. A more compact 

representation of road surface estimate can be made by highlighting the entire estimate 

with a single color (rather than a color for each row as represented in Figure 50 & Fig-

ure 51). Estimates represented in Figure 30 serve this purpose. One additional feature to 

be implemented in our road surface estimates is the filtering of the maximum depth for 

road surface estimation where the confidence is greater than a threshold. The reason for 

filtering the maximum depth is to avoid random loss of free space due to uncertainty of 

the disparity map and to have a smoother variation of the associated free space. 

 

Figure 28.  
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Figure 29. Near vehicle warning, also note the lower number of confidence 

rows 

 
Figure 30. Unified confidence representations with filtered max estimation 

depth 
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2.11 Occupancy Grid Map (OGM) free space estimation ap-

proach 

v-disparity approach prophesizes the ground surface as pixels that share similar dispari-

ty. The estimations with this approach are good as long as the pixels along rows have 

similar disparities. Since disparity is a function of the depth Z and height Y as seen in 

equation (21)), we can say that as long as the road surface plane is parallel to the x-axis, 

the v-disparity approach produces good results with relatively low computational foot-

print. This makes the v-disparity approach in freeway environment a very attractive 

option. Furthermore the v-disparity approach is one of the most simple and robust algo-

rithms for road surface detection.  

In the urban environment however the assumptions that are made to realize v-disparity 

approach can often fail. The free space estimation approach looks at the same problem 

of road surface estimation from a different perspective. It prophesizes that road surface 

up to an obstacle can be classified as free space. Clearly the accuracy and validity of 

this model depends on how well one can detect the obstacles. Obstacles and road sur-

faces have complementing characteristics in real world and retain this trait in image 

space. For instance the road surfaces are usually horizontal, while the obstacles usually 

present themselves as vertical surfaces (assuming flat obstacle rear); subsequently while 

road pixels share disparity along the image rows, the obstacles share disparity along the 

image columns. When we take the case of a banking road or a road that has a twist 

about the z-axis, we can easily visualize that the road pixels along image rows do not 

have the same elevation Y and depth Z and hence different disparity. Clearly the v-

disparity approach is at a disadvantage here. But when you look at the definition of ob-

stacles in such scenarios particularly the obstacles’ vertical surface will remain vertical 

even on the twisted road. This implies that limiting the road surface up to the obstacles 

is a better approach than to rely on v-disparity approach.  

Note that we had already carried out a step of “crude obstacle separation” in the v-

disparity approach to ground surface estimation as suggested in [17]. The beauty of this 

approach is that the v-disparity image is generated after elimination of obstacles’ pixels 

from disparity image. In short it is a fusion of free space estimation as carried out by 

OGM and the v-disparity approach as detailed in [9]. 

So far we have avoided the transformation of image points to the 3D world coordinates. 

There have been publications [18], [5], [19], [4] where the authors suggest the use of the 

3D world coordinates of image pixels (using especially the Z axis which stands for the 

real depth of obstacle from the ego vehicle) to generate the so called Occupancy Grid 

Maps (OGM). A generic occupancy grid map has been detailed in Figure 31. And in 

laymen terms OGM is like a ‘top view’ of a 3D scene.  Note the convention that the 

space limited by the segmentation (black pixels) is considered free space (colored 

white) while that beyond the black pixels as unknown and is rendered unknown (gray). 
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Note also the fact that the OGM x and y axes correspond to real world coordinates. And 

the OGM is based solely on the view presented in Figure 31(a) which corresponds to a 

conical 3D world projection. Each cell in OGM corresponds to a distinct space in 3D 

world coordinates. Another simple way of looking at OGMs is that they are the projec-

tion of the cloud of 3D points that are seen by a camera on a flat horizontal surface. The 

impression made on each point in this flat horizontal surface is proportional to the num-

ber of 3D world points (seen by the camera) that exist directly above the surface. Note 

that we consider only the points that are seen by the camera when building the OGM, 

because our perception of the world is made possible solely by (and hence limited to) 

the camera images. Furthermore due to the perspective effect, the density of the 3D 

points captured by camera images is higher for entities closer to the camera than those 

farther. This nature of the world information capture by camera subsequently makes the 

information represented on the OGMs non uniform (since the closer cells in OGM are 

influenced by more 3D points and the farther cells are influenced by fewer 3D points). 

Daimler has also published some papers [21], [8] where they construct abstract world 

representation called ‘Stixel World’ by extracting meaningful data from the Occupancy 

grid map (OGM). The 3D world data is squeezed onto a 2D plane (the OGM). The oc-

cupancy grid consists of discrete cells that do not intersect with one another. The OGM 

cells have intensity proportional to the number of 3D points that exist within the imagi-

nary region formed by extending the OGM cells both vertically upwards and down-

wards. The area of the cells although constant in itself, can map to non-uniform regions 

in 3D space. 

2.11.1 Math involved in generating OGM 

A measurement (𝑚𝑘) is a vector defined as [𝑢 𝑣 𝑑]𝑇  where 𝑢, 𝑣 are the image pixel 

columns and rows respectively and 𝑑 corresponds to the disparity associated to this pix-

el. This measurement originates from a ray of light after reflecting on a point in real 

world at 𝑝𝑘 = (𝑥 𝑦 𝑧)𝑇. 

Solving simultaneous equations 19 & 21 we get – 

  

𝑌 =  
𝑏

𝑑
[ (𝑣 − 𝑣0) cos 𝜃 + 𝛼 sin 𝜃 ] − ℎ 

 

(26) 

  

𝑍 = 
𝑏

𝑑
[ (𝑣0 − 𝑣)sin 𝜃 + 𝛼cos  𝜃] 

 

(27) 

 

And back substituting 26 & 27 into 18 yields – 
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𝑋 = 
𝑏[ 2(𝑢 − 𝑢0) − 𝑑 ]

2𝑑
 

 

(28) 

 

 

A Gaussian function of vector error  𝛿𝑘  resulting from measurement 𝑚𝑘 is defined as 

follows – 

  

𝐺𝑚𝑘
(𝛿𝑘) =  

1

2𝜋3/2|𝐶𝑘|
exp [−

1

2
𝛿𝑘

𝑇𝐶𝑘
−1𝛿𝑘] 

 

(29) 

 

The Occupancy likelihood (as the name implies) is a number that stores the current 

occupancy status for a particular cell in OGM. It is denoted by D(i,j). Each image pixel 

influences occupancy in the entire OGM, strong occupancy likelihood in some cells 

 
Figure 31. OGM illustration [5]; (a) obstacle on surface, (b) corresponding 

Cartesian OGM 
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while weak in others. The occupancy likelihood for the entire disparity image is the 

summation of the occupancy likelihood resulting from each pixel. In other words, each 

pixel of disparity map produces an occupancy likelihood image, and we add all such 

images to arrive at the OGM for the entire disparity image. The following equation 

highlights this concept. 

  

𝐷(𝑖, 𝑗) =  ∑ 𝐿𝑖𝑗(𝑚𝑘)

𝑟𝑜𝑤𝑠.𝑐𝑜𝑙𝑠

𝑘=1

 

 

(30) 

 

2.11.2 Column-disparity map 

In the column disparity OGM columns correspond to the columns of the disparity im-

age, the grid rows correspond to the pixel disparity. This grid has the same axes layout 

as the u-disparity map. The occupancy likelihood arising from a single pixel is a Gauss-

ian of error vector. The elements of this vector are - the difference in column, 0 & dif-

ference in disparity as indicated in the square bracket below. Every pixel measurement 

𝑚𝑘 produces the occupancy likelihood for every cell of the OGM. The occupancy like-

lihood at (𝑖, 𝑗) is calculated as – 

  

𝐿𝑖𝑗(𝑚𝑘) =  𝐺𝑚𝑘
( [𝑢𝑖𝑗 − 𝑢, 0, 𝑑𝑖𝑗 − 𝑑]𝑇 ) 

 

(31) 

 

The intensity of each OGM pixels/cell (each pixel corresponds to a cell) is given by 

𝐷(𝑖, 𝑗) as in equation (30). The intensity in OGM referes to the occupancy likehood, in 

other words if there is an obstacle in a location in 3D space, the corresponding cell in 

the OGM reflects its presence through high intensity. Figure 33 (a) presents the column-

disparity OGM (bottom) and its resemblance to u-disparity (middle). 

 

2.11.3 Polar OGM 

In [4] the author argues that the use of real distance in contrast to the disparity for gen-

erating OGM is preferable, since the OGM with disparity as row (or y-axis) does not 

provide an intuitive representation of the free space. This inconvenience arises due to 

the fact that the disparity is non-linearly dependent on the real distance as can be seen 

with equation 21. Figure 33(b) presents an illustration where the same scene is repre-

sented with real image, u-disparity, col-disparity OGM and polar OGM (ordered from 
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top to bottom). In Figure 33(b) notice that although the polar OGM represents occupan-

cy with real distance along rows (or y-axis); it suffers from lack of data along certain 

rows. This is attributed to the fact that there are points in the real world which do not 

have corresponding pixels in the image. The authors in [2] suggest filling data from 

neighboring cells into these empty rows. Since we are transforming data from the dis-

parity space to the real space, the computations involved in Polar OGM will be more 

than that involved in column-disparity OGM and u-disparity-OGM. Mathematically this 

transformation has be expressed in the following equations.  

Polar OGM is generated with the following likelihood function – 

  

𝐿𝑖𝑗(𝑚𝑘) = 𝐺𝑚𝑘
( [𝑢𝑖𝑗 − 𝑢, 0, 𝑑𝑖𝑗

′ − 𝑑]
𝑇
 ) 

 

(32) 

Where 𝑑𝑖𝑗
′ is the disparity corresponding to the depth j of the OGM cell. This can be 

calculated from equation 21 while assuming Y=0. The Polar OGM x-axis is the same as 

the columns of the image. The y-axis of the OGM corresponds to the real distance of 

objects w.r.t the ego-vehicle. 

2.11.4 OGM Segmentation using Dynamic programming 

Once the OGM is generated as described above, we need to segment it so as to estimate 

free space. Although we could select the maximum intensity pixels along each column 

as done in [19], the authors in [4] suggest the use of ‘dynamic programming’ to segment 

the image. The book - Applied Mathematical Programming [22] details the dynamic 

programming through an intuitive illustration and subsequent implementation. 

 

 
Figure 32. A stage in dynamic programming. Yellow line indicates the optimal 

segmentation path from the current column to the last column 
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The objective of the dynamic programming is to segment the OGM while minimizing a 

cost function. This cost function is dependent on the intensity of the pixels in OGM and 

a spatial continuity factor which penalizes a jump in depth (in other words the cost pe-

nalizes jumps in rows while segmenting the OGM).  

There are 3 important features of dynamic programming –  

 
Figure 33. (a) Similarity between u-disparity OGM (middle) and column-

disparity OGM (bottom) (b) Perspective change in Polar OGM(bottom) in con-

trast to u-disp (2nd from top) and col-disp (3
rd

  from top) 
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Stages: The image (or OGM) segmentation problem is broken down into different stag-

es. The segmentation grows from right end of image and concludes when it meets the 

left end (this choice is strictly arbitrary). In the image segmentation problem we assume 

the ‘stage’ as the number of columns that have been segmented. Figure 32 illustrates a 

stage in segmentation by dynamic programming. 

States: The states reflect the information required to infer the consequences of a deci-

sion made at this stage. In our case, this information includes the optimal paths starting 

at any fixed row in the current stage (column). This information is updated along every 

column of the segmentation growth. 

Recursive optimization: This is the loop that cycles through all the columns of the im-

age and generates the state data along each stage. At the end of this loop we end up with 

a set of optimal paths starting at each row of the first column. We segment the image 

from the row in the column that carries the lowest cost. In the recursive loop, we update 

the cost vector (state) of the segmentation which indicates the cost to segment the image 

starting at a fixed initial row. 

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑆𝑡𝑎𝑡𝑒 =  𝑆(𝑐𝑜𝑙𝑢𝑚𝑛, 𝑟𝑜𝑤) 

Recursive optimization loop –  

 

1. ∀ 𝑐𝑜𝑙𝑢𝑚𝑛 = 𝑛 − 1: 1 → 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒  𝑆(𝑐𝑜𝑙𝑢𝑚𝑛, 𝑟𝑜𝑤) 

2. 𝑤ℎ𝑒𝑟𝑒 𝑆(𝑖, 𝑗) =  min𝑘=1:𝑟𝑜𝑤𝑠[𝑐𝑜𝑠𝑡( (𝑖, 𝑗), (𝑖 + 1, 𝑘)) + 𝑆(𝑖 + 1, 𝑘)] 
3. & 𝑐𝑜𝑠𝑡( (𝑥1, 𝑦1), (𝑥2, 𝑦2) ) 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑖𝑛𝑐𝑢𝑟𝑟𝑒𝑑 𝑎𝑠 𝑖𝑛 [4] 

 

Figure 34 presents the segmentation for the polar OGM. The intensity in OGM is pro-

portional to the number of pixels that ‘share’ or lie in the vicinity of a particular dispari-

ty (in case of u-disparity & col-disparity OGM) or depth (in case of polar OGM). The 

 
Figure 34. Polar OGM top right and dynamic segmentation in blue (bottom 

right) 
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cost function for dynamic programming depends inversely on this intensity of the OGM 

pixel. This implies that the dynamic programming is more likely to segment the OGM 

through higher intensity pixel than lower intensity pixels along the same column pro-

vided all other conditions are the same. Figure 35 presents the situation where the yel-

low windows correspond to the building pixels in real image and their corresponding 

OGM spread. The red window corresponds to the vehicle pixels and their corresponding 

spread in OGM. The Blue pixels correspond to the segmentation achieved with dynamic 

programming. Note that the segmentation indicated in Figure 36 prophesizes free space 

until the building ignoring the vehicle immediately before. To overcome this shortcom-

ing it is suggested in [21] to discard pixels in OGM after the first maxima above a par-

ticular threshold along each column.  

Although this additional step does tend to alleviate the problem observed in Figure 35, it 

renders the dynamic programming redundant to some degree. The purpose of the dy-

namic programming was to define segmentation for each column against all available 

possibilities. During background subtraction the first obstacle along every column is 

prophesized to be the first maxima along column that has intensity above a certain 

threshold. Pixels beyond this row are cleared. A good assumption is that these local 

maxima pixels in OGM correspond to the obstacles that limit free space. This further 

saves the processing time without considerable loss in estimate quality. 

One additional problem is selection of a threshold for the first maxima along each col-

umn of OGM in background subtraction. Nearer obstacles have a larger perspective 

appearance both in real image and the disparity image and since OGM intensity is pro-

portional to the number of pixels sharing a distance/disparity, these obstacles tend make 

a stronger impression in OGM than farther obstacles. This implies that a larger column 

threshold would suit the nearer obstacles and vice versa. A constant maxima threshold 

for every column in background subtraction thus makes little sense. Also since along 

each column of OGM we can expect multiple ‘spikes’ corresponding to multiple verti-

cal structures, this is a multilevel thresholding problem. 

Urban road environment includes trees, traffic sign posts, landmark boards etc. Since 

these boards present themselves in vertical plane, the pixels corresponding to these 

boards have nearly the same distance and hence similar disparity. Figure 34 presents an 

instance where the overhead signpost presents itself in the polar OGM and consequently 

limits the free space to the false extent. A more meaningful definition of obstacle is one 

that defines vertical structures that protrude from the ground surface as obstacles. Simi-

lar observations have been made in other instance where traffic sign posts, trees, etc are 

present. To overcome this nuisance, we limit the rows of the disparity map which are 

used to derive the OGM. In our case a manual threshold has been set beyond which the 

disparity pixels influence OGM. 
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Note that the ground plane estimate in Figure 34 above is highlighted as blue circles. 

This representation of estimate does retain underlying pixels and helps in judging 

whether certain key obstacles have been completely enveloped/ignored by the estima-

tion algorithm. 

 
Figure 35. Failure of dynamic programming to limit Free space upto pixels in 

red window. Instead the free space (green) is limited by building pixels in yellow 

window 
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2.11.5 Polar OGM vs u-disparity OGM 

Although the Polar OGM is more disciplined around the obstacles, it suffers from poor 

data resolution for distant points. Furthermore the generation and subsequent use of 

polar OGM puts a larger load on processor than u-disparity. We have already presented 

an extended version of u-disparity that accounts for the shortcomings of both polar 

OGM and the u-disparity.  

Another faster alternative to polar OGM is a scaled version of u-disparity. The pixels in 

u-disparity are scaled (along their rows or y-axis) from disparity to their depth in real 

world coordinates. This is the same coordinate frame representation as the polar OGM. 

Figure 37 presents the generation of u_Z from u-disparity for a particular road presenta-

tion. 

 
Figure 36. Presence of flat structures above the ground surface (yellow win-

dows) results in false free space estimation. Red window highlights the car pix-

els that should be limiting the front free space 

 
Figure 37. Top right is the row limited u-disparity; bottom right is the u_Z 

map. Note the presence of blank between rows and high intensity pixels for large 

rows (in red window). 
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Each row of u_Z map corresponds to 20cm real world length. While the columns in u_Z 

map correspond to the image column. Notice that in the u_Z map in Figure 37 above 

that at large row values, the intensity is comparable to that of the obstacles (which are 

the some of the brightest clusters). This is due to the nonlinear nature of the equation 

relating disparity and the real distance equation 21. This is illustrated in Figure 38 be-

low. This table is generated by considering a flat horizontal road surface and generating 

the occupancy values at depths of 20cm each. The introduction of such pseudo noise 

(highlighted in red box in Figure 37) in u_Z map complicates the process of ground 

plane estimation. As previously discussed, the obstacle detection depends on identifying 

the first maxima above a certain threshold (background suppression). 

 

Figure 38. OGM intensity plot for a column of flat horizontal surface without 

obstacles 

Furthermore the dynamic programming prefers to segment the image favoring higher 

intensity. Clearly the pseudo noise will hinder both these approaches. Ideally the obsta-

cles present themselves in u-disparity as a cluster of high intensity pixels (roughly ar-

ranged along a line) with noise on one side and void on the other (due to occlusion). 

The size of the void depends on the vertical surface area of the obstacle. This feature 

has been used to devise a filter that can eliminate the noise appearing in u_Z map due to 

road pixels. Figure 39 presents the result of filtering of the u_Z with such a filter. 

Although the filter works well in situations where rich disparity maps are available, it is 

counterproductive in situations where poor disparity maps are available. This is for ex-

ample true for rainy days when the road reflects considerable light and the disparity 

images rendered for such frames is lacking information in large empty ‘voids’.  
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Another approach is to interpolate the data between the blank rows present in u_Z map. 

In [2] the author suggests to copy the data from the nearest neighboring cell. We on the 

other hand decided to stack Gaussian kernels along the rows with valid data such that 

the ‘spillover’ from the kernels filled the empty rows. Figure 40 presents the filled u_Z 

map. 

2.12 Least square plane fit for ground surface  

In [2] the author fits a quadratic function to the 3D cloud of points hoping that road sur-

face curvature changes in one direction. In [7] the authors fit a spline line to the 3D 

point cloud claiming the road surface curvature can change both ways and hence spline 

is a better fit. The advantage of a road surface model fit lies in the portability of the es-

timate. It is faster and efficient to pass this model as a parameter to higher level ADAS 

functions that make use of this road surface. Furthermore tracking of the road surface is 

much simpler with a road model rather than the whole point cloud. 

In both the cases the authors transform points into the 3D space where the error increas-

es with transformation (in [2] the error is a function of the 3D coordinates).  

We prove that points that lie on a plane in 3D space [𝑥  𝑦  𝑧] will have corresponding 

points in image space [𝑢  𝑣  𝑑] conforming to the plane equation. 

 
Figure 39. u_Z map on top and filtered u_Z in the bottom. Note the the noisy 

pixels corresponding to the road have been eliminated 
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2.13  

 

 

  

Assume that 3D points [𝑥 𝑦 𝑧] are constrained by the plane equation – 

  

𝑝𝑥 + 𝑞𝑦 + 𝑟𝑥 + 𝑠 = 0 
 

(33) 

 

Substituting for the terms x, y, z from equation 26, 27, 28 we get –  

  

𝑝 [
𝑏(2(𝑢 − 𝑢0) − 𝑑)

2𝑑
] + 𝑞 [

𝑏( (𝑣 − 𝑣0) cos 𝜃 + 𝛼 sin 𝜃 )

𝑑
− ℎ]

+ 𝑟 [
𝑏 ((𝑣0 − 𝑣) sin 𝜃 + 𝛼 cos 𝜃) 

𝑑
] + 𝑠 = 0 

 

(34) 

 

 
Figure 40. original u_Z map(Top); Gaussian smoothed u_Z map(bottom) 
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Rearranging the terms in above equation gives – 

  

[2𝑝𝑏] 𝑢 + [2𝑞𝑏 cos 𝜃 − 2𝑟𝑏 sin 𝜃] 𝑣 + [2 − 𝑝𝑏 − 2𝑞ℎ] 𝑑
+ [2𝑞𝑏𝛼 sin 𝜃 + 2𝑟𝑏𝑣0 sin 𝜃 + 2𝑟𝑏𝛼 cos 𝜃
− 2𝑞𝑏𝑣0 cos 𝜃 − 2𝑝𝑏𝑢0] 

 

(35) 

 

The parameters in brackets in the above equation are either intrinsic or extrinsic camera 

parameters and can be assumed constant. Leading to the simplified equation – 

 𝑝′𝑢 + 𝑞′𝑣 + 𝑟′𝑑 + 𝑠′ = 0 (36) 

 

Plane fitting of 3D points involves – 

 Generating the 3D point cloud [𝑥 𝑦 𝑧] from [𝑢 𝑣 𝑑] 

 Fitting plane to this point cloud and getting the plane coefficients [𝑝 𝑞 𝑟 𝑠] 

 Declaring 3D points[𝑥 𝑦 𝑧] that lie within a threshold distance from the plane 

defined by parameters[𝑝 𝑞 𝑟 𝑠], as belonging to plane/road and vice versa. 

 Back projecting these points in [𝑢 𝑣 𝑑] space to highlight the plane/road surface 

for visualization. 

Since we have proved that a points belonging to plane in 3D space correspond to points 

belonging to plane in image space, we can make the process simpler and much faster as 

follows – 

 Fit the points in image space [𝑢 𝑣 𝑑] and get the parameters [𝑝′𝑞′ 𝑟′𝑠′ ] 

 Declare points in image space [𝑢 𝑣 𝑑], that lie within a certain image space dis-

tance from the plane defined by [𝑝′𝑞′𝑟′𝑠′ ], as belonging to plane/road and vice 

versa. 

Solving the linear matrix equation in Section 2.8.3 and getting plane parameters is 

straightforward. Note that the least sum of square error fit is like an ‘average’ plane for 

the point cloud. The fit is definitely affected by outliers like obstacles, buildings and 

other traffic participants’ pixels. Hence we preprocess the disparity image to remove 

pixels other than the road surface with the crude obstacle separation. Crude obstacle 

separation had been already implemented in our application as detailed in [17], and we 

just used the function here to refine the disparity input image to get the least sum of 

squared error fit. 
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3. EVALUATION OF THE GROUND SURFACE DE-

TECTION ALGORITHMS 

3.1 Dataset 

Vehicles move at speed above 100 km/hr on highways. This necessitates use of real 

time algorithms providing robust results. The evaluation of algorithms has to be per-

formed on a set of images (including stereo images, the corresponding disparity images 

and the ground truth) taken from a test vehicle. We had two available sources for such 

data; the DLR dataset which provided us with the stereo images and dense disparity 

images but no ground truth images, the KITTI dataset which offered the stereo images 

and the ground truth but no dense disparity images. Our road plane detection required 

the dense disparity images. The KITTI dataset does not provide these dense disparity 

images. Hence we looked for an algorithm that could generate the dense disparity imag-

es from the KIT stereo images. Fortunately we found the library ‘libelas’ by Andreas 

Geiger who is one of the people responsible for the KITTI benchmark development. An 

example C++ project can be downloaded from their website
2
, the application generates 

disparity images for some example stereo images. This application has been modified to 

generate the disparity images for the KITTI dataset stereo images. One key feature of 

this library was that it accepted only the ‘.pgm’ files while the KIT stereo images were 

both ‘.png’ files. Fortunately the IrfanView image viewer has a function to batch re-

name files, and the issue was resolved. The code was modified to target the KIT left and 

right images and subsequent execution generated the disparity image for all dataset. 

Figure 42 presents some of the disparity images for the KIT stereo images generated 

with libelas. The KIT dataset images have a much lower percentage of points that con-

stitute the road plane. In other words, the image has much larger field of view which 

makes the v-disparity image much more diffuse. The cloud of points that corresponds to 

the road plane is not as distinct/focused as observed in the v-disparity images for the 

DLR dataset. The existing algorithms are modified to work well with the KITTI dataset.  

3.2 ROC Curves 

3.2.1 Basics 

Since we have implemented several algorithms for road surface detection algorithms, it 

makes sense to evaluate and compare the performance of these algorithms. The compar-

                                                 
2
 http://www.cvlibs.net/software/libelas/ 
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ison will be based on the quality of the detection and in some algorithms, the processing 

time will also be recorded to check if the algorithm meets the real time constraints. To 

quantify the detection quality we use the True Positive Rate (TPR) and False Positive 

Rate (FPR) as explained in Table 2 and illustrated in Figure 43. The quality of any de-

tection algorithm varies with the key parameters that control their respective detections. 

This implies that to compare two algorithms we need to first find the thresholds that 

ensures the best performance for the individual algorithms and then compare their re-

spective detection quality when they are exhibiting their individual best performance. 

This two-step process is accelerated by making use of the Receiver Operating Charac-

teristics (ROC) curve. In the following section, we explain in detail how the ROC 

curves ensure such evaluation.  

To generate ROC curve for any evaluation we need to vary a key parameter that seg-

ments the instance to be classified into the two categories; True (road) or False (back-

ground). The parameter for our classification is the tolerance for road pixels about the 

selected v-disparity line. Classifications lead to a ‘confusion matrix’ with 4 parameters 

True Positive, False Positive, True Negative & False Negative. Table 2 presents the 

meaning of these parameters in our context. 

The Figure 41 presents the distribution of positives (road) and negative (background) 

pixels that are overlapping on the scale of the road tolerance about v-disparity. The red 

line indicates the threshold for road and background segmentation by the estimation 

algorithm. Points before the threshold line are classified as road; Points after the thresh-

old are classified as background. 

 
Figure 41. Distribution of the 4 elements of confusion matrix as dictated by the 

threshold (red line) 
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Table 2. Evaluation parameter definition 

Class Description 

True positive (TP) Detected road pixels that in fact belong to road 

False positive (FP) Detected road pixels that do not belong to road 

True negative (TN) Detected background pixels that in fact belong to 
the background 

False negative (FN) Detected background pixels that  do not belong to 
background 

 
True positive rate (TPR) 

  𝑇𝑃

  𝑇𝑃 + 𝐹𝑁
 

 
False positive rate (FPR) 

 
  𝐹𝑃

  𝑇𝑁 + 𝐹𝑃
 

 

 
Figure 42. disparity images for KIT dataset rendered with ‘libelas’ library 
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For zero tolerance we see that no pixels are classified, at low tolerances only road pixels 

are identified and all of them are true positive, increasing the tolerance still increases 

true positive and false positive rates. And by further increasing the tolerance, the per-

centage of false positives increases. Figure 43 presents the classification with an illus-

tration. The figure shows a road and a cloud overlaid on top of the road. Points within 

the cloud are the estimated road pixels, while points outside the cloud are the estimated 

background. This estimation can be evaluated as TP, FP, TN & FN with the 4 colours 

shown in the Figure 43. . 

Since we are estimating the road surface only for points below the horizon (empirical 

constant), we must exclude the points outside this horizon while counting the road and 

background pixels in ground truth images. Also note that the disparity images generated 

by ‘libelas’ library usually has a smaller envelope than the stereo images. Since the dis-

parity images with invalid pixels do not assist our estimation of ground pixels, we must 

exclude corresponding pixels in ground truth pixels while counting road and back-

ground pixels. Receiver operating characteristic curve or ROC curve is the trace of TPR 

vs FPR as the threshold parameter is varied from its minimum to maximum value. This 

ensures that both TPR and FPR swing from 0 to 1 as the threshold varies. The signifi-

cance of ROC curve lies in the fact that it can highlight the best performance of an algo-

rithm. The highest performance is presented by algorithm that has a TPR of 100% and 

FPR of 0% which corresponds to the top left corner of the ROC graph. Since real algo-

rithms seldom have such capability we consider the point closest to top left corner on 

the curve traced by the real algorithm as the best performance that can be extracted from 

the algorithm.  

3.2.2 ROC curves for key algorithm parameters 

The ROC curves for different parameters used for line scan in v-disparity are presented 

in Figure 45. The parameter Accumulator_w_x represents the size of the window within 

which the score of the candidate line (the candidate line fit to v-disparity) is calculated. 

The ROC plot indicates that the accumulator window of width one performs best 

against other window sizes. Another parameter that influences the estimation outcome 

is the horizon row. Figure 46 presents the ROC curve for the different horizon row val-

ues. Note that for low horizon rows the estimation is restricted to an envelope that is 

close to the vehicle. In this zone the disparity has lower error and hence estimation is 

better. As the horizon row increases, the size as well as the cumulative error increases 

and the estimation is more prone to error as evident from the plot.  

3.2.3 ROC for v-disp algorithms 

Our road surface estimations have been generated by 2 main classes of detection algo-

rithms. The first is the v-disparity approach that looks for smooth and flat surfaces and 
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the second one is the OGM approach that looks for obstacles and claims free space from 

the ego-vehicle up to these obstacles. 

 

 
Figure 43. The 4 elements of the confusion matrix and their interpretation for 

estimation (represented here by the cloud) 

 
Figure 44. The 4 elements of the confusion matrix and their interpretation for 

estimation (represented here by the cloud) 
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The ROC curves for the 3 different algorithms implemented in Figure 23  and the later 

implemented algorithm as suggested in [17] (named “singapore” in plot) are presented 

in Figure 47. The evaluation of these algorithms have been carried out on a desktop PC 

with Core 2 Quad processor and a memory of 8 GB RAM The 2 best performances 

among these algorithms are as follows- 

 Direct line fit algorithm gave a TPR of 84% and FPR of 13% at 2 frames/sec. 

 “Singapore“ algorithm gave a TPR of 84% and a FPR of 17% at 38 frames/sec. 

It is to be noted that among the training images of the KIT dataset used for this evalua-

tion, a vast majority of roads surfaces in scenes have a smooth horizontal surface this 

works in favor of the direct line fit algorithm which assumes that the road surfaces are 

flat and horizontal, the authors of [17] also point out this observation.  

3.2.4 ROC for OGM algorithms 

We also evaluated the OGM algorithms to study their performance. Figure 48 presents 

the results of this evaluation against the same dataset as used in previous evaluations. 

The 2 best preforming algorithms are as follows- 

 udisp_OGM gave a TPR of 84% and a FPR of 22% @ 4.7 frames/sec 

 polar_OGM gave a TPR of 83% and a FPR of 24% @ 1.4 frames/sec 

 

Figure 45.  

 
Figure 46. The ROC curves for different horizon rows to which the estimation 

and hence evaluation is limited. 
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3.2.5 Comparison v-disp vs OGM algorithms 

A comparison of the best algorithm from v-disparity approach and the best algorithm 

from OGM approach was also made. The plot of this comparison ROC curve is present-

ed in Figure 49. It can be clearly inferred that “singapore” approach offer better esti-

mates that udisp_OGM. Furthermore the “Singapore” approach provides results at 38 

frames per second which is good enough for real time applications. 

 

 
Figure 47. The ROC curve for v-disparity ground surface detection algo-

rithms. 
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Figure 49. Comparison ROC between the best of v-disparity and best of OGM 

ground surface detection algorithms 
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Figure 48. The ROC curve for OGM ground surface detection algorithms 
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4. CONTRIBUTIONS TO GROUND PLANE DE-

TECTION ALGORITHMS.  

4.1 Confidence metrics for road surface detection 

One of the primary requirements of any estimate is the confidence of estimation. Natu-

rally we had to prepare some confidence metrics to grade the ground plane estimates. 

Ground plane estimates are based on the assumption that along any row of the image 

(after obstacle elimination) the max number of pixels belong to the road and share 

roughly the same disparity. The confidence metrics are based on how closely the pre-

sented real images adhere to this assumption. We estimate the road surface based on the 

assumption that the roads present themselves in a particular mathematical representa-

tion, our confidence metrics are based on how well the situation presented “fits” this 

particular mathematical model. 

The 3 confidence metrics used are – 

1. Inverse of standard deviation of the disparity of pixels around the max intensity 

along each row of v-disparity 

2. Percentage of the pixels in the vicinity (a fixed window) of the max intensity 

along each row of v-disparity 

3. Density of pixels in the vicinity (a fixed window) of the max intensity along 

each row of v-disparity 

Mathematically – 

  

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_1𝑖 = 
1

𝜎𝑖
 

 

(37) 

  

𝑚𝑒𝑎𝑛 𝜇𝑖 = 
1

𝑊𝑖
 ∑ 𝑗.𝑤𝑖,𝑗 

𝑗= 𝑗𝑚𝑎𝑥  + 𝑤𝑠

𝑗=𝑗𝑚𝑎𝑥  − 𝑤𝑠

 𝑤ℎ𝑒𝑟𝑒 𝑊𝑖 = ∑ 𝑤𝑖,𝑗

𝑗= 𝑗𝑚𝑎𝑥 + 𝑤𝑠

𝑗=𝑗𝑚𝑎𝑥  − 𝑤𝑠

 

 

(38) 

 

The 𝑤𝑖,𝑗   above represents the intensity at the row i and column jof the v-disparity im-

age. The column corresponding to max intensity in a v-disparity row is indicated as 

𝑗𝑚𝑎𝑥   and the vicinity window size as 𝑤𝑠. 
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𝜎𝑖 = 
1

𝑊𝑖
 ∑ 𝑤𝑖.  ( 𝑗 −  𝜇𝑖)

2

𝑗 = 𝑗𝑚𝑎𝑥 + 𝑤𝑠 

𝑗 = 𝑗𝑚𝑎𝑥 − 𝑤𝑠 

 

 

(39) 

 

  

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_2𝑖 = 
1

𝑎𝑣𝑔_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟
  ∑ 𝑤𝑖,𝑗

𝑗 = 𝑗𝑚𝑎𝑥 +  𝑤𝑠

𝑗 = 𝑗𝑚𝑎𝑥 − 𝑤𝑠

 

 

(40) 

 

The 𝑎𝑣𝑔_𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟 presented in equation above is the average of the max 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_2 observed in a dataset of 5000 images. 

 
Figure 50. Top left frame includes the v-disparity and 3 confidences (from left 

confidence_1, confidence_2 & confidence_3) plot sequentially. Top right is the 

ground plane estimate with color signifying the confidence_1. Similarly the bot-

tom left corresponds to confidence_2 and bottom right to confidence_3. The 

road surface estimates in these frames are colored between green and red de-

pending on the confidence. 
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𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_3𝑖  =   
1

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑖
  ∑ 𝑤𝑖,𝑗

𝑗 = 𝑗𝑚𝑎𝑥 + 𝑤𝑠

𝑗= 𝑗𝑚𝑎𝑥  − 𝑤𝑠 

 
(41) 

 

where   

  

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = 
1

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟
∑ 𝑤𝑖,𝑗

𝑗=𝐼𝑚𝑎𝑔𝑒_𝑤𝑖𝑑𝑡ℎ

𝑗=0

 

 

(42) 

Notice that all of the above confidences are calculated around the max intensity along 

each row of v-disparity because the ground plane is theorized to exist around these pix-

els. This means that each row of the v-disparity and subsequently the ground plane es-

timate will have a particular confidence value. Assuming that a very optimistic road 

presentation will be one where all road pixels have disparities within a tolerance win-

dow of ±2, 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟 is set to 5. All the above confidences are calculated 

for rows where the maximum intensity in v-disparity is above a fixed threshold (which 

translates to - confidences being calculated for rows that have a sizable population of 

road pixels). Finally these confidences are filtered with Gaussian convolutions along the 

column. 

 
Figure 51. Top left frame includes the v-disparity and 3 confidences (from left 

confidence_1, confidence_2 & confidence_3) plot sequentially. Top right is the 

ground plane estimate with color signifying the confidence_1. Similarly the bot-

tom left corresponds to confidence_2 and bottom right to confidence_3. 
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Figure 51 plots of the confidences thus defined for a particular frame. Note that the con-

fidence_2 drops whenever a vehicle appears on the road (since the percentage of pixels 

belonging to road drops as well). But 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_3 does not exhibit such behavior, 

since we are normalizing it with the number of valid (non-zero) disparity along each 

row. An illustration of such behavior can be observed by comparing the the confidence 

rendering for lower left estimate (𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_2) and lower right estimate 

(𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_3) in Figure 51 below, due to the presence of a car in the adjacent lane, 

the confidence of road estimate drops adjacent to this car in lower left while such a dras-

tic loss of confidence is not observed in lower right confidence rendering. Mathemati-

cally 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_2 is normalized with a constant and is hence sensitive to vehicle 

presence along the rows. The confidence of the entire image is calculated as the average 

of the 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_3 in the image (since 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_3 was found to be most mean-

ingful from our observations). This can be seen written in blue in top left corner in Fig-

ure 51 and Figure 50. 

Another illustration of the confidence rendering in presented in Figure 50. In the top left 

frame the v-disparity is sparse and not dense as usually observed. This means that the 

road is not flat, leading to poor estimates. Both the confidence rendering of road surface 

estimates and the average confidence for the entire estimate are hence poor. 

 
Figure 52. Free space detection with extended u-disparity (left) and u-

disparity (right). The red arrows highlight improved detection and the red win-

dows in OGM highlight background suppression 
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Once the nominal disparity of ground plane is determined for each row (which in this 

case is the disparity corresponding to max intensity along any row of v-disparity), a 

suitable tolerance is given to estimate the ground plane pixels. Pixels along the image 

row which have disparities that lie within this tolerance are deemed to belong to road. 

Previously this tolerance was kept constant, about ±3. Now that we have a confidence 

measure for each row, we provide a more customized tolerance to each row. The toler-

ance for road surface segmentation in v-disparity (tolerance) is a linear function of the 

confidence as indicated by the equation below. 

  

𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 2 + [
(100 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_3) 

100
. 2] 

 

(43) 

This equation translates to conservative estimates (precision over sensitivity) for good 

confidence and liberal estimates (sensitivity over precision) for poor confidence. 

4.2 Novel Extended u-disparity 

In order to alleviate if not eliminate the problems discussed in section 0, an extended 

version of the u-disparity has been developed. As the name suggests, it is an extended 

version of the u-disparity. The construction of extended u-disparity is as follows – 

 Each pixel in u-disparity is multiplied by a distance factor. The closer the pixel 

is to the vehicle, the larger the distance factor. This step ensures that the closer 

obstacles are better represented in OGM. This is also logical since closer vehi-

cles hold more relevance from impending collision perspective. The other ad-

vantage is that this step dulls the background obstacles in OGM such as build-

ings (such as the one in Figure 35). 

 For each pixel in u-disparity, a 2D Gaussian kernel is stacked on the correspond-

ing pixel position in extended u-disparity. This is necessary since the obstacles 

are non-ideal and present themselves within a disparity window of a few pixels. 

This is especially true for sedans that do not have a flat rear surface and hence 

fairly inconsistent disparity. The Gaussian kernel is aimed to bring about a 

‘spike’ around pixel cluster belonging to such vehicles in OGM 

Figure 52 presents the improvement achieved with the extended u-disparity compared to 

estimates with normal u-disparity approach. Notice that the car highlighted by the red 

arrow is rendered as free space by the u-disparity approach (left) but is correctly identi-

fied as an obstacle by the extended u-disparity approach. 
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5. CONCLUSION & FUTURE WORK 

5.1 Conclusion 

The target of the thesis has been the implementation of a road surface detection algo-

rithm suitable for ADAS systems. In this work we have implemented and subsequently 

compared several algorithms. The two best performing algorithms have been presenting 

along with their respective processing times. 

The theory of estimation as relevant to ground surface detection has been presented 

along with the use and advantages of stereo camera to this cause. Ground surface esti-

mation with v-disparity approach as explained in [9] has been implemented by fitting 

straight lines to v-disparity images. Two additional algorithms have been developed; 

one assuming that the road pixels have the lowest disparity along each row (called ‘min-

row’) and the other with separation of obstacles from v-disparity using partial deriva-

tives. For portability of the detected road surface, line-fit and poly-line fit algorithms 

have been developed to represent the road pixels in v-disparity.The new approach of 

road surface estimation with crude obstacle elimination as presented in [17] has also 

been implemented; this approach is found to be better behaved around obstacles since 

we prepare v-disparity with pixels other than those belonging to obstacles. By adjusting 

the tolerance of road surface estimation we can distinctly detect road surface even in 

presence of elevated sidewalks.  

Although simple, all the above approaches have poor perception of the horizon; estima-

tions must be manually limited to a certain fixes row to observe sensible estimates at 

large depths. Such behavior arises due to poor disparity resolution at large depths. Fur-

thermore since all these approaches have made some or the other assumption regarding 

the road surface topography, they are sensitive to unusual presentation of road surface, 

for instance when the road is twisted about the direction of heading. These algorithms 

work with data in image space [u, v, d]. 3 confidence metrics have been developed that 

describe how well the presented scene fits the mathematical model assumed. These met-

rics are also representative of how good the estimations are. The estimates are rendered 

with their respective confidences. Since these confidences are a function of the row 

number, we have a confidence for every row of the estimate. Average confidence along 

all the rows is assumed to be the confidence for the entire estimate. A simple ‘Near Ve-

hicle Warning’ function has been developed to discard the detection when the front ve-

hicle get close to the ego car. This function is based on the percentage of the vehicle 

pixels in front of the ego-vehicle.  
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Free space estimation with OGM looks at the same challenge from a different perspec-

tive with the core idea that obstacles limit road surface, and hence road surface extends 

upto the detected obstacles. Since the elevated sidewalks have height that is much 

smaller that the vehicles in traffic, we do not have the finesse to distinctly detect road 

surface in presence of elevated sidewalks. Although we do concede that this approach 

gives a better perception of the horizon and that the obstacle detection does not suffer 

on banked roads. Although the authors prefer Polar OGM in [4], we found that the polar 

OGM has poor data resolution at higher depths. Furthermore with polar OGM we must 

first transform data from image space to the real world coordinates, segment the OGM 

and then back project the points in image space to get the road surface estimates. With 

the col-disparity OGM we have uniform data resolution, we can work with data in im-

age space itself and hence it is faster than the polar OGM. Our biggest concern with 

OGM approach is the processing time for dynamically segmenting the OGM. Although 

this issue can be offset by using the background separation technique as suggested in 

[20]. Additionally the OGM approach can estimate the free space upto surfaces that 

have larger vertical surface area than the obstacles closer to the ego-vehicle. We could 

get around this problem to some extent by limiting the pixels in image space that con-

tribute to the OGM. Using a constant threshold for ‘background subtraction’ as suggest-

ed in [21] makes little sense, as the footprint of an obstacle in OGM depends on the size 

and distance of the obstacle from the ego-vehicle, both of which vary to a considerable 

extent. Polar OGM has a limited 3D scope (In our implementations the max depth of 

polar OGM was usually 76.8m) This means that if there are obstacles beyond the scope 

of OGM then they cannot be detected in OGM, the free space along those columns is 

wrongly estimated. On the other hand since u-disparity OGM has the complete disparity 

range, its scope is much larger than that of the polar OGM. 

It has been proved in this report that the pixels that conform to the equation of plane 3D 

space, have corresponding points in image space also conforming to plane equation. 

Thus instead of fitting points in the 3D space, we directly fit the points in the image 

space to get the plane equation. The advantage of the plane fitting is that we can easily 

communicate this information to other functions instead of using sending the whole 

point cloud. We used the least sum of squared error approach to fit the plane to the 

points.  

The final task of the thesis work has been the evaluation of the algorithms against the 

KIT dataset. The primary objectives of estimating road/ground plane and ego-lane have 

been accomplished. Three algorithms; direct line fit, minrow and partial derivative ap-

proaches for ground plane detection with v-disparity images were implemented in Visu-

al Studio C++ with the help of OpenCV library. A derivation that concludes that flat 

horizontal roads correspond to straight lines in v-disparity has been presented. We pro-

ceed to detect such straight lines in v-disparity images and then overlay the road pixels 

onto real image through back-projection. The evaluation of these 3 algorithms revealed 
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that the direct line fit to the v-disparity images generated the best results. Although the 

authors of [17] argue that the KITTI datasets lack considerable variation in road surface 

topography. The ground plane estimates with the minrow and partial derivative ap-

proach provided comparable results. A recent publication that claims improved road 

surface estimation [17] has been implemented. Furthermore, confidence measures were 

developed as representative of the detection trueness. These measures are generated on 

how close the presented situation fits the ideal road model. A function to trigger warn-

ing message when the ego-vehicle is very close to another vehicle in front is developed. 

The free space detection with occupancy grid maps as published by authors at Daimler 

has been implemented as well. The Polar OGM claims to offer linear free space percep-

tion although it suffers from poor data resolution at higher depths. Dynamic program-

ming is implemented to optimally segment the OGM (based on the spatial continuity & 

intensity of OGM pixels) and subsequently chart the free space. Use of dynamic pro-

gramming is redundant to some degree after the ‘background subtraction’ as done in 

[21]. The Dynamic programming is a computationally intensive segmentation algo-

rithm. A novel occupancy grid map by extending the u-disparity has been proposed. 

This approach does not require background subtraction and also does not suffer from 

poor data resolution at higher depths. Table 3 presents the comparison of the algorithms 

that we implemented. 

Table 3. Comparison of different road surface detection algorithms 

Approach Best performance Processing speed 

(frames/s) 

v-disparity direct line fit TPR: 84%, FPR: 13% 2 

v-disparity “singapore” TPR: 84%, FPR: 17% 38 

udisp_OGM TPR: 84%, FPR: 22% 4.7 

polar_OGM TPR: 83%, FPR: 24% 1.4 

 

5.2 Future work: 

So far the algorithms implemented make a new detection for every successive image 

frame. If we make use detection tracking, we can predict the road surface for the next 

frames using the ego-vehicle kinematic data. Furthermore, instead of making a new de-

tection for every frame, we can make detections at lower frequency and fuse this data 

with the predicted detection using filters like Kalman filter.  

Also the algorithms implemented in this work rely on the 3D topographical scene data 

for detecting road surfaces. We can also detect road surface using the physical appear-

ance of the road using the intensity, color etc. A more accurate road surface detection 

can hence be perceived by fusion of detections from the 3D scene data and the detec-

tions using the road appearance.  
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Machine learning algorithms have been successfully used in medical applications; for 

instance, to predict the malignance of tumors. The machine learning algorithms are 

trained using prior instances of tumor image in patients along with their known malig-

nance. The algorithms use the training tumor images to model the malignance of the 

tumor as a function of image pixels of the tumor. Support Vector Machine (SVM) is 

one of the most popular choices in machine learning from images. ‘Weka’ is an open 

source machine learning tool developed at the University of Waikato. A wide range of 

classifier functions are made available in this software. Modified versions of the SVM 

have been implemented in road surface estimation at the Karlsruhe Institute of Technol-

ogy. A lot of effort has been made to benchmark algorithms involved in the ADAS [15]. 

The KIT team has implemented the machine learning algorithms on the graphics pro-

cessor; a luxury as far as the current vehicle architecture is considered. But with the 

looming automated driving onset, graphics processors will see increasing usage. There 

also have been efforts by Daimler to record the road scene data that is relevant to driv-

ing vehicles (road lanes, intersections, road borders, etc) to a central online database [8]. 

Much like the google street view, this online data is the sequentially accessed depending 

on the live vehicle position. Scene captured from camera and the online scene repository 

are compared to give a complete scene interpretation. This reinforcement helps not only 

improve the accuracy of scene interpretation but also update the online scene repository 

whenever the road infrastructure changes – accidents, construction, deteriorates, etc. 

The online repository will be robust since we have vehicle constantly plying on roads 

providing with the latest road infrastructure data. Such system still needs to cope with 

the dynamic traffic constituents like pedestrians, cyclists and other vehicles. But it is 

one of the promising approaches to scene interpretation where all vehicles can support 

and benefit from the central repository. Another way to ensure robust performance is to 

include redundancy in the system. Use of multiple sensors to perceive the environment 

ensures reinforcement of scene perception. Using RADAR and LIDAR one can gener-

ate 3D cloud of points. Information from multiple sensors can be combined at either  the 

low level (characterized by 3D point data) or the high level (characterized by road infra-

structure entities).  
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