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Abstract— In this paper we present a passive and reliable
explicit discrete integrator, which allows to preserve the energy
and dynamic properties of a physical body rendered on a
hardware-in-the-loop simulator. Starting from the standard
Euler integrator, we identify the energy generation that results
from the integration process. This energy makes the time
discrete dynamics deviate from the ideal one, resulting in
position drifts or stability issues. By exploiting the time domain
passivity approach, the simulated dynamics is reshaped in
order to preserve its physical energy properties. The proposed
integration method allows precise simulation of virtual bodies
on industrial robot facilities. The method has been validated
in simulation and experimentally tested on the DLR OOS-SIM
facility.

I. INTRODUCTION

The removal of space debris in orbit and maintenance tasks
on defected satellites represent a significant challenge for
future space missions. A popular solution for tackling this
problem consists of the use of a spacecraft equipped with a
manipulator arm that can safely collect the debris or operate
on a satellite.
To achieve this goal, simulating the operating scenario under
controlled conditions before the mission is important. One
of the main difficulties to test space control on-ground is
to reproduce the micro-gravity effect. Some technologies
are already available such as air-bearing system, free-fall,
suspended systems and robotic simulators [1]. The robotic-
based simulators are Hardware In the Loop (HIL) systems
where a mathematical model of the dynamics to simulate
(e.g. satellite, vehicle) is exploited for feeding the robot(s)
that reproduces the desired behavior. They can implement
active gravity compensation and allow motion within the
workspace. Some of these robotic simulators are: the SOCS
(Lockheed Martin Space Operation Simulation Center) for
testing the Orion rendezvous [2], the EPOS (European Prox-
imity Operation Simulator) to simulate rendezvous and dock-
ing [3], INVERITAS a facility for rendezvous and capture of
satellites [4] and the OOS-SIM, an on-ground experimental
facility for on-orbit servicing simulation [5]. The OOS-SIM,
for example, is composed of an industrial robot with a
manipulation arm which simulates a servicer satellite and
by another industrial robot which simulates the dynamics of
a target satellite (see Fig. 1). In these systems, the output of
a force/torque sensor is provided to a mathematical model
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Fig. 1: Hardware-in-the-loop simulator at DLR

of the dynamics to be reproduced, which is integrated for
computing the desired kinematic input (position or velocity)
to the robot. Finally, the robot moves in the Cartesian space
emulating the motion of the desired dynamics. The most
common behavior to reproduce is the rigid body dynamics,
which mimics the evolution of a satellite in space both during
free motion and while in contact with other bodies (e.g. the
servicer during the grasping). Despite the simplicity of the
dynamics to reproduce, the complexity of the robotic sim-
ulator introduces several technological problems that, if not
properly addressed, prevent it from accurately implementing
the desired dynamics or even cause an unstable behavior of
the system.

A. Related works

In [6] the stability of a similar system is analytically
investigated considering a scaling on the mass and inertia
parameters. In [7] the destabilizing effect due to the delay in
the transmission of the force/torque data is analyzed and in
[8] an energy-based strategy for optimally coping with this
issue has been proposed.
A major problem for a stable and reliable implementation
of the desired dynamics is the methodology in which the
dynamics is discretized for producing the desired set-point
to the industrial robot. Usually, the dynamics is achieved
using standard explicit integration techniques (e.g. Euler
integration) since they are simple, fast and suitable for a real-
time implementation. Nevertheless, it is known (see e.g. [9])
that using standard integration techniques for implementing
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a dynamics subject to external forces, lead to a generation of
energy and, therefore, to non-physical dynamics and to large
drifts. This undesired behavior becomes more evident for
large sample times, which is a common situation in industrial
robots, where the control frequency is usually low.
Several geometric integrators for physical systems, i.e. nu-
merical integration methods that preserve energy and/or other
geometric quantities (e.g. symplectic structure), have been
developed over the years [10], [11], [12]. Some energy-
preserving integrators are also available in the literature (e.g.
the energy momentum method [13]). Nevertheless, geometric
integration deals mainly with isolated physical systems (e.g.
galaxies or other astronomical system), or with systems with
some damping [14], and the interaction with the external
environment is not considered.
In haptics, where an operator has to interact with a virtual
environment, the problem of passively (i.e. while preserving
its energetic properties) integrating a non-isolated physical
dynamics is relevant. In [15], it is shown that standard ex-
plicit integrators do not ensure passivity and that, therefore, a
more complex (and harder to implement) integration strategy
has to be sought. In [16], an implicit integration method,
based on the port-Hamiltonian formulation of the dynamics
to simulate, has been proposed and in [17], a fast but implicit
and variable rate integration strategy for implementing mass-
spring-damper systems is illustrated.
Implicit and variable rate integration methods can be cum-
bersome to implement on a standard industrial robot.

B. Contribution

Current implicit integration methods require a numerical
and iterative solution of the updated equation for each time
step, which typically prohibits real-time determinism. Thus,
we aim at developing an explicit integrator starting from the
standard Euler method by adjusting the output for meeting
the passivity constraint. Specifically, we will implement a
rigid body dynamics using the discrete Euler integration
method; we identify the energy produced and then we will
keep track of it at each integration step. The integrated value
will be further updated in order to dissipate the produced
energy and to make the overall system a passive integrator. In
order to modulate the output of the integrator, we will exploit
the Time Domain Passivity Approach (TDPA) proposed in
[18] and widely used in haptics for damping out the excess
energy produced by the virtual environment. Recently, TDPA
has been exploited for increasing the impedance that can be
rendered by admittance-type haptic interfaces [19]. In our
work we will combine the TDPA with the Euler integration
for getting a simple and controlled explicit passive integrator.
Therefore, the main contribution of the paper is twofold.
First, we develop a new controlled explicit integrator that
allows to reproduce the passive behavior of a rigid body
dynamics independently of the discrete-system sampling
time. Such an integrator can be easily implemented in stan-
dard industrial robots. Second, we show that the proposed
integrator allows to achieve the desired performance on a
real satellite simulator, the OOS-SIM in Fig. 1.

The paper is organized as follows: Sec. II introduces the
dynamics we aim at simulating and states the problem due
to the discretization. In Sec. III the energy term, which
causes the energy drift, is identified and the passive explicit
integrator is presented. Simulation results are discussed in
Sec. IV with a real application on an industrial robot pro-
posed in Sec. V. Conclusions and future works are discussed
in Sec. VI.

II. PROBLEM STATEMENT

The architecture of a generic robotic simulator is illus-
trated in Fig. 2. F(k) represents the total wrench applied
to the end effector of the robot (i.e. to the object to be
simulated) during the interaction with the environment. The
wrench is provided as an input to the desired dynamics (in
the dashed box) where the acceleration is computed and
discretely integrated with a sample time T . Thus, it will
provide the twist v(k) as a set-point to the robot which
will consequently reproduce the desired behavior. We will
assume that the robot can perfectly track the desired set-
point. This is a common assumption with industrial robots
and it can be achieved by properly tuning the gains of the low
level controllers. In particular, in this paper, we will consider
only the Cartesian dynamics. Thus, the desired dynamics is
defined to be:

Mv̇ = F, (1)

where M = diag(mi) ∈ R
3×3 is the desired virtual mass

which we want to simulate. F∈R
3 is the force applied to the

robot during its interaction with the environment and v ∈R
3

is the Cartesian velocity of the end-effector. Moreover, Let
H = 1

2 pT M−1p be the kinetic energy of the system (1),
where p = Mv ∈ R

3 is the momentum. The dynamics can
be reformulated in a port-Hamiltonian form as:

(
v
ṗ

)

=

(
0 I
−I 0

)( ∂H
∂x
∂H
∂p

)

+

(
0
I

)

F, (2)

where x∈R
3 represents the Cartesian configuration and ẋ =

v. 0, I ∈R
3×3 are the null and the identity matrix respectively.

As for any port-Hamiltonian system without damping, we
have that the following balance holds [9]:

Ḣ = FT M−1p = FT v, (3)

which represents the fundamental energetic property of any
undamped mechanical system, namely that the power due to
the interaction with the environment is energetically stored in

F(k)
Des. Dyn. T ∑

v̇(k)
R

v(k)
E

Fig. 2: Admittance architecture with the desired dynamic -
R is the robot, E is the environment, Des. Dyn. is the force-
acceleration model of the dynamics to implement, T Σ is the
discrete integrator with time step T .
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the system. Notice that if there is not interaction (i.e. F= 0),
then the energy stored in the system is constant (i.e. Ḣ = 0).
The model (2) can be rewritten as:







v = M−1p

ṗ = F.
(4)

Integrating the desired dynamics using the standard Euler
method leads to the following discrete system:







x(k) = x(k− 1)+TM−1p(k)

p(k) = p(k− 1)+TF(k− 1),
(5)

where the second line is equivalent to the following velocity
integration strategy:

v(k) = v(k− 1)+TM−1F(k− 1), (6)

In case of free motion (i.e. F(k− 1) = 0), the momentum
and, consequently, the energy of the system are constant over
time. Thus, in this very simple case, straight Euler integration
is energetically well posed since it allows the discretized
dynamics to behave physically independently of the sample
time.
Unfortunately this well posedness does not hold anymore
in case of interaction. This can be easily shown by a 1-
DOF example. Consider the force profile, shown at the top
of Fig. 3, which acts on a mass of 30 kg. The integration
of the dynamics is considered in the continuous case and
compared with the Euler discrete integrator for sampling
time: T1 = 0.1 s, T2 = 0.01 s. Fig. 4 clearly shows the
increase in the energy which is introduced into the system
with respect to the continuous time integrator (Hc is the
energy calculated in continuous time). Notice that the larger
the sampling time, the larger is the increase of energy which
leads to a drift in the position. The drift due to the integration
with T1 reaches 0.05 m (when the force profile acts between
0s and 32s) and 0.15 m between 32 s and 50 s, (see Fig. 3
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Fig. 3: Force profile, drift in position due to the discretization
with (w) T1 and T2.
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Fig. 4: Problem statement: mechanical energy considering
different sampling time (HT1 and HT2) and comparison with
the continuous case Hc.

middle). Also for the case with T2, the drift appears. Since the
sampling time is smaller, it results in a drift 10 times lower,
as shown in Fig. 3 bottom. This drift causes inconsistency
in simulating the desired dynamics with a discrete integrator
that is usually implemented for rendering a desired dynamics
with a robot. The robot will receive position commands
accordingly but, as it has been shown, the energy properties
of the simulated mass will be not preserved. Such a drift may
lead the robot to interact to unforeseen objects that produce
new (drifted) behaviors leading to a deteriorated performance
of the system.
The goal of this work is to design a controlled Euler integra-
tion method that preserves the energetic balance in (3) in the
discrete case. In this way, it will be possible to reproduce by
the robotic simulator the behavior (1) while preserving its
energetic properties independently of the sample time.

III. THE PASSIVITY-BASED INTEGRATION METHOD

As shown in Sec. II, the extra energy due to the discrete in-
tegration makes the energy behavior of the discrete dynamic
system different from that of its continuous counterpart.
In this section, we formally identify the extra energy intro-
duced by the discrete integrator and we exploit this informa-
tion for adjusting the velocity output of the Euler integrator
using the TDPA. An analysis of the energy behavior of the
continuous and discrete time systems is presented and the
passivity-based integrator scheme is introduced.

A. Energy produced by the Euler integration method

Consider the dynamics (1) discretized by means of the
Euler method and reported in (5). The discrete kinetic energy
H(k) is given by:

H(k) =
1
2

p(k)T M−1p(k) =

1
2
[p(k− 1)+TF(k− 1)]T M−1[p(k− 1)+TF(k− 1)], (7)
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where the discrete dynamics has been considered. By simply
reordering the terms we obtain:

H(k) =
1
2

p(k− 1)T M−1p(k− 1)+Tv(k− 1)T F(k− 1)

+
1
2

T 2F(k− 1)T M−1F(k− 1), (8)

where v(k− 1) = M−1p(k− 1). We can then write:

H(k) = H(k− 1)+Tv(k− 1)T F(k− 1)

+
1
2

T 2F(k− 1)T M−1F(k− 1)
︸ ︷︷ ︸

∆H

(9)

which is not a physical and passive behavior. In fact, the
energy variation should be due only to the energy provided
through the power port, i.e. v(k− 1)TF(k− 1)T , and the
extra energy term ∆H = 1

2 T 2F(k− 1)T M−1F(k− 1) is just
due to Euler integration.
This causes two main problems. First, as shown in Sec. II,
the extra energy will cause a drift that makes the reproduced
dynamics drifting with respect to the ideal one. Second, as
evident from (9), the discrete dynamics is not passive and,
therefore, it may happen that during the interaction with the
environment, the system becomes unstable [9].
In order to simplify the presentation, since the desired
dynamics (1) is decoupled, in the following analysis and
in the design of the explicit passive integration scheme we
will consider a single component. Thus, we will remove the
bold notation, that has characterized vectors and matrices
so far, and with a regular font we will indicate the generic
ith component of the vectors involved in the analysis. For
example, the extra energy term ∆H corresponding to the ith

component in (9) will be written as:

∆H =
T 2F(k− 1)2

2m
. (10)

B. Relation between the continuous and the discrete dynam-
ics

In this subsection, we aim at understanding how accurate is
∆H, which can be computed in real time and that will be used
for adjusting the output velocity of the Euler integrator (6).
It is as an estimate of the energy produced when discretizing
the continuous dynamics, namely of the difference between
the discrete energy (Ed) and the continuous energy (Ec).
We consider the dynamics in (1) where a discrete force
input F(k) is commanded to the mass m and its velocity is
derived using both continuous and discrete integration. The
difference between energy increments of the dynamic system
in one sampling cycle between the two integration methods
is ∆E = Ed − Ec. The analytical value of the additional
energy due to discrete integration ∆H is also calculated in the
simulation. Fig. 5 shows the difference between ∆E and ∆H
for different sampling rates. It can be seen that the difference
is small and it tends to zero as the sampling time tends to
zero.
The reason for the difference between ∆E and ∆H is an-
alyzed here. A graphical representation of the power plots
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Fig. 5: Difference between analytical and identified values
of additional energy: T1 = 0.1s, T2 = 0.01s, T3 = 0.001s.

for both continuous (dashed curve) and discrete (samples)
dynamic systems are shown in Fig. 6. The difference between
the energy increase per sampling cycle in both the systems is
analyzed in the lower figures (positive, increasing power in
A and negative, decreasing power in B). In part A of Fig.6,
the power of the continuous system varies linearly between
the samples k−1 and k from P(t−T ) to P(t) since the input
force F(k− 1) is constant during this time. The area of the
shaded regions (quadrilateral acde) is the extra energy ∆E
in the sampling time T produced by the discrete system than
the continuous one. This area is the sum of the areas of the
rectangle abde and the triangle bcd. If Area(Q) function is
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Fig. 6: Power difference between discrete and continuous
time domains.
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defined as the area of the polygon Q, ∆E is given by:

∆E = Area(acde)

= Area(abde)+Area(bcd)

= [P(k− 1)−P(t)]T +
1
2

T [P(t)−P(t−T )]

= F(k− 1)T [v(k− 1)− v(t)]

+
1
2

TF(k− 1)[v(t)− v(t−T)],

where [v(t)− v(t − T )] = F(k−1)
m T . Then, it is possible to

write:

∆E = F(k− 1)T [v(k− 1)− v(t)]+
1
2

T F(k− 1)
F(k− 1)

m
T

= F(k− 1)T [v(k− 1)− v(t)]+
T 2F(k− 1)2

2m
= F(k− 1)T [v(k− 1)− v(t)]+∆H,

(11)

which results in a difference:

∆E −∆H = F(k− 1)T [v(k− 1)− v(t)]. (12)

Similarly, in part B of Fig. 6, ∆E is given by the sum of the
areas of rectangle abde and triangle bcd, which results in:

∆E −∆H = F(k− 1)T [v(k− 1)− v(t−T )]. (13)

Equation (12) and (13) represent analytically the error be-
tween ∆E and ∆H (shown in Fig. 5). The equations clearly
show that as the sampling rate increases, ∆E gets closer to
∆H since v(k − 1) gets closer to v(t) and v(t − T ). In the
graphical analysis, this turns to be a smaller area of rectangle
abde.
This analysis shows that there is always a difference between
what we can estimate in real time, namely ∆H, and the real
difference between the energetic behavior in the discrete
case and in the real case. This error is due to the loss of
information related to the discretization process and it can
not be avoided. Such a difference gets smaller as the sample
time gets lower.
However, adjusting the output velocity for recovering the
passivity of the discrete model has several advantages. First,
a physical behavior of the discrete dynamics is ensured. The
evolution will be close to the ideal one in the limits reported
in (12). Second, a stable interactive behavior is achieved
thanks to the passivity of the discrete dynamics.

C. Passive Integration scheme

TDPA is a passivity ensuring tool widely applied in
the fields of haptics and time-delayed teleoperation. The
underlying principle of TDPA is to observe the input and
output energy flow (with the Passivity Observer) of a single-
port network, (the virtual environment, in case of haptics)
or a 2-port network (the communication channel with delay,
in case of teleoperation) [20]. The passivity condition for a
two-port network is given by:

nT

∑
k=0

(F1(k)v1(k)T +F2(k)v2(k)T )+E(0)≥ 0, (14)

where (Fi,vi) and E(0) are the power correlated variable
sets of port i = 1,2, and the initial energy storage of the
network respectively. If condition (14) holds, the system is
defined to be passive. The extra energy generated in the
port that violates the passivity condition is dissipated with
a time-varying damper, the Passivity Controller (PC). In an
admittance like architecture, the equation for the observed
energy is:

E(k) = E(k− 1)+
nT

∑
k=0

(F1(k)v1(k)T +F2(k)v2(k)T )

+β (k− 1)F(k− 1)2T, (15)

where β is a time-varying damper later discussed. We can
represent the discretization problem with a network analogy
proposed in Fig. 7 where Ec can be seen as the energy in
continuous time which, due to the discretization, assume a
value of Ed . Considering the 2-port as shown in Fig. 7, the
energy observer then becomes,

Eobs(k) = Eobs(k− 1)+Ec(k)−Ed(k)

+β (k− 1)F(k− 1)2T,

= Eobs(k− 1)−∆E(k)+β (k− 1)F(k− 1)2T,

≈ Eobs(k− 1)−∆H(k)+β (k− 1)F(k− 1)2T,

(16)

where ∆E(k) has been approximated to ∆H(k) as per equa-
tion (11). Notice that the energy observer will measure an
active energy as soon as there is an external force (which
causes ∆H).
At each integration step Eobs must be greater than zero for
ensuring the passivity. Therefore, it is possible to define the
time-varying damper β (k), function of the observed energy
(16), as follows:

β (k) =

{

−
Eobs(k)
F(k)2T

Eobs(k)< 0

0 else.
(17)

The velocity corrected by the PC is given by the following
quantity:

vpc(k) = β (k)F(k). (18)

DiscretizationEc F(t)

v(t)

EdF(k)

v(k)

Discrete Syst. F(k)

v(k) vc(k)

β (Eobs)

Fig. 7: Continuous energy (Ec) and discrete energy (Ed).
Analogue discrete system with the designed variable damper.
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Thus, if active energy is detected (i.e. Eobs < 0), the corrected
velocity is sent to the robot as follows:

vc(k) =

{

v(k)−β (k)F(k) Eobs < 0

v(k) else.
(19)

where v(k) is achieved by (6). Therefore, the observed energy
will be Eobs(k) ≥ 0 making the network, i.e. the integrator,
passive. A schematic of the integration scheme is in Fig. 8.
The variable damping β is modulated by the observed active
energy and the applied force which will activate the PC (in
(18), (19)) to provide the corrected velocity vc to the robot.

F(k)

F(k)

F(k)
Sim. Dyn. T ∑

v̇(k)
R

v(k)
E

Eobs

PC
vc(k)

β

Fig. 8: The passivity-based integration scheme.

IV. SIMULATIONS

The method is firstly verified in simulation where the
proposed integration scheme is applied. We consider the
same case as in Sec. II (i.e. mass and force profile) for
the same sampling time T1 = 0.1s and T2 = 0.01s. The top
of Fig. 9 shows the active energy observed in the system
running with T1. This leads to a drift in the energy as it has
been described in Sec. II.
However, this active energy is compensated by the PC that
adjusts the velocity (see middle of Fig. 9 for the velocity
corrected by the PC).
Thus, the passivity proof is provided at the bottom of Fig.
9 which shows that the observed energy has always a non-
negative value according to the passivity condition in (14).
A second simulation has been performed for the case with T2

as it is shown in Fig. 10. The active energy is here dissipated
by virtue of the PC and the system results to be passive (see
Fig. 10 bottom).
In order to verify that the mechanical properties are pre-
served, a comparison with the continuous time integrator is
shown in Fig. 11. Hc is the energy calculated in continuous
time and HT 1, HT 2 is the energy calculated as results of
the correction with the proposed method with T1 and T2,
respectively. The energy drift discussed in the problem
statement in Fig. 4 is now corrected as illustrated in Fig. 11.
This proves that the discrete dynamics with the proposed
integration method behaves passively in discrete time and it
preserves the energy properties of the simulated rigid body.

V. EXPERIMENT

The experiment is carried out on an industrial robot which
is part of the OOS-SIM facility [5] and can simulate the
dynamics of a satellite. The robot is equipped with a force
sensor at its end-effector to measure external interaction.
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Fig. 9: Sim. 1 - Eobs without (w/o) PC, velocity corrected
by the PC and Eobs with (w) PC for T1 = 0.1s.
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Fig. 10: Sim. 2 -Eobs without (w/o) PC, velocity corrected
by the PC and Eobs with (w) PC for T2 = 0.01s.

Both, plant and sensor run in real-time with a frequency
of 250 Hz, thus the considered sampling time is 4 ms. The
experiment is performed for the presented dynamics where
the simulated mass is 250 kg, typical value of a satellite.
Fig. 12, Fig. 13 and Fig. 14 show the data along the
components (z,y,x) measured during the experiment. Each
figure shows the energy observed without (w/o) PC, the
energy with (w) PC, the damping coefficient β , the velocity
corrected by the PC, the measured force F and the relative
position of the robot, respectively. As it can be seen, the
Eobs w/o the PC results in a negative energy which can
produce an active behavior. However, this active energy is
corrected by the PC which commands a velocity correction
vpc as a function of the damping coefficient β to preserve
the passivity condition. Indeed, the passivity proof of the
method is described by the energy observed with the PC
in each figure which results to be positive, thus, passive
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Fig. 12: Experiment results - Energy observed (without and
with PC), damping factor βz, velocity corrected by the PC,
forces measured Fz and motion of the robot in z.

accordingly with (14). The difference in the observed energy
(and consequently the vpc) for each direction is due to the
different magnitudes of applied forces, e.g. along the z the
force reaches 60 N, lower values for x and y, therefore,
the extra energy term ∆H will be different. The experiment
results prove that the integration method can deal also with
sensor noise and model uncertainties, typical issues intrinsic
in the hardware. An additional experiment can be also seen
in the accompanying video.

VI. CONCLUSIONS AND FUTURE WORK

A new explicit and passive integration method for re-
producing a Cartesian rigid body dynamics on a robot
has been proposed. Starting from the simple and standard
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Fig. 13: Experiment results - Energy observed (without and
with PC), damping factor βy, velocity corrected by the PC,
forces measured Fy and motion of the robot in y.
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Fig. 14: Experiment results - Energy observed (without and
with PC), damping factor βx, velocity corrected by the PC,
forces measured Fx and motion of the robot in x.

Euler integrator, we proposed a strategy based on TDPA for
modifying the velocity of the Euler integrator and to render
the discrete dynamics passive. The method does not consider
the model of the robot which simulates the desired dynamics
and, therefore, it can be applied to any robotic simulator. The
effectiveness of the proposed approach has been validated
in simulations and on the OOS-SIM, a robotic system that
simulates a satellite dynamics.
Future work aims at extending the proposed integrator for
considering the full rigid body dynamics, i.e. rotations and
translations. Furthermore, we aim at extending the proposed
approach to more generic scenarios (e.g. coupling between
the servicer robot and the satellite).
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