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Abstract

In this thesis a versatile, scalable solution for autonomous navigation of mobile robots

is developed. The ability of autonomous navigation is essential to bring mobile systems

from laboratory environments to real life scenarios. The focus is set on the special class of

inherently unstable, highly dynamic Micro Aerial Vehicles (MAVs) as the systems cover

many constraints and navigation aspects of general mobile robots. These are for example

limitations in payload and computational resources, hard realtime requirements in state

estimation for control and the required ability of full 3D motion close to obstacles in

cluttered environments. In this thesis, both algorithmic and resulting system architecture

aspects are elaborated.

Considering algorithms, common state estimation approaches for MAVs use efficient filter-

ing techniques to fuse data from Inertial Measurement Units (IMUs) with further comple-

mentary, exteroceptive sensors like light-weight cameras. Measurement delays introduced

by data processing and communication pipelines are often ignored resulting in a limitation

of bandwidth of the state estimator. Furthermore, most estimation approaches are globally

metric limiting spatial and (depending on the approach) temporal scalability. Considering

system architecture, common designs either ignore inter sensor and system synchroniza-

tion issues or depend on specialized hardware. The developed navigation solution tackles

these limitations with three main contributions:

Firstly, the Local Reference (LR) Inertial Navigation System (INS) algorithm is intro-

duced. It is based on a delayed error state space Kalman Filter. Augmentation techniques

are used to process (time delayed) relative poses from multiple odometry measurements

as well as (time delayed) absolute state measurements. State augmentation, especially if

used for delay compensation, can lead to numerical instability in standard Kalman Filter

implementations. Therefore, the square root UD (Upper triangular/Diagonal matrix fac-

torization) filter algorithm is extended to integrate augmentation and marginalization in

closed, factorized covariance matrix form. Stabilizing an INS by odometry measurements

only results in unbounded position and yaw angle errors. This can lead to an increase in

unmodeled errors due to violated small error assumptions during linearization and lim-

itations in numerical precision. With the LR-INS, uncertainties of unobservable system

states can be bounded in an efficient and consistent way. Instead of state estimation in

a global frame, the system states are transformed into a local reference frame decreasing

state uncertainty. Repeated reference switching makes the hard realtime state estimation
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spatially and temporally scalable. All operations of LR filtering are directly integrated in

closed decomposed covariance form into a square root UD prediction step exploiting its

superior numerical properties.

The second contribution is the development of a flexible system architecture for au-

tonomous navigation of mobile robots considering hardware and software aspects. Es-

pecially on inherently unstable systems, the separation of system critical and non-critical

tasks in terms of hardware can improve overall system robustness. Furthermore, a dis-

tributed system concept enables the transparent exchange of algorithms between com-

puter boards and hardware accelerators as for example Field Programmable Gate Ar-

rays (FPGAs). In such a configuration, inter sensor and system time synchronization

is essential for consistent realtime state estimation with measurement delay compensa-

tion. The developed system architecture defines minimal requirements on the underlaying

hardware. This enables on the one hand the use of Commercial Off-The-Shelf (COTS)

components and on the other hand a flexible and fast hardware upgrade to the most recent

and powerful modules.

The third contribution is the demonstration of the entire autonomous navigation solu-

tion including stereo vision aided hard realtime state estimation, control, environment

mapping, path planning and obstacle avoidance in real life scenario quadrotor flights. Be-

sides indoor and outdoor experiments for algorithmic evaluation, autonomous flights in

challenging, cluttered environments with indoor/outdoor transitions and in a dusty and

gloomy coal mine demonstrate the usability and robustness of the developed solution for

autonomous navigation of mobile robots.
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Zusammenfassung

Diese Doktorarbeit behandelt die Entwicklung einer flexibel einsetzbaren, skalierbaren

Lösung zur autonomen Navigation von mobilen Robotern. Die Fähigkeit autonom zu navi-

gieren ist die Grundlage um mobile Systeme von Laborumgebungen in reale Anwendungs-

gebiete zu überführen. Die Klasse kleiner, inherent instabiler, hochdynamischer Flugsyste-

me, auch Micro Air Vehicles (MAVs) genannt, steht in dieser Arbeit im Fokus, da sie viele

Beschränkungen und Aspekte der Navigation genereller mobiler Robotersysteme abdeckt.

Diese beinhalten z.B. Einschränkungen bzgl. Traglast und Rechenkapazität, harte Echt-

zeitanforderungen der Zustandsschätzung und die Fähigkeit sich in 3D nahe an Objekten,

sowie in Umgebungen mit vielen Hindernissen bewegen zu können. In dieser Doktorarbeit

werden sowohl algorithmische sowie daraus resultierende Aspekte der Systemarchitektur

behandelt.

Im Bereich der Algorithmik benutzen übliche Ansätze zur Zustandsschätzung für MAVs

effiziente Filterverfahren zur Sensordatenfusion von inertialen Messeinheiten (IMUs) mit

komplementären, exterozeptiven Sensoren wie z.B. Miniaturkameras. Messwertverzöger-

ungen, die durch Sensordatenverarbeitung und Kommunikationswege zustande kommen,

werden hierbei oft nicht beachtet, wodurch die mögliche Bandbreite der Zustandsschäzung

limitiert wird. Des Weiteren sind die meisten Ansätze zur Zustandsschätzung global me-

trisch ausgelegt und damit in ihrer räumlichen und (abhängig vom Ansatz) zeitlichen

Skalierbarkeit beschränkt. Im Bereich der Systemarchitektur wird eine explizite Synchro-

nisierung zwischen Computersystemen und Sensoren oftmals vernachlässigt oder speziali-

sierte Hardware eingesetzt. Die entwickelte Navigationslösung löst diese Einschränkungen

mit drei Hauptbeiträgen:

Der erste Beitrag besteht aus dem entwickelten Lokal Referenz (LR) inertial Navigations-

algorithmus (INS) und basiert auf einem ”delayed error state space”Kalman Filter. Das

Verfahren der Zustandsaugmentierung wird eingesetzt um (zeitverzögerte) Relativposen

unterschiedlicher Odometriesysteme sowie (zeitverzögerte) absolute Zustandsmessungen

zu verarbeiten. Die Technik der Zustandsaugmentierung, besonders, wenn sie zur Kompen-

sation von Messwertverzögerungen eingesetzt wird, kann bei normalen Kalman Filter Im-

plementierungen zu numerischer Instabilität führen. Aus diesem Grund wurde der “square

root UD“ (Upper triangular/Diagonal matrix factorization) Filteralgorithmus erweitert

um Zustandsaugmentierung und Marginalisierung in geschlossener, faktorisierter Form

der Kovarianzmatrix zu ermöglichen. Bei einem Inertial-Navigationssystem (INS), das nur
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durch Odometriemessungen stabilisiert wird, sind Positions-und Gierwinkelfehler unbe-

schränkt. Dies kann zu einem Anstieg nicht modellierter Fehler durch eine Verletzung der

Annahme kleiner Fehler während des Linearisierungsprozesses und zu Einschränkungen in

der numerischen Genauigkeit führen. Mit dem LR-INS Filter können Unsicherheiten nicht

beobachtbarer Systemzustände in effizienter und konsistenter Weise limitiert werden. An-

statt Systemzustände in einem globalen Referenzsystem zu schätzen werden die Zustände

in ein lokales System transformiert wodurch ihre Unsicherheit verringert wird. Räumliche

und zeitliche Skalierbarkeit der hart-echtzeitfähigen Zustandsschätzung wird durch wieder-

holte Referenztransformationen erreicht. Alle Operationen des LR-Filters werden direkt

innerhalb eines Prädiktionsschrittes des “square root UD“ Filters in geschlossener Form

der zerlegten Kovarianzmatrix durchgeführt, wodurch die überlegenen numerischen Eigen-

schaften des Verfahrens ausgenutzt werden.

Der zweite Beitrag umfasst die Entwicklung einer flexiblen Systemarchitektur zur au-

tonomen Navigation mobiler Roboter, wobei sowohl Hardware- als auch Softwareaspek-

te behandelt werden. Besonders auf inherent instabilen Systemen kann die Robustheit

des Gesamtsystems durch Trennung von systemkritischen und unkritischen Prozessen auf

Hardwareebene verbessert werden. Des Weiteren ermöglicht die Auslegung als verteiltes

System den transparenten Austausch von Algorithmen zwischen Computern und Hardwa-

rebeschleunigern wie beispielsweise FPGAs (Field Programmable Gate Arrays). In einer

solchen Konfiguration ist die zeitliche Synchronisierung zwischen Sensoren und Syste-

men für eine konsistente, echtzeitfähige Zustandsschätzung mit Verzögerungskompensation

von besonderer Bedeutung. Die entwickelte Systemarchitektur definiert minimale Anfor-

derung an die zugrundeliegende Hardware. Auf diese Weise wird der Einsatz von standard

Hardwarekomponenten (COTS) ermöglicht, die jederzeit durch die aktuellsten und leis-

tungsfähigsten Versionen ausgetauscht werden können.

Der dritte Beitrag beinhaltet die Anwendung der gesamten Navigationslösung in realen

Flugszenarien für Quadrokopter und umfasst Stereokamera gestützte, hart-echtzeitfähige

Zustandsschätzung, Regelung, Umgebungskartierung, Pfadplanung und Hindernisvermei-

dung. Die durchgeführten autonomen Flugexperimente in anspruchsvollen Umgebungen

mit vielen Hindernissen und Übergängen zwischen Innen-und Außenbereich sowie die

durchgeführten Flüge in einem staubigen und schlecht beleuchteten Bergwerk belegen die

Verwendbarkeit und Robustheit der entwickelten autonomen Navigationslösung für mobile

Roboter.

vi



Acknowledgement

First of all, I would like to thank Roland Siegwart, my supervisor at ETH, for his advice

and support. I am very thankful for our fruitful and strongly motivating discussions on

my research. Further, I am deeply grateful to Darius Burschka from TU Munich for his

great support over the last years. His exceptional dedication and professional advices at

any time allowed me to follow and realize the ideas written down in this thesis.

Gerd Hirzinger’s excitement about robotics, as former head of the Robotics and Mecha-

tronics Center (RMC), has always been contagious and his visions overwhelming. I have

at all times been very excited about the exceptionally creative and inspiring atmosphere

he created in his institute. I am glad that I was given the unique opportunity to be part
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Preface

This thesis is structured in four introductory chapters followed by four self-contained

publications. The first part summarizes the main ideas and results of this work. Detailed

algorithmic and experimental results can be found in the second part.

Chapter 1 describes the motivation and objectives for the developed navigation system

for autonomous, mobile robots and emphasizes the economic and scientific relevance of

this work. The algorithmic state of the art of the included publications is updated and

the used methodology is introduced. Chapter 2 summarizes the contributions and results

per publication. The relevant, individual publications are put into context to each other

and to the defined objectives. The journal and international conference contributions as

well as advised students are listed. Chapter 3 gives an overview of robotic demonstrators

explicitly developed as evaluation platforms in the course of this thesis and further mobile

robotic demonstrators which use the introduced algorithms and system architecture con-

cept for autonomous navigation. Chapter 4 summarizes the most important algorithmic

and experimental results in the context of the defined objectives. Furthermore, an outlook

for future research directions is given.

The second part of this thesis includes three international journal and one international

conference contribution. All publications are peer reviewed and included in the version

finally submitted, while the formatting is adapted to fit the format of the thesis. The

journal articles are extended versions of several conference publications. Therefore, not all

conference contributions mentioned in Chapter 2 are included to prevent redundancies.
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Chapter 1

Introduction

We are at the beginning of a “robotic revolution”. This process is initiated through the

fast development in big data processing, nano technology and ingenuity. The “robotic

revolution” will change the world we are living in by making robots to companions and

helpers in our everyday life1.

While robots have been widely used in well defined industrial environments for a long

time, we can recently observe their appearance in more general environments. There is

a wide range of commercially available toy robots reaching from complete systems as for

example the robot dog Aibo2, to construction kits as Lego Mindstorms3 or Fischertechnik

Robotics4. For a couple of years, mobile service robots have been finding their way to our

homes. To mention some of them, there are robotic vacuum cleaners, window or swimming

pool cleaning robots, mobile surveillance robots and robotic lawn mowers. Nevertheless,

these systems are still limited to navigate in a certain, constrained environment. The

ability to navigate in unconstrained, cluttered environments will open the door to a broader

field of applications.

Such applications include industrial inspection tasks, Search and Rescue (SAR), and dis-

aster management scenarios. The need for mobile robots for such tasks was emphasized

by Prof. Hajime Asama in his 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) plenary talk. He showed how robots were used to analyze,

survey and partly clean up the area around the Fukushima Daiichi nuclear power plant

after the meltdown caused by the catastrophic earthquake and tsunami in 2011. Never-

theless, the used robots were mainly operated manually thus limiting the area of operation

to regions with a reliable radio link between the robot and its operator.

1 Prof. Mlynek, president of the Helmholtz Association (HGF), at the 2014 annual HGF meeting
2 http://www.sony-aibo.co.uk
3 http://www.lego.com/en-us/mindstorms
4 http://www.fischertechnik.de/home/produkte/computing.aspx
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CHAPTER 1. INTRODUCTION

1.1 Motivation and Objectives

This thesis is motivated by the current limitations in mobile robot navigation and targets

the development of a Navigation System (NavSys). Depending on the community, the

definition of “NavSys“ differs. In this work, the aspects of localization and hard realtime

state estimation are focused.

A suitable NavSys has to be applicable to real life scenarios on the one hand and should

be versatile on the other. Figure 1.1 depicts the relation of these two general objectives

mapped to system architecture and algorithmic objectives guiding the design process.

Real life applicability

Basic
autonomy

On-board data
processing

No external
navigation aids

Navigation w/o
env. assumptions

Robustness

Versatility

Applicable to gen.
mobile robots

Appblicable to
MAVs

Payload & comp.
limitations

Vertical take off
and landing

Fast dynamics

Instability

Hardware upgrade

N
a

vS
ys

Algorithm

3D navigation

Multiple sensors

High bandwidth

Hard realtime

Delay compensation

Numerical stability

Scalability

Synchronization

Distributed system

COTS components

System architecture

Delayed
measurements

 

Defining objectives Design objectives

Legend:
Objective Requirement Property

leads to

Figure 1.1: Relation of objectives and requirements of the developed NavSys.
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1.1. MOTIVATION AND OBJECTIVES

The objective of real life applicability includes the requirements of “basic autonomy“ and

robustness. Our definition of “basic autonomy“ coincides with ALFUS (Autonomy Levels

For Unmanned Systems [9]) level 3 and includes the following three important aspects:

i) All sensors and processing units needed for navigation have to be carried by the mobile

robot. It cannot be guaranteed, that a reliable radio link to a ground station is available

during the whole time of operation. Therefore, all sensor data needed for navigation has

to be processed on-board. ii) An autonomous robot has to be able to navigate without any

external aids like Global Navigation Satellite Systems (GNSSs) or external pose/position

tracking systems. The latter is usually only available in laboratory environments. GNSS

can be unreliable or unavailable in (urban) canyons or indoors, respectively. iii) The robot

has to be able to navigate “safely” in geometrically unconstrained, cluttered environments.

Local obstacles have to be avoided in a reactive or planned manner.

A versatile NavSys for autonomous mobile robots should be usable on a wide range of

different systems. It is therefore useful to choose an evaluation platform which has strict

navigation requirements and hardware restrictions compared to the wide field of general

mobile robots. If the NavSys is suitable for a constrained system it can be assumed that

it is suitable for systems with more relaxed requirements.

Micro Aerial Vehicles (MAVs), in particular multicopters, represent a suitable evaluation

platform considering several aspects: i) Payload and, therefore, processing resources are

strongly limited on mulitcopters. The used data processing and navigation algorithms

have to be computationally efficient. ii) Multicopers are Vertical Take Off and Landing

(VTOL) MAVs. They are able to operate in a cluttered, full 3D workspace. iii) The

systems are highly dynamic. iv) Multicopter MAVs are inherently unstable und can not

fly without active stabilization.

Navigation systems for mobile robots combine complementary sensors as Inertial Measure-

ment Units (IMUs) and exteroceptive sensors such as cameras to provide a high bandwidth

state estimate needed for control. Multiple sensors cover fast system dynamics on the one

hand and limit pose drift on the other. The processing of exteroceptive sensor data on on-

board, resource limited computer hardware introduces measurement time delays. While

these time delays are often neglected for controlling stable mobile robots with low dy-

namics, they have to be compensated for on highly agile, inherently unstable systems.

The system state estimation as basis of a navigation solution has to fulfill hard realtime

constraints to guarantee stable system control independent of measurement delays from

different sensor sources.

A further aspect of system state estimation on resource limited hardware is robustness

for long-term stability. Small embedded computers are often limited to single precision

calculations. This has to be considered for state estimation including unobservable system

states such as position and yaw in vision aided inertial navigation. The system state

estimation has to be numerically stable independent of operation time and area. On a

local level, state estimation has to be metric to be used in a classical control structure.

Nevertheless, on a global level metric navigation is not mandatory. Global hierarchical or
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topological navigation schemes can make a NavSys scalable. Independent of the chosen

global navigation scheme, a decoupling of realtime, metric local navigation and (non-

realtime) global navigation brings flexibility and can improve the numerical properties of

the local navigation algorithm.

For the design of a versatile NavSys, system architecture requirements (including hardware

and software aspects) have to be considered as well: i) To improve system robustness, it

is desirable to separate system critical, Realtime (RT) tasks from less critical high level

(navigation) tasks not only at a software but at a hardware level resulting in a distributed

system architecture. In this way the robot can still be brought to a safe state in the

case of a malfunction of high level algorithms that might otherwise block the RT system.

ii) A distributed system with a multitude of different sensors poses the need for exact

time synchronization not only between the actual computers but also between sensors.

The timestamp of a sensor measurement, provided by an operating system driver, is not

necessarily the actual time the measurement was taken. Even though, assuming the time

stamp was exact, there can be a considerable delay between the actual data measurement

and the availability of the (exact) time stamp. iii) The development of computer and

sensor hardware, especially in the embedded computer sector, is very fast. It is therefore

desirable to use Commercial Off-The-Shelf (COTS) hardware components that can be

easily upgraded as soon as a more powerful version is available.

The so far mentioned aspects of navigation systems specify four classes of objectives:

Firstly, the two defining objectives: the applicability objective under real life conditions

and the versatility objective. And secondly, the two design objectives: the algorithmic

objective and the system architecture objective. The latter directly influence the design

of the NavSys and can be summarized as follows:

1. Versatile navigation algorithm allowing “basic autonomy“ including the aspects of:

(a) Robust, hard realtime, high bandwidth, metric state estimation covering fast

system dynamics despite delayed measurements from multiple sensors

(b) Algorithmic robustness in terms of numerical stability and (partial) sensor drop

outs

(c) Algorithmic scalability in terms of runtime and area of operation

2. Versatile system architecture concept including the aspects of:

(a) Distributed system design

(b) Inter system and sensor synchronization

(c) Use of COTS components
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1.2 Methodology

In the following, we summarize the developed methodology to tackle the introduced algo-

rithmic and system architecture objectives. The first part puts the navigation algorithm

into context with the most relevant state of the art updating the related work Section of

the publications included in the second part of this thesis. In the second part, the method-

ology of the developed system architecture considering hardware and software aspects is

introduced.

1.2.1 System State Estimation Framework for Highly Dynamic Systems

A common approach for hard realtime system state estimation needed for the control

of highly dynamic, inherently unstable systems is the combination of IMUs with further

complementary sensors such as cameras or laser scanners in an Inertial Navigation System

(INS). In this way fast system dynamics are covered by the fast proprioceptive sensors

while state drift is limited by the slower exteroceptive sensors. To consider the autonomy

objective, mobile robots have to carry on-board all sensor and computer equipment needed

for navigation.

Processing of Time Delayed (Keyframe-)Odometry Measurements

In recent years, several loosely coupled INSs suitable for MAV navigation have been pre-

sented. In mono vision systems often a visual Self Localization and Mapping (SLAM)

algorithm as PTAM [10], SVO [20] or LSD [19] is used to estimate the scale invariant sys-

tem pose. An Extended Kalman Filter based INS combines inertial measurements with

this pose and estimates scale as introduced by Weiss et al. [18, 16]. A general estimation

framework, using similar ideas as in this work, was recently published by Lynen et al.

[17]. Nevertheless, measurement delays are compensated by buffering and recalculation at

the time of measurement arrival. This approach leads to load peaks when a measurement

arrives and can violate hard realtime constraints of the filter system.

Meier et al. [15] use a stereo vision and optical flow system for pose estimation with

synchronized inertial cues. Position and attitude are estimated in separate filters without

an explicit delay compensation similar to the published work of Heng et al. [21]. In

a recent publication [22] Heng et al. use a multi-camera visual SLAM system for pose

estimation in combination with the framework of Weiss et al. [16] for the integration of

IMU measurements.

The proposed loosely coupled delayed error state space Extended Kalman Filter (EKF-

INS) uses state augmentation techniques to compensate for measurement time delays

and to enable the framework to process relative pose measurements generated by general

odometry sensors as for example a stereo vision system. The odometry measurement is

general in terms of supporting a certain number of keyframes: Saved keyframes in the

past can be re-referenced to calculate relative pose measurements realizing a local drift

7



CHAPTER 1. INTRODUCTION

free navigation.

System states needed for the processing of the delayed measurements are cloned at the

exact time of the measurement using sensor hardware trigger signals. In this way the re-

quirements on measurement timestamp precision and (inter system) communication delays

can be relaxed.

The filter framework processes (time delayed) relative or absolute measurements immedi-

ately upon arrival while (time delayed) relative measurements from different sensors can

overlap. In this way processor load is balanced over time as no measurement buffering

is conducted. Out of order measurements can be processed in the same way as regular

measurements. Furthermore, the maximum runtime of the estimation algorithm can be

limited even with variations in the odometry measurement time delays. These properties

are a prerequisite for hard-realtime operation.

Closed Form State Augmentation for Square Root UD Filters

For the implementation of a vision based EKF-INS suitable for long-term operation nu-

merical stability is essential. Parallelizing floating point units on light-weight, embedded

processors (e.g. ARM NEON) often only support hardware acceleration for single precision

floating point operations. Furthermore, employing continuous state augmentation and re-

moval within an INS filter, the covariance matrix is badly conditioned: After state cloning

the covariance matrix is rank deficient. In the next prediction step the rank is filled up by

system noise but the Eigenvalues of the Matrix are still small. Furthermore, unbounded

covariance values for unobservable states are combined with small, bounded covariance

values as for example IMU biases. Such situations are critical for regular Kalman Filter

implementations as emphasized by Maybeck [5]. In [RIEDL2011] we revealed numerical

instability up to filter divergence for a regular implementation of the delayed error state

space Extended Kalman Filter.

Square root filters have superior numerical properties. Implemented in single precision

they reach at least the quality of a regular double precision implementation [5, 3] with

a moderate increase in computational time. A numerically robust filter form, the square

root UD filter, was developed by Thornton [2]. In this form, no actual square roots have

to be computed.

The square root UD filter implementation serves as numerically stable basis concept.

In this formulation, the filter covariance matrix is expressed as P = UDUT , where

U is a strictly upper triangular matrix and D a diagonal matrix. In its original form

Thornton uses Modified Weighed Gram-Schmidt Orthogonalization (MWGS) [4] for state

propagation which is basically a modified QR factorization.

A new, numerically stable augmentation technique in closed square root UD form was

developed. The filter covariance is expressed as P = SUDUTST where S is a state

selection matrix with exactly one 1 per line used to add or remove states from the filter

in closed UD form. The resulting covariance matrix after state cloning is rank deficient
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but (depending on the system noise model) gets full rank again in the propagation step.

Therefore, state augmentation and removal are directly integrated into the filter propa-

gation step. Similarly to the augmentation technique in iSAM [14] by QR factorization

of the square root information matrix by regular Givens rotations, modified Givens rota-

tions (introduced by Gentleman [1]) for covariance propagation are employed. Triangular

shaped system (and noise propagation) matrices and some state cloning configurations

result in a sparse QR problem in the prediction step. This sparsity can be exploited using

Givens rotations for triangularization.

Numerically Stable Local Navigation by Reference Switching

Even though the proposed UD Filter improves numerical stability, overall numerical sta-

bility can not be guaranteed as the odometry based INS includes unobservable states [16].

These are in detail position (x,y,z) and yaw angle. For long-term numerical stability the

covariance of unobservable states has to be limited in some way.

A concept for combining local metric navigation with global topological navigation was

developed with the Local Reference Inertial Navigation System (LR-INS) [FUSION2014]

and generalized as Local Reference square root UD filter. The concept is inspired by the

sub mapping technique in hierarchical/topological SLAM [8, 11, 7]. The LR-filter has sim-

ilarities with the concept of Concurrent Filtering and Smoothing (CFS) [24]. Nevertheless,

in CFS the focus is set on the combination of non realtime smoothing over the whole robot

trajectory with parallel realtime filtering. Keeping a global trajectory of the robot with

all accumulated measurements collides with the posed scalability objective. The LR-filter

concept was designed to combine local, metric realtime navigation with global topological

navigation but can also be used with a smoothing back end in terms of CFS. The focus is

set on closed form integration of filter reference switching into square root UD filters.

Filter switching gives a solution for the problem of rising covariances for unobservable

system states. Considering INSs, the new reference system can be either the current robot

pose, a distinct landmark or only unobservable partial states as for example position

and yaw errors. The current (augmented) system state as well as the corresponding

(error) covariances are transformed within a prediction step into the new reference system.

In this way, regularly unbounded covariances of the corresponding unobservable system

states are limited and numerical stability within the EKF-INS is improved. Furthermore,

small error assumptions in the linearized system error model are better fulfilled due to

potentially smaller errors in the new reference frame. Employing keyframe odometry with

the reference frame in the keyframe pose turns a relative pose update into an absolute

pose update. The system becomes observable in the new reference frame.

Similar to state cloning, transforming filter states into an augmented state reference frame

results in a rank deficiency of the covariance matrix. By integrating transformation and

state marginalization directly into a prediction step the covariance matrix keeps its rank.

Nevertheless, the matrix is still close to singularity which encourages the use of a stable
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square root filter implementation. By generalizing the algorithm described in the last

paragraph, all operations (state augmentation/marginalization/transformation) can be

directly carried out in closed square root UD form within one prediction step. Execution

time depends only on the number of system states which can be limited independently of

the system runtime or area of operation. This guarantees scalability of the algorithm and

a limited maximum execution time which is a requirement for (hard) realtime execution.

The LR-INS is designed as a scalable, locally metric, hard realtime state estimation algo-

rithm. As the new state reference can be freely chosen the system can be easily combined

with global non-realtime navigation algorithms. The LR-filter can be applied to general

unobservable systems to limit the rise of state covariances in a consistent way by local

reference transformations.

1.2.2 System Architecture

For navigation algorithm evaluation and testing on MAVs a unified, modular system archi-

tecture concept was developed. It considers hardware as well as software aspects. Designed

for highly agile systems with limitations in payload, the concept is suitable for a wide range

of mobile robots.

Hardware Concept

The developed hardware concept tackles the requirements of exact sensor data synchro-

nization and hardware separation of tasks depending on the level of criticalness while the

hardware is based on COTS components. Figure 1.2 depicts an example configuration

with three different computing units.
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(Core2Duo)

RTmodule
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Figure 1.2: Hardware concept of the navigation solution.

Distributed System A realtime computer hosts system critical tasks as system state

estimation and control. Sensors without considerable measurement delays and comparably
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low data processing costs are connected via time deterministic buses. Further non realtime

computers host less critical but computationally intense tasks. Sensors are often connected

via buses without deterministic timing constraints. Well tested, computationally expensive

algorithms (i.e. Semi Global Matching (SGM) stereo processing at the current state of

development) can be moved to specialized acceleration hardware as Field Programmable

Gate Arrays (FPGAs). Intersystem communication is realized by standard ethernet. A

high bandwidth wireless LAN and a reliable low bandwidth radio link provide a flexible

communication infrastructure to external computers for visualization and monitoring.

Synchronization Hardware sensor trigger signals are used to register the exact mea-

surement time on the realtime system. This is the basis for immediate measurement delay

compensation without data buffering and recalculation. In this way, timing (and time

stamping) requirements on the non-realtime system can be relaxed.

COTS Components The system can be easily extended by further processing units

according to computational requirements and available payload. The architecture enables

the use of COTS hardware components simplifying a module change to the most suitable

computer boards available.

Software Concept

The software concept considers algorithmic requirements such as realtime capabilities of

the operation system, the underlying hardware infrastructure consisting of a distributed

system and practical software development aspects.

Operating system A unified operating system (OS) on all distributed computers (with

potentially different processor architectures) simplifies the transparent exchange of soft-

ware modules between systems. The OS should be available for a wide range of process-

ing units to preserve the possibility of flexible hardware exchange. Peripheral hardware

support and realtime capabilities are important factors for the selection of an operating

system. Linux with realtime kernel extensions fits most of the mentioned aspects.

Synchronization The software concept has to provide a robust time synchronization

scheme. The distributed computers need to be transparently synchronized on system level

for a common time basis. Furthermore, imprecise time stamps of sensor measurements

have to be considered. These imprecisions can be caused by non time deterministic system

buses (as for example USB) connecting COTS sensors and computers. Precise time stamps

at the time of the actual sensor measurement can be generated on the realtime system by

system level hardware interrupts registering sensor hardware triggers.

Distributed System The complexity of the software infrastructure increases with the

requirements of a mobile robot and has to be handled by the software concept. A basic
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Figure 1.3: Software distribution and data flow overview of the Pelican2 MAV (see Chapter
3.1) published in [JFR2014].

autonomous navigation solution includes a wide range of software modules covering state

estimation, control, odometry, mapping, path planning and mission control as depicted

in Figure 1.3. Distributing these modules over several computers requires a transparent

communication infrastructure and a clear separation of tasks depending on system crit-

icalness and computational costs. On system level, different communication channels as

on-board ethernet and partially available radio links to off board computers can be trans-

parently bridged. On module level, a suitable middleware as for example Robot Operating

System (ROS) enables transparent interprocess communication. A clear module structure

and the definition of abstract navigation tasks provide the basis for mission control.
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Chapter 2

Contributions

In this chapter, contributions and publications are summarized and set into context. The

structure of contributions and corresponding publications is depicted in Figure 2.1.
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Figure 2.1: Overview of contributions and corresponding publications.

The contributions are grouped into the fields of view planning, state estimation, au-

tonomous navigation and applications. In the first contribution a view planning heuristic
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for aerial multi-view stereo reconstruction in a possible SAR scenario in the mountains was

developed. The algorithm and evaluation results are published as article in the Journal

of Intellegent & Robotic Systems, included as Paper 1 in the second part of this thesis.

A commercially available MAV1 based on GPS navigation was used for data acquisition.

To overcome the identified limitations (see Chapter 2.1, Paper [JIRS2012], Results and

Conclusion) in autonomous navigation a state estimation framework for highly dynamic

systems based on on-board sensors only was developed and published in a conference paper

at IROS 2012. Support for local reference navigation was added to render the framework

scalable and robust for long-term navigation. The algorithm and evaluation results were

published in an article at the FUSION 2014 conference, included as Paper 4 (chronolog-

ical order) in this thesis. Based on the functionality of autonomous localization in the

sense of state estimation, a hardware and software concept for autonomous MAV naviga-

tion in complex scenarios was developed and published in an article in the Robotics and

Automation Magazine, included in this thesis as Paper 2. The concept was extended in

the development of the Mobile Perception Device (MoPeD, see Chapter 3.1), a handheld

device for stereo vision based realtime state estimation and mapping. The system and

its evaluation was introduced by a conference article at ICRA 2013, not included in this

thesis. The MoPeD was integrated on a quadrotor platform (Pelican2, see Chapter 3.1)

and complemented by an on-board path planner allowing autonomous MAV navigation

in cluttered indoor and outdoor environments. The entire system and its evaluation was

published in a conference article at IROS 2013. Introducing a live demonstration of au-

tonomous indoor navigation, a summary of the IROS 2013 article was published at the RSS

2013 workshop on Resource-Efficient Integration of Perception, Control and Navigation

for Micro Air Vehicles. The reworked system concept of the Pelican2, a further evaluation

of the MAV navigation system in possible SAR scenarios as well as the most important

contributions of the articles of IROS 2012, ICRA 2013 and IROS 2013 were published in

an article in the Journal of Field Robotics, included in this thesis as Paper 3. A slightly

modified version of the MoPeD enables autonomous navigation for the humanoid robot,

TORO (see Chapter 3.2). An overview of the robotic system was published in an article

at HUMANOIDS 2014, not included in this thesis.

In the following Section, an overview of all peer-reviewed publications ordered by contri-

bution groups is given. If available, additional multimedia material is referenced. A list

of the publications as well as a list of supervised student research projects is provided at

the end of the chapter. The full articles which cover the main contributions are included

in chronological publication order in the second part of this thesis.

1 Asctec Falcon8: http://www.asctec.de
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2.1 Data Acquisition for Aerial 3D Reconstruction

Paper [JIRS2012] (included as Paper 1)

K. Schmid, H. Hirschmüller, A. Dömel, I. Grixa, M. Suppa, and G. Hirzinger. “View

Planning for Multi-View Stereo 3D Reconstruction Using an Autonomous Multicopter”.

In: Journal of Intelligent & Robotic Systems 65.1-4 (2012), pp. 309–323

Context and Summary In a field study the use of commercially available multicopter

platforms as aerial support systems for mountain rescue teams was evaluated. In close

cooperation with the Bavarian mountain rescue association the automated aerial mapping

of dangerous avalanche areas was identified as helpful application. With the availability

of a precise 3D model of the avalanche area a rescue mission can be precisely planned

identifying potential risk areas for the rescue team.

Multi-view stereo algorithms are an attractive technique for the digital reconstruction of

outdoor sites. A MAV with a monocular photo camera on a pan tilt unit is sufficient

for the data acquisition process. To render a precise 3D reconstruction possible a certain

overlap between the acquired images has to be guaranteed. This requirement results in

viewpoint constraints for the flying robot.

Contribution A new, fast, offline viewpoint planning algorithm was developed. It is

based on a coarse digital surface model (DSM) which is available from map providers

for most regions in the world. The planning heuristic considers coverage, maximum view

angle and image overlapping constraints. The time complexity of the algorithm is linear

with respect to the size of the area of interest.

Results and Conclusion We demonstrated the efficiency of the entire system in two

scenarios, the reconstruction of a building and a hillside in the Alps. The automatically

acquired images were post processed resulting in 2.5D models with a resolution of 5 cm.

The proposed system has limitations considering autonomous navigation: A coarse a priori

map of the area of interest is needed. Obstacles which are not part of the map can not

be considered and might result in collisions. Furthermore, the navigation of the MAV

depends on the availability of a Global Positioning System (GPS) signal which also defines

the effective precision of viewpoints. These limitations inspired further research in the area

of autonomous navigation for agile flying robots.

Related Video

http://youtu.be/xtOj8ozPWew
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2.2 System State Estimation

Paper [IROS2012]

K. Schmid, F. Ruess, M. Suppa, and D. Burschka. “State estimation for highly dynamic

flying systems using key frame odometry with varying time delays”. In: Intelligent Robots

and Systems (IROS), 2012 IEEE/RSJ International Conference on. Oct. 2012, pp. 2997–

3004

Context and Summary To overcome the identified limitations in autonomy a new

state estimation framework as basis of a navigation system was developed. Starting from

a standard inertial navigation approach (INS) a special focus is set on extensions for the di-

rect, simultaneous integration of different, time delayed relative measurements under hard

realtime constraints. The supervised bachelor’s thesis of Sebastian Riedl [RIEDL2011]

revealed the instability of regular Kalman Filter implementations for the proposed filter

approach and motivated the use of a square root UD filter. A system concept suitable

for a quadrotor was developed considering the introduced objectives of a flexible system

architecture. The state estimation system was evaluated in simulations and in flight ex-

periments. The simulated quadrotor trajectory is divided into three parts including a flip

as well as low and high dynamic passages. In the real quadrotor experiments the MAV

was guided by manually calculated waypoints to fly from inside a building through the

window to the outside.

Contribution A new state estimation framework on the basis of a delayed error state

space extended Kalman Filter was introduced. The use of hardware sensor triggers to

initiate state augmentation is a new application of stochastic cloning for measurement

time delay compensation. Furthermore, the concept is extended to support inertial mea-

surement fusion with multiple, time delayed general odometry sensor measurements with

keyframe support. State augmentation and marginalization are mathematically general-

ized. This formulation builds the basis to apply these operations to square root filter

implementations. The first version of a system concept suitable for UAV navigation was

introduced.

Results and Conclusion The developed state estimation framework and system con-

cept was demonstrated to be suitable for control of a highly dynamic quadrotor MAV.

Relative, delayed measurements can be processed while delays are compensated implic-

itly. The system concept relaxes the requirements on exact measurement time stamps

and allows task execution on a distributed system separating realtime from non-realtime

tasks. The influence of measurement time delays up to 1 s and frequencies from 15 Hz

to 1 Hz on the quality of the state estimate was evaluated in Monte Carlo simulations.

The simulation results emphasized the importance of measurement frequency compared

to delays. While velocity errors, important for system control, rise exponentially with
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lower frequency, the relation is linear with longer delays. This strongly motivates the

acceleration of sensor data processing by parallelization and pipelining techniques as in

hardware accelerated data processing algorithms on FPGAs. The entire state estimation

system as basis for closed loop control was tested on a Pelican quadrotor using only inertial

measurements combined with Iterative Closest Point (ICP) based laser and stereo vision

keyframe odometry with 80 ms and about 300 ms delay, respectively.

Related Video

http://youtu.be/r6tQu4o5PAA

Paper [FUSION2014] (included as Paper 4)

K. Schmid, F. Ruess, and D. Burschka. “Local reference filter for life-long vision aided

inertial navigation”. In: Information Fusion (FUSION), 2014 17th International Confer-

ence on. July 2014, pp. 1–8

Context and Summary The introduced NavSys is based on a state estimator including

unobservable states which are position and yaw angle errors. While the system is well

suited for short-term operation, the unbounded rise of state covariance (errors) can result

in numerical instability. To solve this issue the Local Reference Inertial Navigation System

(LR-INS) was developed. Instead of using a global reference for state estimation, the states

and corresponding covariances are transformed to local reference frames. Expressed in the

new frame the state covariances become smaller compared to the global reference.

Contribution State cloning, marginalization and reference switching operations needed

in the introduced NavSys bring the state covariance matrix close to rank deficiency. This

situation is especially critical in regular Kalman Filter implementations. The Kalman

Filter prediction step was generalized to include all LR-Filter operations. With this gen-

eralization state switching can be directly integrated into a numerically stable square root

UD filter implementation. The algorithm was evaluated in a simulated 24 h quadrotor

flight and in real quadrotor flights with repeated reference switching. The Filter concept

is general and could be applied to other state estimation problems including unobservable

states.

Results and Conclusion The conducted experiments proved the long-term stability

of the developed LR-INS. The concept allows the combination of local metric, realtime

state estimation with global topological or hierarchical navigation concepts. In this way,

the system fulfills the scalability and robustness objectives.
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2.3 Autonomous, Realtime Navigation and Applications

Paper [RAM2012] (included as Paper 2)

T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa, F. Ruess,

M. Suppa, and D. Burschka. “Toward a Fully Autonomous UAV: Research Platform for

Indoor and Outdoor Urban Search and Rescue”. In: Robotics Automation Magazine,

IEEE 19.3 (Sept. 2012), pp. 46–56

Context and Summary The paper details the hardware and software concepts of

the DLR Pelican1 quadrotor platform, designed for the 2011 International Micro Aerial

Vehicle competition (IMAV). It summarizes and extends publication [IROS2012] with the

focus on system architecture design. Further modules for autonomous MAV navigation

are introduced. These tackle the tasks of mission control, environment representation,

path planning, object recognition and control.

Contribution A unified hardware and software concept for a complex MAV mission

was developed. The hardware concept separates low level realtime tasks from high level

navigation tasks to improve system robustness. The software concept tackles interaction

between low-level state estimation and control with high-level tasks as object recognition,

environmental representation, path planning and mission control.

Results and Conclusion The system concept laid the groundwork for our first in-

door/outdoor transition flights using correlation based stereo visual odometry in combi-

nation with ICP based laser odometry. The system architecture of the Mobile Perception

Device introduced in publication [ICRA2013] is a further iteration of the system concept.

Paper [ICRA2013]

K. Schmid and H. Hirschmüller. “Stereo vision and IMU based real-time ego-motion and

depth image computation on a handheld device”. In: Robotics and Automation (ICRA),

2013 IEEE International Conference on. May 2013, pp. 4671–4678

Context and Summary The simulation results of publication [IROS2012] motivated

the replacement of the processor based stereo vision pipeline by a FPGA accelerated

pipeline. The employed stereo vision pipeline provides depth images of 0.5 MPixel and

keyframe odometry measurements at a frequency of 14.6 Hz with a delay of about 250 ms.

Improving the estimation quality by a higher visual odometry frequency (and higher pre-

cision due to higher resolution) we evaluated whether stereo vision aided INS is sufficient

for robust state estimation even in challenging conditions. Using stereo vision as sole ex-

teroceptive sensor, the total weight of the sensor and computer hardware could be lowered

by removing the laser scanner so far aiding. The Mobile Perception Device (MoPeD) was

developed as evaluation platform. It includes a stereo camera pair, an IMU, a Core2Duo, a
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FPGA and an ARM processor board. The system was tested in several indoor/outdoor ex-

periments. Using this handheld device the state estimation could be tested independently

of the quadrotor control system.

Contribution The introduced system concept was extended for FPGA vision accel-

eration preserving the hard realtime capability of the state estimator. Considering the

importance of a static camera to IMU configuration on flying systems the MoPeD was

designed as a single, stiffly constructed navigation box that could be easily mounted on

a quadrotor. Two different real life scenario experimental setups were evaluated: In the

first setup a combined indoor/outdoor run with strongly varying feature and lighting con-

ditions was examined. In the second experimental configuration the robustness of the

system against vision drop outs over several seconds was evaluated. The depth images

were combined in a probabilistic map using pose estimates of the state estimator.

Results and Conclusion The developed MoPeD combines high-latency FPGA stereo

acceleration with realtime state estimation in a light-weight navigation box composed

of COTS hardware. Extensive experiments proved the robustness of the system against

vision drop outs and made an elimination of the laser scanner from the quadrotor sensor

suite possible. The probabilistic map is the basis of an autonomous navigation system.

Related Video

http://youtu.be/FalRPdirgds

Paper [IROS2013]

K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and M. Suppa. “Stereo vision based

indoor/outdoor navigation for flying robots”. In: Intelligent Robots and Systems (IROS),

2013 IEEE/RSJ International Conference on. Nov. 2013, pp. 3955–3962

Awarded with the 2013 IROS Robocup Best Paper Award

Context and Summary The results of [ICRA2013] proved the suitability of the MoPeD

as state estimation and mapping module in challenging environments with vision drop

outs over several seconds. A weight optimized version of the MoPeD was integrated

as navigation module for a quadrotor. By using a damped mounting, the weight of the

navigation box is exploited for passive vibration damping. The state estimates are directly

used for control. A path planner operating on the on-board map is used to calculate

collision free paths to given waypoints. The map is sent to a ground station where an

operator can set waypoints to guide the MAV. The navigation solution was evaluated in

autonomous quadrotor flights starting inside a building, leaving through a window, circling

the building, reentering through the door and returning to the starting point.
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Contribution The MoPeD was extended with an A* path planner. Therefore, a hori-

zontal layer at the altitude of the quadrotor and its height as thickness is cut out of the 3D

map. The occupied cells projected to the horizontal plane build a 2D collision map. All

navigation tasks from realtime state estimation, mapping and path planning are running

on-board, closing the perception action loop.

Results and Conclusion At time of publication, the first vision based flying system

that can navigate autonomously in complex, geometrically unconstrained, cluttered in-

door/outdoor environments without vertical wall or flat ground assumptions and full on-

board data processing was presented. It was demonstrated that high latency, FPGA

accelerated stereo vision odometry combined with inertial measurements is sufficient for

autonomous navigation for highly, dynamic inherently unstable flying robots in challenging

environmental conditions. The introduced NavSys integrated on a quadrotor demonstrates

the usability of MAVs for exploration of cluttered, geometrically unconstrained environ-

ments as would be needed in SAR scenarios. The navigation system is based on locally

drift free state estimation. Even though the accumulated drift in the described experi-

ments is small (less than 2 %) the global map is inconsistent. Nevertheless, the map is

locally precise allowing a collision free navigation given global guidance.

Related Video

http://youtu.be/84DiSpPhKJA

Paper [RSS2013]

K. Schmid, M. Suppa, and D. Burschka. “Towards Autonomous MAV Exploration in

Cluttered Indoor and Outdoor Environments”. In: Robotics: Science and Systems (RSS)

Workshop on Resource-Efficient Integration of Perception, Control and Navigation for

Micro Air Vehicles (MAVs). June 2013

Context and Summary At the RSS 2013 workshop on Resource-Efficient Integration

of Perception, Control and Navigation for Micro Air Vehicles, a live demonstration of

autonomous indoor navigation of a quadrotor was given. The corresponding publication

summarizes the concept of the navigation solution introduced in [IROS2013]. After take

off, the quadrotor navigated autonomously between predefined waypoints while building

an on-board map of the conference room. A pattern on a landing platform was identified

during the flight. At the end of exploration, the quadrotor positioned above the pattern

and landed on the 50 cm x 50 cm platform.

Contribution The live demonstration showed the application of the navigation solution

for general indoor navigation.
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Results and Conclusion The demonstration underlined the robustness and precision

of the proposed navigation solution in challenging environments. The system navigated

safely despite low texture conditions in the conference room and moving people in the

audience. The system concept for mission control made a fully autonomous flight without

interaction by an operator possible.

Related Video

http://youtu.be/MMIRPD1bO4I

Paper [JFR2014] (included as Paper 3)

K. Schmid, P. Lutz, T. Tomic, E. Mair, and H. Hirschmüller. “Autonomous Vision-based

Micro Air Vehicle for Indoor and Outdoor Navigation”. In: Journal of Field Robotics 31.4

(2014), pp. 537–570

Context and Summary The publication combines and extends the contributions of

[IROS2012, ICRA2013, IROS2013]. It consists of two parts. The first part can be un-

derstood as tutorial describing the design process of a NavSys for MAVs in form of a

navigation box module. Hardware aspects considering system architecture and mechan-

ical integration are covered. The software part of the tutorial tackles realtime system

aspects on embedded computers and extrinsic camera to IMU calibration. The second

part of the publication covers the developed algorithms for autonomous navigation. This

includes stereo visual odometry, sensor data fusion, control, mapping, path planning and

mission control. Further experiments are included.

Contribution A new iteration of the system architecture concept for autonomous nav-

igation introduced in [RAM2012] is provided. The software architecture considers task

distribution, synchronization and communication via unreliable radio links. Aspects of

hard realtime constraints of the state estimation framework are discussed. The mapping

planning and mission control pipeline is explained in detail. The NavSys was evalu-

ated in further experiments using a quadrotor for vision based mixed outdoor and indoor

multi floor mapping. Robustness in harsh environmental conditions was proved by an

autonomous quadrotor exploration flight in a dusty and gloomy coal mine.

Results and Conclusion The tutorial part of the publication can be a helpful guide

to prevent typical pitfalls when building an autonomous quadrotor platform starting from

commercially available MAVs. Robustness and precision of the introduced NavSys were

proved in simulations, on a handheld device and in several challenging real life flight

scenarios. The developed NavSys enables autonomous, short-term navigation of highly

dynamic, inherently unstable flying robots.
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Related Videos

http://youtu.be/iRvRU9XfNNk

http://youtu.be/RNpbxQurpd8

Paper [HUMANOIDS2014]

J. Englsberger, A. Werner, C. Ott, B. Henze, M. Roa, G. Garofalo, R. Burger, A. Beyer, O.

Eiberger, K. Schmid, and A. Albu-Schäffer. “Overview of the torque-controlled humanoid

robot TORO”. in: Humanoid Robots (HUMANOIDS), 2014 IEEE/RAS International

Conference on. Nov. 2014

Context and Summary The paper gives an overview on the torque- controlled hu-

manoid robot TORO, which has evolved from the former DLR Biped. In particular, its

mechanical design and dimensioning, its sensors, electronics and computer hardware is

described. Additionally, a short introduction to the walking and multi-contact balancing

strategies is given.

Contribution The sensor and system concept of the MoPeD was applied to autonomous

navigation of a humanoid robot. The solution was slightly adapted and integrated into

TORO’s head.

Results and Conclusion The unmodified state estimator designed for MAVs can be

directly used on a humanoid robot. The future integration of a motion model could

improve map precision to be usable for step planning in the sub centimeter range.
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2.4 List of Publications and Awards

International Journals

[JIRS2012] K. Schmid, H. Hirschmüller, A. Dömel, I. Grixa, M. Suppa, and G.

Hirzinger. “View Planning for Multi-View Stereo 3D Reconstruction Us-

ing an Autonomous Multicopter”. In: Journal of Intelligent & Robotic

Systems 65.1-4 (2012), pp. 309–323.

[RAM2012] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. Grixa,

F. Ruess, M. Suppa, and D. Burschka. “Toward a Fully Autonomous

UAV: Research Platform for Indoor and Outdoor Urban Search and Res-

cue”. In: Robotics Automation Magazine, IEEE 19.3 (Sept. 2012), pp. 46–

56.

[JFR2014] K. Schmid, P. Lutz, T. Tomic, E. Mair, and H. Hirschmüller. “Au-

tonomous Vision-based Micro Air Vehicle for Indoor and Outdoor Navi-

gation”. In: Journal of Field Robotics 31.4 (2014), pp. 537–570.

International Conferences

[IROS2012] K. Schmid, F. Ruess, M. Suppa, and D. Burschka. “State estimation for

highly dynamic flying systems using key frame odometry with varying

time delays”. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on. Oct. 2012, pp. 2997–3004.

[ICRA2013] K. Schmid and H. Hirschmüller. “Stereo vision and IMU based real-time

ego-motion and depth image computation on a handheld device”. In:

Robotics and Automation (ICRA), 2013 IEEE International Conference

on. May 2013, pp. 4671–4678.

[IROS2013] K. Schmid, T. Tomic, F. Ruess, H. Hirschmuller, and M. Suppa. “Stereo

vision based indoor/outdoor navigation for flying robots”. In: Intelligent

Robots and Systems (IROS), 2013 IEEE/RSJ International Conference

on. Nov. 2013, pp. 3955–3962.

[RSS2013] K. Schmid, M. Suppa, and D. Burschka. “Towards Autonomous MAV Ex-

ploration in Cluttered Indoor and Outdoor Environments”. In: Robotics:

Science and Systems (RSS) Workshop on Resource-Efficient Integration

of Perception, Control and Navigation for Micro Air Vehicles (MAVs).

June 2013.

[FUSION2014] K. Schmid, F. Ruess, and D. Burschka. “Local reference filter for life-long

vision aided inertial navigation”. In: Information Fusion (FUSION), 2014

17th International Conference on. July 2014, pp. 1–8.
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[HUMANOIDS2014] J. Englsberger, A. Werner, C. Ott, B. Henze, M. Roa, G. Garo-

falo, R. Burger, A. Beyer, O. Eiberger, K. Schmid, and A. Albu-Schäffer.

“Overview of the torque-controlled humanoid robot TORO”. In: Hu-

manoid Robots (HUMANOIDS), 2014 IEEE/RAS International Confer-

ence on. Nov. 2014.

Awards

11/2013 IROS2013 Robocup Best Paper award for “Stereo vision based indoor/out-

door navigation for flying robots“

09/2011 First place at the 2011 International Micro Aerial Vehicle competition

(IMAV) outdoor challenge

2.5 List of Students Advised

Student Assistants

Dominik Kerler Internship

10/2009 - 03/2010

Development of a quadrotor simulation in

Matlab/Simulink

Felix Rueß Student assistant

06/2010 - 12/2011

Development of a quadrotor Inertial Naviga-

tion System in Matlab/Simulink

David Augustin Internship

10/2013 - 02/2014

Integration of delayed ART tracking pose

measurements into a square root navigation

filter

Student Theses

[RIEDL2011] S. Riedl. Extended Kalman Filter: Efficient, numerically robust imple-

mentation and noise parameter optimization. Bachelor’s Thesis, Techni-

cal University Munich, Germany, 2011.

[RUESS2012] F. Rueß. Error State-Space Kalman Filter for Inertial Navigation with

Multiple Reference Frames on MAVs. Master’s Thesis, Technical Univer-

sity Munich, Germany, 2012.
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Chapter 3

Robotic Demonstrators

The described algorithms and system architecture was mainly evaluated on multicopters.

Several other mobile robots at DLR employ the NavSys for indoor and outdoor naviga-

tion underlining the versatility of the approach. The platforms differ in their dynamic

characteristics, their sensor equipment and the resulting challenges for the NavSys.

3.1 Developed Evaluation Platforms

On the basis of the introduced system architecture concept, several robotic systems for

algorithm evaluation and autonomous navigation tests were developed. The development

cycle was driven by findings about the employed algorithms and the influencing factors

of the mechanical structure on the one hand and advancements in the field of embedded

computers on the other.

Pelican1

Figure 3.1: Pelican1 quadrotor

The Pelican1 is a quadrotor based on an Ascend-

ing Technologies1 Pelican platform. The MAV is

extended by further sensors and computing units.

The sensor suit includes a Hokuyo UTM-LX30 laser

scanner, a stereo camera rig and an additional Ana-

log Devices ADIS IMU. The sensors are directly

mounted to the quadrotor frame. An x86 Atom pro-

cessor board and three Gumstix (OMAP3530) em-

bedded computers build a small on-board computa-

tion cluster. A self designed micro ethernet switch

connects all processing units.

The sensor fusion framework combines inertial measurements with keyframe stereo and

laser odometry. Low resolution stereo images (240x480), as basis for visual odometry and

mapping, are calculated on the Atom computer board by a correlation method [6]. Laser

1 http://www.asctec.de/
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scans, projected to the ground plane, are matched by ICP [12] to calculate odometry

information in the horizontal plane. Mirrors reflect some laser beams down- and upwards

to measure height above ground and ceiling distance, respectively.

The platform was used to evaluate sensor data fusion as basis for control of a highly

dynamic system [IROS2012]. The sensor configuration is challenging for the NavSys as

different, asynchronously running delayed odometry sensors have to be combined. Laser

odometry is calculated with a rate of about 10 Hz and a delay of 80 ms. Stereo keyframe

odometry is available at a comparably slow data rate of about 4 Hz and a delay of 300 ms.

Combined vision and laser odometry aided inertial navigation makes robust state es-

timation in indoor and outdoor environments possible. Nevertheless, in the described

configuration, vision only INS requires well textured and well-lit environments.

MoPeD

LiPo
Battery

USB
Cameras

FPGA
Board

Gumstix

Core2Duo

IMU

Figure 3.2: Mobile Perception Device

The Mobile Perception Device (MoPeD) is a

light weight handheld device for realtime stereo

vision based inertial navigation and mapping.

It is equipped with a stereo camera rig and

an additional Analog Devices ADIS IMU. The

computational hardware consists of a Gumstix

(OMAP3530) embedded computer board for re-

altime tasks and an x86 Core2Duo processor

board for high level tasks and data preprocess-

ing. A further FPGA board is connected via

PCIe to accelerate stereo image processing. The

computer boards are directly connected via Eth-

ernet. All components are tightly integrated into a handheld device with a weight of about

830 g. The sensors are stiffly mounted to the MoPeD frame to achieve a fixed extrinsic

sensor configuration.

The sensor fusion framework combines inertial measurements and keyframe stereo odom-

etry only. As calculation intense stereo image processing is moved to the FPGA board,

the main processor board offers free resources. These are used to fuse depth images into

a probabilistic, local map using pose information from the navigation solution.

The MoPeD made the evaluation of the NavSys independent of quadrotor control possible.

The trajectory dynamics can be easily varied by the human carrying the device. Vision

only aided INS is challenging especially in weakly textured indoor environments. Simula-

tions showed that odometry measurement frequency strongly influences the quality of state

estimation while measurement delays have a comparably small effect [IROS2012]. This

result strongly motivated hardware accelerated data processing. FPGA acceleration made

stereo image calculation with a resolution of 0.5 MPixels at a rate of 14.6 Hz possible. The

effective visual odometry pipeline latency is about 250 ms. It is compensated by the sensor
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fusion framework. An increased odometry measurement frequency, the improved depth

image quality due to SGM [13] instead of correlation based stereo and a higher image

resolutions enables robust state estimation even in weakly textured indoor environments

[ICRA2013]. The state estimation is robust against vision drop outs of several seconds, a

prerequisite to include the state estimation of the MoPeD into the system control loop of

mobile robots.

Pelican2

Figure 3.3: Pelican2 quadrotor

The Pelican2 quadrotor is a further developed

version of the Pelican1 platform. The sensor

suit is composed of a stereo camera rig and an

IMU only. The MoPeD in a weight-optimized

design with about 740 g is used as navigation

box. It is connected by dampers to the quadro-

tor frame. The weight of the navigation box

is exploited to minimize the effects of rotor in-

duced vibrations on the IMU. Image motion

blur effects in gloomy environments are reduced

by an additional LED flash light synchronized

to the cameras. State estimation, control, map-

ping and path planning are implemented on the

MoPeD enabling the flight platform to realize au-

tonomous exploration.

The sensor fusion framework effectively compensates for measurement delays of the FPGA

accelerated visual odometry pipeline. In this way, the perception/action loop is closed by

using the resulting state estimates for control of the quadrotor. The probabilistic on-board

map is employed as basis for on-board path planning and collision avoidance.

With the Pelican2 platform vision only aided inertial navigation was demonstrated to

be suitable for autonomous MAV navigation in challenging indoor and outdoor scenar-

ios [IROS2013]. The state estimation framework tracks the high system dynamics and is

suitable for quadrotor control. The system was demonstrated to be robust against vision

drop outs in low textured environments and even against forced collisions during tactile

exploration (RSS2014 live demonstration). The autonomous navigation abilities includ-

ing on-board mapping and path planning were demonstrated on the Pelican2 in flight

experiments similar to possible SAR scenarios [JFR2014].

3.2 Demonstrator Platforms

Besides the introduced evaluation platforms, the NavSys is employed for indoor and out-

door navigation on several DLR ground robots. These include commercially available
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wheeled robots as well as specialized rover platforms, and a humanoid robot, which were

developed by DLR.

Pioneer

Figure 3.4: Modified Pioneer 3-AT

The Pioneer2 robots at DLR are test platforms for

cooperative multi robot exploration. They are ex-

tended with a 113 degree wide angle stereo cam-

era rig and an XSense IMU. The computational

hardware consists of a single Quad Core i7 proces-

sor board and a FPGA for accelerated stereo image

processing. While the cameras are synchronized to

each other, the hardware trigger is not explicitly reg-

istered.

The NavSys is used as realtime odometry. Due to

the limited system dynamics of the wheeled robots, timing and sensor synchronization

constraints are relaxed. Therefore, a purely software based synchronization scheme is

employed. Due to the used wide angle cameras, the stereo odometry measurement char-

acteristics differ from the configurations on the MoPeD and quadrotor platforms. While

delta pose measurements are less precise, keyframes can be held for a longer time. On a

similar robot of an industrial partner constant height measurements are included in the

state estimation to account for a flat floor assumption.

In ongoing work, the pose estimates and the corresponding uncertainties of the NavSys

are integrated into a pose graph submap SLAM. Submaps are exchanged between several

robots to build up a common global map. The reference switching mechanism of the

LR-INS is exploited to estimate the robot pose relative to the current submap origin.

Rovers

Figure 3.5: PTS rover carrying a
Pelican2 quadrotor

The Part Time Scientists (PTS) and Light-weight

Rover Unit (LRU) rovers are test platforms for cooper-

ative exploration of rough outdoor environments com-

bining ground and flying robots. The systems have a

landing platform on their backs to transport an MAV

to a possible site of operation. The MAV can be used

to get an aerial overview and find suitable exploration

paths for the ground robot by exchanging maps be-

tween the systems. The rovers are equipped with a

stereo camera rig mounted on a pan-tilt unit. An

XSense IMU is integrated into the body of the rover.

2 http://www.mobilerobots.com/ResearchRobots.aspx
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Similar to the modified Pioneer robots, the computa-

tional hardware consists of a Quad Core i7 processor

board and a FPGA board for stereo image processing.

Figure 3.6: LRU rover

Both rovers use the same algorithmic concept as the Pi-

oneer robots. A further challenge for the NavSys is the

variable extrinsic configuration between the IMU and

the cameras. The orientation of the pan-tilt unit sen-

sors is used within the stereo odometry measurement

equations. Uncertainties of the orientation sensor are

accounted for by artificially increasing the correspond-

ing measurement covariances of delta poses.

TORO

remaining arm. The main focus of the research with TORO
is not on dexterous manipulation but rather on balancing and
simple manipulation tasks. To provide TORO with a robust
solution for picking up simple objects and establishing firm
contacts with its environment, it was equipped with electrical
hand prostheses (i-limb ultra prosthesis from Touch Bionics
[48]). Each finger has one active and an additional passively
coupled DOF. The thumbs have an additional DOF, so that
they can be opposed to the other fingers. Although the i-limb
hands have no position or torque sensors available, they come
with powerful intrinsic grasping capabilities.
The main part of TORO’s computer system and auxil-

iary electronics (see Sec. III) is located in the backpack
(see Fig. 5). It mainly consists of a backplate (which the
components are screwed onto), a welded aluminum pipe
frame and elastic fabric. The aluminum pipe frame is used
as a suspension point for the security rope, as mechanical
protection of the backpack’s interior and as handle bars
(see red markers in Fig. 5b), which are used to manually
support the robot after failed experiments. TORO’s neck has
an actuated pan tilt unit based on the commercially available
Dynamixel MS106T servo motors [47]. The structural parts
of TORO’s head (see Fig. 6) were designed to provide the
highest possible stiffness. The head structure contains all
required sensors and a computer system for an onboard
ego-motion estimation and mapping (see Sec. III-B). This
high structural stiffness is not only required for mechanical
protection (e.g. when the suspension rope hits the head after
a fall), but also to avoid low frequency vibrations of the head,
which can cause problems regarding ego-motion estimation.
Throughout the robot, hollow axes are used in the joints

to allow for an internal routing of all cables. This avoids the
cables from getting caught or tangled.

III. MECHATRONICS AND COMPUTER HARDWARE

A. Electronics
The same electronics as in the LWR (see Fig. 2) is used

to supply TORO’s joint drives (except for the neck drives).
It includes the motor power supply, electronics for motor
control, brakes, joint position and torque sensing and control
and communication between joint and control computers
via Sercos-II bus (see Sec. III-C). The drive units and the
electronic components supplying them are mounted as close
to each other as possible (see Fig. 4) in order to reduce
electromagnetic crosstalk and cable routing.
Two battery packs in TORO’s backpack are used to

power the robot. They consist of industrial cells based on
LiFePO4 and have a nominal voltage of 48 V, a capacity
of 6.6 Ah and a weight of 2.3 kg each. These batteries
supply power to the joints directly and to the computers via
switching mode power supplies. The usual time the robot
can operate on a set of batteries is one hour (e.g. walking
or whole-body tasks). Alternatively, TORO can be supplied
with electricity via a power cable. The power drawn in
steady state is approximately 250W. The field of humanoid

fan

CPU

FPGA

stereo
cameras

IMU
Xtion
sensor

Fig. 6: TORO’s head

robots is currently more focused on capabilities than on
power consumption, but endurance is also of high relevance
for real-world applications. Taking this perspective, it is
interesting to note that when TORO stands still, its power
consumption is dominated by its electronics rather than its
motors. Thus, in the design of a new humanoid prototype,
we would pay special attention to the issue of electrical
efficiency. To facilitate good heat dissipation in TORO, the
joint drives’ power electronics are either directly connected
to the structural parts (made of aluminum → good heat
conduction) or cooled via forced and natural convection.

B. Sensors
Each of the 25 installed LWR drive units is equipped

with an incremental motor position sensor, an output position
sensor and a torque sensor. The torque sensors are mounted
on the joint output side, so that the torque measurement is
almost not affected by frictional effects in the joints. Addi-
tionally, each joint has a built-in brake, which is activated
either by software command or in case of power-down.
That way, the robot’s joint positions have to be recalibrated
rarely although no precise absolute joint position sensors are
available (yet, the ILM70 and ILM85 modules have built-in
potentiometers → partially automated recalibration process).
A recalibration is mainly necessary, when a power-down
occurs during robot operation and the internally tracked
current joint position is no longer updated while the joints
keep moving (despite engaged brakes) due to the link inertia.
Each of TORO’s feet is equipped with a 6 DOF force-

torque sensor (FTS), which is mounted directly above the
foot. The FTS are used to measure the ground reaction
wrenches independently of the robot’s leg configuration and
compute the zero moment point (ZMP), which is necessary
for ZMP-based walking algorithms. The FTS are designed
to measure forces and torques up to 1000 N and 100 Nm.
An inertial measurement unit (IMU) is mounted to

TORO’s thorax to provide the robot with sensory information
about its orientation and spatial acceleration. TORO’s head
(see Fig. 6) contains all sensors and the computer system
required to estimate the robot’s ego-motion and build up a
map of its environment. The sensory information of a pair
of stereo cameras (15 fps) is processed and features are
extracted in an onboard FPGA using Semi Global Matching
(SGM) [49]. The stereo camera information and the mea-
surements from an IMU mounted in the head are fused via

Figure 3.7: TORO’s head based on the
MoPeD

TORO is a torque-controlled humanoid

research robot designed at DLR [HU-

MANOIDS2014]. Mechanics for legs and

arms are based on the DLR Light-Weight

Robot (LWR) arm technology. To enable

the robot to walk in unknown, rough ter-

rain, TORO carries a slightly modified ver-

sion of the MoPeD as head. An additional

Xtion RGBD sensor is integrated to im-

prove mapping for grasping tasks.

Figure 3.8: The DLR
humanoid robot,
TORO

Due to possible fast movements of TORO’s head, the NavSys

has to cope with a higher rotational system dynamic compared

to ground robots as the introduced Pioneers. The state esti-

mator designed for fast tilting quadrotors can precisely track

these dynamics and fits the robots capabilities well. Map based

foot step planning in uneven terrain demands for sub centimeter

modeling of the ground plane in a local area. The stereo vision

keyframe based LR-Filter with its local reference switching func-

tionality in combination with map resets is a computationally

efficient mechanism to build up (locally) precise maps of the

local environment including the ground plane.
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Chapter 4

Discussion, Conlusion and Future

Work

In the first part of this Chapter the contributions of this thesis are discussed and brought

into context with the objectives stated in Section 1.1. In the second part, directions for

future research are pointed out.

4.1 Discussion and Conclusion

The developed NavSys is a versatile local navigation solution. The challenging require-

ments for highly agile, inherently unstable MAVs cover most requirements needed for

general mobile robot local navigation and control. Therefore, the developed concepts and

algorithms can be directly applied to a wide field of different robotic platforms. At DLR the

system is used on many different mobile robots from flying systems, over wheeled robots to

a humanoid robot. The mentioned platforms cover a substantial range of different system

dynamics and sensor configurations. In this way, the versatility of the introduced local

navigation solution has been demonstrated.

“Basic autonomy“ is a fundamental requirement for mobile robot navigation in real life

scenarios. The introduced navigation solution has no dependencies on external navigation

aids. The developed algorithms are efficient and were demonstrated to run reliably on light-

weight embedded computers. With the combination of proprioceptive and complementary,

light-weight exteroceptive sensors, as for example within the MoPeD, the navigation box

with a weight of less than 740 g can be carried even by small, flying quadrotors. On-board,

realtime 3D modeling of geometrically unconstrained environments is used for collision

avoidance and path planning which completes the requirement of “basic autonomy“.

The introduced multi sensor INS provides locally drift free, metric state estimates. Fast

system and slow error dynamics are decoupled by the use of an error state space formula-

tion. Thus, the system state estimate can be provided up to the full rate of the IMU using

the computationally cheap strap down algorithm. The computationally more expensive

error estimating filter can be run at a lower frequency. The filter concept was demon-
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strated to be suitable for accurate and consistent state estimation even on highly dynamic

trajectories of a quadrotor with velocities of up to 4 m/s and fast changing accelerations

of up to 3 g resulting from roll and pitch angles of up to 50◦ while measurements were

delayed up to 1 s.

Kalman Filter state augmentation techniques were used to simultaneously process multiple

delayed odometry measurements. Thus, not only measurement delays are compensated

implicitly but a deterministic filter runtime behavior can be achieved. In contrast to

measurement buffering and recalculation techniques for delay compensation the processor

load is balanced independently of the delay of measurements. The maximum number

of needed filter augmentations can be calculated for a specific sensor configuration. In

this way, the worst case algorithm runtime can be determined hence guaranteeing state

estimation in hard realtime. The processing of delayed measurements can be spread over

several Kalman Filter prediction steps giving a further mean for processor load balancing.

Regular Kalman Filter implementations can be numerically critical if the covariance ma-

trix is close to rank deficiency. This situation is common in the case of state cloning

especially if used for measurement delay compensation with small time delays. With

multiple asynchronously running delayed sensors the time between state cloning and mea-

surement processing can occur to be as small as the filter execution time step. Therefore,

the numerically stable square root UD filter was extended to support general state aug-

mentation in closed factorized covariance matrix form. Thus, the requirement of numerical

robustness is fulfilled.

Furthermore, the robustness of the NavSys agains partial sensor drop outs was evaluated

in quadrotor simulations, on the MoPeD and in real quadrotor flight experiments. Using

the MoPeD, manually forced short-term vision drop outs of up to 5 s with fast (changing)

movements in the meantime were demonstrated to have a negligible effect on the quality

of the state estimation. In mixed indoor/outdoor flight experiments with several vision

drop outs and a multi floor trajectory of about 100 m the worst case measured loop closure

error was well below 2 % of the total trajectory length. The experiments underline the

robustness of the navigation concept in real life scenarios where partial sensor drop outs

are common.

The developed Local Reference (LR) Filter concept introduces a method to improve scala-

bility and numerical stability of filter based state estimation including unobservable modes.

Applied to inertial navigation filtering (LR-INS) scalability in the sense of runtime and

area of operation can be achieved. Therefore, system states are (partially) transformed

from the global navigation frame to a local navigation frame which can be an observed

landmark, the current robot pose or any other meaningful augmented state. State un-

certainties in the local reference frame are typically smaller than in the global reference

frame. Repeated switches bind the state covariances of unobservable states. As long as

the local reference can be measured, the system is transformed into an observable system.

This is not only the case for landmarks but applies also to keyframe odometry as long

as an old keyframe can be referenced. All operations needed for local reference filtering
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are integrated in closed form into a single square root UD prediction step. Therefore, the

algorithm profits directly from superior numerical properties compared to regular Kalman

Filter implementations. The LR-INS was evaluated in simulated 24 h quadrotor flights

and in real quadrotor flight experiments with the expected result of bounded state covari-

ances. By switching the navigation frame on the fly, the locally precise and consistent

navigation filter can be combined with scalable global approaches as topological or hierar-

chical navigation fulfilling the requirement of scalability in the sense of runtime and area

of operation.

Besides the actual navigation algorithms, the underlying system architecture is an impor-

tant factor for applicability of the entire NavSys. The developed architecture is flexible

and versatile. Due to the explicit design as distributed system, high-level tasks without re-

altime constraints can be separated by hardware from system critical, hard realtime tasks.

A failure of a critical task such as system state estimation or control can easily result in a

crash of the mobile robot. Such a failure can be provoked by delayed scheduling of the hard

realtime task. The applied embedded RT mini computer was proven to hold scheduling

constraints with latencies well below 400 µs. Measurement delays from non realtime tasks

are compensated by the fusion algorithm. This enables the use of hardware acceleration

pipelines for sensor data preprocessing, as demonstrated with an SGM stereo vision FPGA

implementation, and relaxes the requirements on inter system communication delays.

Nevertheless, delay compensation and the use of a distributed system architecture requires

a flexible and robust synchronization scheme between computers and sensors. In the

introduced scheme sensor hardware triggers are directly registered on the RT system.

Therefore, the precision of measurement time stamps is relaxed to half of the sensor

measurement sampling time to be still uniquely assignable. This gives the flexibility

to compensate for imprecise timestamps, transmission and processing delays and even

integrate external, delayed sensors. In a student project, not detailed in this thesis, the

infrared flash of an external tracking system was used for synchronization. The actual

pose measurement of the tracking system is transmitted via wireless LAN introducing

a considerable jitter in the delay which is implicitly accounted for by the introduced

synchronization concept.

The system architecture makes minimal demands on the underlying hardware. The only

requirements on the realtime computer platform are the availability of an interrupt trig-

gering General Purpose Input/Output (GPIO), a suitable hardware interface to connect

an IMU and a communication interface to the non realtime computer board. The latter

has to provide hardware interfaces to connect further exteroceptive sensors and a com-

munication interface. With these basic requirements, the system can be composed of

standard COTS components. In this way, computer boards can easily be upgraded to the

most recent versions available without hardware development. Several implementations

including a cluster of ARM and X86 processor boards, a combination of ARM, X86 and

FPGA acceleration boards and a minimal configuration with a single X86 computer were

presented.
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The entire NavSys, based on stereo vision only and in combination with laser odometry,

was not only evaluated in simulations and laboratory environments but also in challenging

real life scenarios similar to possible SAR scenarios. Multi floor indoor flight experiments

with indoor/outdoor transitions through windows and doors demonstrated the robustness

and precision of the state estimation and its suitability as basis for mapping and path

planning. The transition phase is especially critical in stereo vision only configurations as,

due to fast changing lighting conditions, vision drop outs have to be expected in a situation

where the flying robot is only a few centimeters off the window or door frame. Flight

experiments in a coal mine demonstrated “basic autonomous“ navigation in a challenging,

dusty and gloomy environment.

The introduced NavSys covers all objective defining requirements of Chapter 1.1. It en-

ables mobile robots to navigate autonomously in 3D in geometrically unconstrained, clut-

tered environments. This is the basis to bring mobile robots from laboratory environments

into the real world and opens a wide field of new applications.

4.2 Future Work

Relaxing the objective of versatility, the estimation quality, and robustness of the NavSys

can be further improved by integrating robot specific motion models. The introduced

approach employs only general point mass kinematics within the strap down algorithm and

is, therefore, usable on any robotic platform. Nevertheless, information from control inputs

and motion constraints of the system are ignored. It was demonstrated that the navigation

solution is robust against short-term drop outs of the used stereo odometry system in the

range of seconds. Nonetheless, in situations where exteroceptive sensor measurements are

not available velocity states are not observable and a considerable position drift has to be

expected in the case of long-term sensor drop outs.

For highly dynamic, inherently unstable flying robots unobservability of velocity can be-

come critical. Even though, roll and pitch can still be stabilized, the MAV will freely

drift in space. In cluttered environments it will collide with obstacles and might crash.

The integration of a quadrotor drag model can improve this situation. By rendering ve-

locity observable drift in position will be slowed down. Nevertheless, the accuracy of the

highly nonlinear drag model and its parameters strongly influences the gain in informa-

tion. For MAVs, a suitable model must be identified. The corresponding parameters could

be integrated into the system state and estimated online.

Wheeled, mobile robots are in general stable systems. Drop outs of the exteroceptive

sensors are, therefore, less critical. Nevertheless, to improve robustness, a motion model

could be easily applied by using wheel odometry measurements. In the most basic way,

these measurements can be processed as velocity updates. Velocity will become observable

but position will still be affected by drift. Under the assumption that the system is standing

still while there is no control input, the pose at stoppage of the robot can be used within

the LR-INS as new local reference frame. A pseudo zero pose measurement will stop pose
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drift while standing.

Considering mobile robots with legs, as for example the DLR humanoid TORO, a motion

model can be easily integrated into the NavSys by adding foot pose states when a leg

touches the ground. In the most simple case the kinematic chain between IMU and leg

frame can be used as corresponding measurement. Even foot slippage can be considered

by adding noise to the augmented foot pose.

Besides the integration of specialized robot motion models, the combination of the LR-INS

with global navigation approaches is a promising future research direction. Especially on

resource limited mobile robots highly scalable, non-metric, insect inspired global naviga-

tion methods, as for example the Landmark-Tree Map [23], are an attractive alternative

to classical SLAM approaches. In combination with the NavSys, local consistent, metric

maps can be built and used for obstacle avoidance and object recognition. Metric state

estimates can be used for control. Using the LR-INS, the new reference frame can be

repeatedly switched into the current robot pose. The direction to follow a global path is

given by the global navigation approach which is completely decoupled from local naviga-

tion tasks.

Employing the LR-INS hierarchical, human like way descriptions could be directly mapped.

Lets assume a description in the form ”follow the path for about 20 m until you reach the

house, enter by the door, turn left into the corridor...” is given. With an object detector

which can identify the waypoint describing objects within a certain region, the reference

frame of the LR-INS can be directly switched into the coordinates of the object. The robot

can navigate relative to the last way node. Given the metric uncertainty of the LR-INS

search regions for the next way node can be defined.

With the ability of “basic autonomous“ navigation of a single mobile robot the foundation

for multi robot cooperation is laid. A heterogeneous team of robots can profit from

special abilities of the individual team members. Disadvantages of one system class can

be compensated by another type of robot. One could, for example, combine ground based

and aerial robots for autonomous exploration in SAR scenarios. In such a configuration, a

ground vehicle, with long operation time, can carry a flying system exploring the reachable

area of operation. In situations, where the way for the ground robot is blocked, the MAV

can give an aerial overview to find a possible route around obstacles and thereby, minimize

exploration time. To make the exchange of map information possible a common navigation

frame is needed. With the introduced LR-INS the reference frame of the ground robot

can be used by the flying system and local maps can be directly exchanged. Whenever

the pose of the ground robot is measurable by the MAV the navigation frame of the flying

robot can be adapted to realize relative navigation. In this way, accumulating errors in

a global navigation frame can be canceled out in a simple and efficient manner. The

ground robot can use the locally consistent maps of the flying system to build a globally

consistent environment representation by means of computationally more expensive global

optimization methods.
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Acronyms

COTS Commercial Off-The-Shelf

FPGA Field Programmable Gate Array

GNSS Global Navigation Satellite System

GPIO General Purpose Input/Output

GPS Global Positioning System

HGF Helmholtz Association

ICP Iterative Closest Point

IMU Inertial Measurement Unit

INS Inertial Navigation System

IROS IEEE/RSJ International Conference on Intelligent Robots and Systems

MAV Micro Aerial Vehicle

NavSys Navigation System

ROS Robot Operating System

RT Realtime

SAR Search and Rescue

SGM Semi Global Matching

SLAM Self Localization and Mapping
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Paper 1

View planning for multi-view

stereo 3D reconstruction using an

autonomous multicopter1

Korbinian Schmid, Heiko Hirschmüller, Andreas Dömel, Iris Grixa, Michael Suppa, and

Gerd Hirzinger

Abstract Multi-view stereo algorithms are an attractive technique for the digital recon-

struction of outdoor sites. Concerning the data acquisition process a vertical take off and

landing UAV carrying a digital camera is a suitable platform in terms of mobility and

flexibility in viewpoint placement. We introduce an automated UAV based data acqui-

sition and outdoor site reconstruction system. A special focus is set on the problem of

model based view planning using a coarse digital surface model (DSM) with minimal data

preprocessing. The developed view planning heuristic considers a coverage, a maximum

view angle and an overlapping constraint imposed by multi-view stereo reconstruction

techniques. The time complexity of the algorithm is linear with respect to the size of the

area of interest. We demonstrate the efficiency of the entire system in two scenarios, a

building and a hillside.

1 c©2011, Springer Science+Business Media. Reprinted, with permission, from Journal of Intelligent &
Robotic Systems 65.1-4 (2012), pp. 309-323, DOI: 10.1007/s10846-011-9576-2
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1 Introduction

The reconstruction of three dimensional scenes has gained more attention in the last years.

Textured 3D models are used, among others, in virtual reality applications, for urban

planning, cultural heritage conservation or for the planning of search and rescue missions.

Map providers are reacting to this new field and are changing their datasets from simple

2D to 2.5D or even 3D world representations. For the 2.5D case the data acquisition is

often performed from satellites or airplanes. However, top-down images do not allow the

geometrical reconstruction of building facades or general 3D structures. Additional images

could be taken from the ground, but this is a tedious task as many objects like trees or

cars can partially occlude the object of interest.

With the use of a Vertical Take Off and Landing (VTOL) UAV, images can be taken

from better viewpoints than from ground or classical aerial images. The UAV can fly

in altitudes of several hundred meters as well as in short distances to the ground and

to objects. Thus, images can be obtained with much higher resolution than possible by

classical aerial images. The complete data acquisition process can be realized with only

one relatively cheap system and can be accelerated by automation.

An important aspect of the data acquisition process arising from the use of a VTOL UAV is

safety. Miniature helicopters, with their large turning rotor, could seriously harm persons

and damage objects. In contrast, multicopters have several small rotors and are therefore

safer to use in populated environments. While they can easily carry a digital camera, the

overall payload limits further sensor and computational hardware equipment.

By using multi-view stereo algorithms single shots from a digital camera are sufficient

for a high quality reconstruction of 3D scenes. Nevertheless, the viewpoints must be

planned carefully to gain a sufficient image overlap, which is necessary for reconstruction.

Furthermore, occlusions, full coverage of the region of interest and a constant quality

within the reconstructed scene should be considered by a viewpoint planning algorithm.

For planning, a data basis is needed. Currently, the hardware for multi-view stereo recon-

struction in realtime can not be mounted on a multicopter due to the restricted payload.

Furthermore, light-weight wireless data transceivers do not have enough bandwidth for a

realtime transmission of high resolution images to a ground station. An offline viewpoint

planning and image post processing method can solve this problem but requires a coarse

model of the region of interest.

In many outdoor situations a coarse digital surface model (DSM) is available. And, if it

is not, it can be easily created using a VTOL UAV taking top-down images of a region of

interest. In our proposed method, we use a coarse DSM for the calculation of viewpoints

fulfilling the constraints imposed by a multi-view stereo algorithm. We acquire single shot

images at the calculated viewpoints from a multicopter. Finally the scene is reconstructed

by the Semi Global Matching (SGM) algorithm.

In the next Section, we give a short overview of related work. In Section 3, we describe

the work flow of our method and give a summary of the SGM algorithm. In Section 4, we
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introduce our new method for model based view planning considering constraints imposed

by multi-view stereo reconstruction. Section 5 shows simulation and experimental results

of two scenarios. The conclusion discusses pros and cons of our method and gives an

outlook on future work.

2 Related work

Several research groups are working on the automated modeling of outdoor scenes. El

Hakim et al. [8] categorize two main techniques for this application: Image based modeling

(photogrammetry) and range based modeling. The former can be realized with off-the-

shelf and lightweight hardware such as monocular camera systems while the latter needs

bulky and often expensive laser scanners.

These different approaches have a strong influence on the data acquisition process as well

as the platform for automation. Akbarzadeh et al. [10] introduced a ground based data

collection system for automatic geo-registered 3D reconstruction from video. Kim and

Nevatia [5] present an image based approach for the automated 3D reconstruction of roof

tops, whereas Frueh and Zakhor [7] show the 3D city model generation by merging DSM

data created by airborne laser scans with facade laser scans and digital images at ground

level acquired by car.

In the photogrammetry community, Eisenbeiss [13] introduced a reconstruction system

that is closely related to ours. He also employs multi-view stereo algorithms for the

reconstruction of outdoor scenes. The data acquisition process is realized by a miniature

helicopter equipped with a high-end digital camera.

The research work described so far focuses on data acquisition systems and reconstruction

algorithms. The aspect of automated view planning for data acquisition is not addressed.

Scott et al. [9] give an overview of view planning approaches. They distinguish between

model-based and non-model-based methods where the former are of interest for this work.

Non-model based approaches explore objects without a priori knowledge on the object.

The view planning problem becomes an exploration problem with next-best views. Plan-

ning views on a priori known models leads to a coverage problem, the constraints are

given by the sensor properties (opening angle), sensor principle (stereo, laser) and desired

quality of the final model.

Finding an optimal viewpoint plan is an NP-complete problem [4]. Several researchers

proposed their solutions: Cowan [1] introduced a view planning approach for single view

inspection with constraints concerning spacial resolution, focus, coverage, and occlusion.

Tarabanis et al. [2] presented results of a vision inspection system with similar constraints.

Scott et al. [6] introduced a framework to formulate the next best view planning problem as

an integer programming problem and presented an algorithm with a registration constraint

for laser scanners.

Concerning the reconstruction workflow, Blaer et al. [12] introduced a similar procedure

as described in this paper. They addressed the joint problem of data acquisition and view
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planning for large scale sites and presented a mobile ground robot for an automated 3D

reconstruction by a laser scanner. Starting from a 2D map, viewpoints for the generation

of a rough 3D model are created. The resulting model is used for the viewpoint planning

of a second data acquisition process, the basis for the creation of a fine model.

3 Workflow and SGM

In contrast to ground based robots, flying robots have to consider all six degrees of freedom

within the reconstruction workflow.

3.1 Reconstruction workflow

Our method for 3D scene reconstruction can be divided in 5 steps:

1. Data acquisition for DSM calculation

2. DSM calculation

3. Viewpoint planning on the DSM

4. Data acquisition for 3D reconstruction

5. 3D reconstruction

In many situations, a low resolution DSM of the region of interest is already available

and only steps 3 to 5 are necessary. Otherwise, the data acquisition of step 1 can be

realized using a UAV. Viewpoints are chosen as a regularly spaced viewpoint grid across

the region of interest with a constant height above the ground and the camera pointing

straight downwards. Figure 1 depicts a sample viewpoint grid. It can be created either

by hand or by our view planning algorithm (Section 4) with a flat initial DSM. In step 2,

we employ the SGM algorithm (Section 3.2) for the calculation of the DSM. In step 3, the

DSM based viewpoint planning is again realized by our view planning algorithm. Next,

we use the calculated viewpoints for step 4 to acquire the data for the 3D reconstruction

by the SGM algorithm in step 5.

3.2 Multi-view stereo reconstruction by Semi Global Matching (SGM)

We employ the same workflow for each reconstruction from single shot images, as men-

tioned in the last Section.

We use a pre-calibrated camera and the bundler tool [11] for computing the relative extrin-

sic orientation of all images. The recorded GPS position is used afterwards, for scaling,

rotating and translating all camera positions so that the mean error to the correspond-

ing GPS positions is minimized. In this way, the relative orientations from bundler are

unchanged, but the whole model is transformed and geo-referenced.
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Figure 1: Viewpoint grid for the acquisition of a coarse DSM for viewpoint planning

We perform dense image matching by the Semi-Global Matching (SGM) method [14]. It

performs pixel-wise matching supported by a global smoothness constraint. The method is

computationally efficient and can match large images. Census has been used as matching

cost, because it has been found to be the most robust matching cost for images with

radiometric differences [15]. This is important, since the camera is not radiometrically

calibrated, image orientations are rather arbitrary and the camera is using auto-exposure.

Thus, the image radiometry can vary quite a lot.

All images with more than 50% overlap and with a relative orientation of 3-25 degrees

between optical axes are pairwise matched. All pixels of one image are matched to pixels of

the other image and vice versa, in order to enable a consistency check to filter out occlusions

and mismatches. If an image overlaps with more than one other image, multiple disparity

images are created. They are used for filling occlusions and for removing outliers by

selecting the median disparity for each pixel separately. This results in one disparity (i.e.

depth) image for each input image. Using the disparity images, all pixels are reconstructed

and fused either into a 2.5 D surface model or a full 3 D model, which is automatically

textured by the original images. The result is a textured, geo-referenced high resolution

model of the covered area.

4 View planning

The success of the mentioned reconstruction workflow depends strongly on the input im-

ages, which makes viewpoint planning important. Our planning algorithm follows the

generate and test paradigm by first calculating a set of viewpoints and then selecting a

suitable subset. The goal is to cover the full scene with an optimal number of views, based

on the prior model while considering the constraints implied by the multi-view stereo

reconstruction method:

1. Coverage constraint: Any object point that should be reconstructed in 3D has to be
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seen from at least two different camera views, which are referred to as C1 and C2.

2. Maximum angle constraint: The angle between two corresponding views C1 and C2

to an object point should not exceed a maximum angle of βmax.

3. Overlapping constraint: It must be possible to (indirectly) register all used pictures

to each other. In other words, a picture from a viewpoint C1 must have a certain

overlap with all neighboring pictures.

Two other aspects were considered during the development of the algorithm:

1. The quality of the SGM reconstruction rises with the number of overlapping images.

2. The in air camera placement by a multicopter is very inaccurate: The positioning

accuracy depends on the GPS quality and can easily vary in the range of meters.

We start with the generation stage of the algorithm, i.e. the calculation of a viewpoint:

4.1 Viewpoint calculation

We consider the cartesian space with its 6 degrees of freedom, 3 for translation pvp =

[px py pz]
T and 3 for rotation of the camera relative to an cartesian right handed inertial

world frame Ow as the viewpoint space V . We use an offset DSM to reduce V to a two

dimensional subspace N ⊂ V , the viewpoint search space.

We determine the viewpoint position pvp and the corresponding viewpoint direction n

by a coarse DSM model of the region of interest. The DSM is represented as a geo-

referenced TIFF image (GeoTiff). Our viewpoint calculation algorithm works directly on

the 2.5D DSM without converting it to a 3D representation. A 3D mesh representation

for example would increase the data size without any information gain. Even with data

reduction algorithms [16], the minimal size of the information representation of a DSM

can not be reached. Furthermore, operations like ray casts needed for visibility checks can

be implemented very fast on DSMs compared to 3D meshes.

For the calculation of pvp and n we create a spherical view hull with smooth surface normal

vectors. Figure 2 shows the DSM preprocessing. We start with a non-flat greyscale dilation

(f ⊕ b)(x) = sup
y∈E

[f(y) + b(x− y)] (1)

where f(x) is the DSM image function, sup the supremum function, E the grid space of

the DSM and b a structuring element, in our case a non-flat ball structuring element with

radius 2d. The result is a DSM with all convex edges brought down to a round figure with

radius 2d. In the second step a non-flat greyscale erosion,

(f 	 b)(x) = inf
y∈E

[f(y)− b(x− y)] (2)
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where inf is the infimum function and b a non-flat ball structuring element with radius d,

is applied. The result is a hull of the original DSM with a minimum distance of d to the

original DSM and all edges smoothed with a radius of d.

a) Original DSM in top-side view b) Original DSM in side view

c) Dilated DSM in top-side view d) Dilated DSM in side view

e) Dilated and eroded DSM in top-side view f) Dilated and eroded DSM in side view

Figure 2: Morphological operations on a DSM: The original DSM (top) is dilated with
a ball structuring element with radius 2d=60 m (middle). The resulting DSM is eroded
with a ball structuring element with radius d=30 m.

We take the surface hull as the two dimensional search space N defining pz by px and py

and assume that any point on the object surface has at least one corresponding point in

N . We approximate the surface normal by the surface normal of the hull, n. The hull

normal at point p is calculated by a principal component analyses [3]: We define a small

neighborhood of points with radius δ around p as

S = {y|y ∈ N and ‖y − p‖2 < δ} (3)

and calculate the covariance matrix C of S:

C =
∑

y∈S
(y − p)(y − p)T (4)

With v3 as the unit eigenvector corresponding to the smallest eigenvalue of C the hull

surface normal, n, is either v3 or −v3. The right direction can be determined with the
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knowledge that the surface normal has to point downwards as the calculation is done on a

2.5D DSM model. Figures 3.a) and 3.b) depict the original DSM with a subset of equally

spaced viewpoints of N .

The camera rotation from Ow to the viewpoint system Ovp is defined by the x,y and z

axis of Ovp, i.e. xvp, yvp and zvp and can be calculated from the unit surface normal, n.

The viewing direction of the camera zvp is equal to n. The camera on our flying platform

is mounted on a pan-tilt unit so that the camera x-axis, xvp is fixed in the horizontal

world plane with the gravity vector g as normal. Furthermore xvp is perpendicular to

zvp = [zx zy zz]
T so that

xvp =





√
1

z2x+z2y




zy

−zx
0


 if z2

x + z2
y 6= 0

xvp0 otherwise

(5)

For the case of a collinear normal and gravity vector a constant x direction xvp0 is chosen.

The camera y-axis is perpendicular to xvp and zvp:

yvp = zvp × xvp (6)

We pre-calculate all viewpoints for a given DSM before selecting a suitable subset in the

next step.

4.2 Viewpoint selection

Our viewpoint selection algorithm is a heuristic to find suitable viewpoints from the search

space N that fulfill the constraints introduced in the beginning of this Section. The

pseudo code of the algorithm is shown in table 1. Figure 3 depicts the search space N and

viewpoints selected by the algorithm.

After initialization of the viewpoint list, a viewpoint candidate vpc is selected from

VP(x,y), the list of possible viewpoints in N . The current viewpoint candidate is checked

for redundancy against all viewpoints in VPA, a set that includes all viewpoints of the

viewpoint list in a constant region around the current viewpoint candidate. If the current

viewpoint candidate is not redundant, it is inserted in the viewpoint list. A viewpoint

candidate is considered redundant if one of the following two conditions is not fulfilled:

• The projection of the center point of vpc into the unmodified DSM is visible in vp

with a virtual camera Cv and vice versa the projected center point of vp is visible in

vpc (coverage constraint). We assume that all DSM points that lie in between the

two projected camera center points are visible from vpc and vp.

• The angle between the viewpoint direction of vp and vpc is smaller than an angle

βv (maximum angle constraint).
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4. VIEW PLANNING

a) Top-side view with a subset of regularly spaced
viewpoints of N

b) Top-down view with a subset of regularly spaced
viewpoints of N

c) Top-side view with viewpoints picked out by the
selection algorithm

d) Top-down view with viewpoints picked out by the
selection algorithm

Figure 3: DSM of a building with a subset of regularly spaced viewpoints from the search
space N (top). After applying the selection algorithm a small subset of N builds the
actual viewpoint list (bottom).
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v p l i s t = {VP( 0 , 0 ) } ;
for x=1 to DSMX
for y=1 to DSMY

vpc = VP(x , y ) ;
i n s e r t = 1 ;
VPA = {VP(vx, vy)|VP(vx, vy) ∈ vplist, (vx, vy) ∈ R(x, y)}
foreach vp ∈ VPA

i f ( redundant ( vpc , vp , camv , βv ) )
i n s e r t = 0 ;
break ;

endif
endforeach
i f ( i n s e r t )

i n s e r t vpc in v p l i s t ;
endif

endfor
endfor

Table 1: Viewpoint selection algorithm

We introduced a virtual camera Cv. It has a smaller aperture angle α1 than the physical

camera as we have to guarantee that the redundancy check fails if the coverage criterion

could not be fulfilled for one of the viewpoints around the viewpoint candidate. Figure 4

depicts a viewpoint candidate and its neighbor. The physical aperture angle is α0 and the

modified aperture angle α1. With the assumption that the camera-object distance can be

approximated by the hull distance d we know the maximum curvature of the hull. With

the model resolution ∆x � d the virtual aperture angle α1 can be calculated from the

physical aperture angle α0 as:

α1 = atan
(y
d

)
≈ atan

(
tan(α0 −∆β)− ∆x

d

)
(7)

where ∆β ≈ ∆x
d . Analogously, the angle βv has to be decreased by the maximum possible

angle change ∆β between two neighboring viewpoints:

βv = βmax −∆β (8)

The region R(vx, vy) is defined as the area around the current viewpoint candidate with

viewpoints that can fulfill the coverage and the maximum angle constraint. R is a limited,

constant region so that our view planning heuristic has a complexity of O(A) where A =

DSMX ×DSMY , i.e. the DSM area of interest.
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Figure 4: Viewpoint candidate in N with a worst case neighbor with a maximal angle β
between the viewpoint directions. The physical camera view cones with aperture angle α1

are shown in dotted lines. The viewpoint distance, equivalent to the DSM resolution is
labeled ∆x.

5 Simulation and experiments

We tested our reconstruction method in simulations and real reconstructions of two dif-

ferent scenarios.

5.1 Scenario specification

In our first scenario we used the height map of an area of 146x125 m (resolution: 1 m)

including a newly constructed lab building on the DLR premises. To get a viewpoint plan

only for the building itself we removed the surrounding area from the DSM by hand. We

set the object distance d to 30 m which leads to an optimal reconstruction resolution of

23 mm with the used camera. Our algorithm calculated 165 viewpoints.

For the second scenario we planned viewpoints for an area of 274x326 m of a hillside in

the Alps. We used an available coarse DSM that was created with a resolution of 1 m

from pictures taken from an airplane. With an object distance of d = 60 m we reached a

reconstruction resolution of 47 mm with a total of 435 viewpoints.

5.2 Simulation

We determined matchable camera views for the calculated viewpoints in a simulation:

We defined a camera view area between d and dmax and considered a camera view C1

53



VIEW PLANNING FOR MULTI-VIEW STEREO 3D RECONSTRUCTION
USING AN AUTONOMOUS MULTICOPTER

Figure 5: Camera matches in scenario 1. All cameras that can be matched with each other
are connected by a green line.

Figure 6: Camera matches in scenario 2. All cameras that can be matched with each other
are connected by a green line.
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matchable with camera view C2 if at least 50% of the projected camera view area of C1

is visible in C2. Figure 5 and 6 depict camera matches for the viewpoints of the two test

scenarios. In flat areas of the DSM, the number of matchable views decreases whereas it

increases in areas with changing surface normals caused by the angle constraint. Table 2

summarizes the results of the simulation. We knew from reconstruction experiments with

viewpoint planning by hand that a mean camera overlap of around 80%, corresponding

to about 20 matchable views per viewpoint, gives excellent reconstruction results. The

simulated mean of matchable views is within this range.

Scenario 1 Scenario 2

Minimum matchable views 2 3
Maximum matchable views 35 36
Mean of matchable views 20.1 17.2

Table 2: Results of the overlap simulation:
Number of matchable views for scenario 1 and 2.

5.3 Flying plattform

The simulation phase was followed by real data acquisition. We employed a Falcon 8

octocopter from Ascending Technolgies as flying camera carrier. It has a maximum flight

time of 20 min and a payload of 500 g with a total weight of about 1.7 kg. The camera

is mounted on a pan-tilt unit. It can be turned by ±100 deg in pitch and ±30 deg in roll

direction. We use a Panasonic Lumix LX-3 digital camera with a 10.1 MPixel sensor for

our experiments. The octocopter is equipped with a GPS/IMU system and an electronic

compass. It can automatically fly to predefined way points where it can take a picture

with a defined camera orientation. The GPS coordinates are logged for all pictures. Figure

7 shows our flying camera platform.

Figure 7: Falcon 8 octocopter used as flying camera platform.
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5.4 Experiments

Since the octocopter has a maximum flight time of 20 min, it is desirable to minimize

the path length that is needed to visit the calculated viewpoints. To solve the Traveling

Salesman Problem, we sorted the viewpoints of scenario 1 and 2 by a Farthest-Insertion-

Heuristic.

The flight time of the data acquisition process for scenario 1 was about 25 min. The

reconstruction was performed with a resolution of 5 cm, instead of the optimal resolution

(23 mm) to compensate minor errors in the extrinsic orientation calculated by the bundler.

Figure 8.a) depicts the reconstructability of the DSM points in the region of interest.

The darkness of a point reflects the number of image pairs that could be used for depth

reconstruction. The results of the reconstruction are shown in Figure 8.b) and 9. Most

parts of the building could be reconstructed in high quality. In zoom view (Figure 9.d))

even foot steps on the rooftop are recognizable. In the back part of the building some

artifacts are visible. From the reconstructability map (figure 8.a)) it can be seen that in

the corresponding area (right) the building seems less densely imaged than on the left

side. However, the density of the waypoints looks equally distributed in both regions

(figure 3.d)). This means that some points of the building could not be reconstructed

properly and are interpolated by the SGM. From the building texture in figure 9.a) the

effect can be explained by missing features in continuous areas of snow in the backside of

the building.

a) Reconstructability map: The darker a pixel the
more image pairs were used for depth reconstruction.

b) Resulting DSM with a resolution of 5 cm.

Figure 8: Reconstructability map and resulting high resolution DSM of scenario 1.

The data acquisition process for scenario 2 took about 81 min. The reconstruction was

also performed with a resolution of 5 cm. Figure 10.a) depicts the reconstructability of
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a) Untextured 2.5D reconstruction overview. b) 2.5D reconstruction overview with texture.

c) Untextured 2.5D detailed reconstruction. d) 2.5D detailed reconstruction with texture.

Figure 9: Reconstruction result of scenario 1: A building on the DLR premises with a
resolution of 5 cm.
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the DSM points. The results of reconstruction are shown in Figure 10.b) and 11. As in

scenario 1, several images with continuous areas of snow couldn’t be registered properly to

each other and were therefore not used for reconstruction. The corresponding areas were

interpolated by the SGM.

The effect of images that are not used for reconstruction or could not be matched to each

other is equivalent to missing or badly placed viewpoints. Therefore, areas of interpolation

as in figure 11.a) also show the effect of wrongly chosen viewpoints on the reconstruction

quality.

a) Reconstructability map: The darker a pixel the
more image pairs were used for depth reconstruction.

b) Resulting DSM with a resolution of 5 cm.

Figure 10: Reconstructability map and resulting high resolution DSM of scenario 2.

After reconstruction, the models are still undetermined in 7 degrees of freedom, 6 for the

global position and orientation and 1 for the scale. We geo-referenced the models by a

least-square error optimization over the differences of the image positions calculated by

the bundler and the logged GPS coordinates. The relative camera position and orientation

within the model is not affected by this process. Table 3 summarizes the results of the

entire reconstruction process.

6 Conclusion

We presented a five step method for the reconstruction of outdoor scenes. We use a VTOL

UAV for the complete data acquisition process. Scene reconstruction is performed by a

multi-view stereo algorithm that works on single-shot images. This reconstruction method

allows using a light-weight digital consumer camera, which can be carried by a multicopter.
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a) Untextured 2.5D reconstruction overview with
surface interpolation caused by missing image fea-
tures in a continuous area of snow.

b) 2.5D reconstruction overview with texture.

c) Untextured 2.5D detailed reconstruction. d) 2.5D detailed reconstruction with texture.

e) Untextured 2.5D detailed reconstruction. f) 2.5D detailed reconstruction with texture.

Figure 11: Reconstruction result of scenario 2: A hillside in the alps with a resolution of
5 cm.
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Scenario 1 Scenario 2

Planned area 146x125 m 274x326 m
Viewpoint-Object distance 30 m 60 m
Maximum possible resolution 23 mm 47 mm
Number of viewpoints 165 435
Total length of optimized viewpoint path 1.4 km 6.8 km
Flight time 25 min 81 min
Reconstruction resolution 5 cm 5 cm
Mean of remaining position error after geo-referencing 0.9 m 1.45 m
Mean of matched views 15.5 18.5

Table 3: Summary of the reconstruction process.

Nevertheless, viewpoint locations have to be planned carefully.

Therefore, we introduced a view planning heuristic that considers constraints imposed by

a multi-view stereo reconstruction algorithm. The constraints are coverage, maximum

view angle and image overlap. Coarse DSMs are the basis for the view planning. If a

coarse DSM of the region of interest is already available our method is reduced to 3 steps.

We evaluated the planning algorithm in simulations and demonstrated the reconstruction

process with offline Semi Global Matching (SGM) on two different scenarios, a building

and a complex hillside in the Alps. Starting with coarse DSMs of 1 m we created dense,

textured 2.5D models with a resolution of 5 cm. The automation of the data acquisition

accelerated the whole reconstruction process.

Our method is scalable in respect to the desired reconstruction resolution. A reduction in

the viewpoint distance parameter increases the resulting model resolution.

Our viewpoint calculation algorithm is a heuristic and so the set of calculated viewpoints is

not the theoretical minimum number of viewpoints needed for reconstruction under ideal

conditions. Nevertheless, the minimum number of needed viewpoints is not the desirable

optimum as effects like missing image features can not be considered in the planning stage.

Furthermore, a certain viewpoint redundancy can compensate positioning inaccuracies and

increases the quality of the reconstruction by SGM. The relation between reconstruction

quality and viewpoint redundancy defining an optimality criterion for model based view

planning and reconstruction by SGM is an open research subject.

In the current version of the SGM reconstruction chain only 2.5D models can be created

fully automatic. Therefore, our view planning algorithm performs on 2.5D and not full

3D models of the region of interest. Consequently, the planning algorithm would not

consider complex structures on objects like concavities that are not visible from top view.

Nevertheless, this is not a limitation of the planning algorithm. The proposed model

smoothing by morphological operations can be adapted easily for 3D models as well as

the selection algorithm.

We are developing the SGM method towards automated reconstruction of full 3D models.

Only the last SGM processing step, i.e. the fusion of individual depth images into the
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final model, has to be changed. A further useful enhancement is the processing of high

resolution video data. By replacing the single-shot camera by a video-camera, the flight

time could be reduced drastically as the multicopter would not have to follow a stop and

go strategy for each viewpoint.

Nevertheless, model based view planning is always limited to the accuracy of the initial

model. The reconstruction process must be performed iteratively by repeating reconstruc-

tion and planning until the desired reconstruction accuracy is reached. With our method,

the model hull distance would have to be reduced in every iteration step which would also

lead to a strong increase in the number of images needed for reconstruction. The change

in image scaling prevents the reuse of images taken in a preceding reconstruction step.

Non model based online next best view planning dissolves the dependency on an initial

model and the need for iterations. The reconstruction would have to be realized in realtime

which is, at the moment, not possible onboard a multicopter due to its payload constraints.

An FPGA based realtime SGM processing board still has a weight of more than 1kg.

Online next best view planning is an exploration task. Considering the resulting need for

collision avoidance either further sensor equipment is needed or the introduced multi view

stereo camera system has to be replaced by an instant 3D sensor as for example a real

stereo system. In contrast to multi view stereo techniques, the camera base line is fixed

and therefore limits the depth range of the sensor. The multicopter would have to fly in a

low distance to the object of interest. The GPS signal that is used for positioning can be

strongly disturbed. We are therefore working on visual navigation and obstacle avoidance.
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Paper 2

Toward a fully autonomous uav:

Research platform for indoor and

outdoor urban search and rescue1

T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I.L. Grixa, F. Ruess,

M. Suppa, and D. Burschka

Abstract Urban Search and Rescue missions raise special requirements on robotic sys-

tems. Small aerial systems provide essential support to human task forces in situation

assessment and surveillance. As external infrastructure for navigation and communication

is usually not available, robotic systems must be able to operate autonomously. Limited

payload of small aerial systems poses a great challenge to the system design. The optimal

trade-off between flight performance, sensors and computing resources has to be found.

Communication to external computers cannot be guaranteed, therefore all processing and

decision making has to be done on-board. In this paper, we present a UAS system design

fulfilling these requirements. The components of our system are structured into groups to

encapsulate their functionality and interfaces. We use both laser and stereo vision odom-

etry to enable seamless indoor and outdoor navigation. The odometry is fused with an

Inertial Measurement Unit in an Extended Kalman Filter. Navigation is supported by

a module that recognizes known objects in the environment. A distributed computation

approach is adopted to address computational requirements of the used algorithms. The

capabilities of the system are validated in flight experiments, using a quadrotor.

1 c©2012 IEEE. Reprinted, with permission, from Robotics & Automation Magazine, IEEE 19.3 (2012),
pp. 46-56, DOI: 10.1109/MRA.2012.2206473
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TOWARD A FULLY AUTONOMOUS UAV: RESEARCH PLATFORM
FOR INDOOR AND OUTDOOR URBAN SEARCH AND RESCUE

1 Introduction

Civil and commercially oriented Unmanned Aerial Vehicle (UAV) missions range from

rather modestly structured tasks, such as remote sensing (e.g. wild-fire detection), to

highly complex problems including common security jobs or search and rescue missions

(SAR). Especially disaster search and urban rescue related missions are still a fairly de-

manding challenge due to their exceedingly variable nature. The mission planning has to

take a multitude of scenarios into account, considering arbitrary, unknown environments

and weather conditions. It becomes apparent that it is also not feasible to preconceive the

large number of unforeseeable events possibly occurring during the mission. In research,

certain types of search and rescue missions, in particular wilderness search and rescue [16,

11], have already successfully been mastered using UAV systems. However, to date persis-

tent performance of robotic systems operating in an urban environment is very challenging

even with a low degree of human intervention [8]. A stable broadband radio link cannot

be guaranteed in such environments, requiring a high level of autonomy of the systems.

The limited availability of computing resources and low-weight sensors operating in harsh

environments for mobile systems pose a great challenge to achieve autonomy.

3

1 2

5 6

4

7

Figure 1: Experimental platform based on the Ascending
Technologies Pelican quadrotor showing (1) laser scanner,
(2) mirrors, (3) stereo cameras, (4) a modular computation
stack, (5) wired ethernet connection, (6) XBee modem, and
(7) WLAN stick. One of the propellers is pointing down-
wards to improve the view of a front-facing camera (not
depicted).

Our research goal is to de-

velop robotic systems that

are capable of accomplish-

ing a variety of mixed-

initiative missions fully au-

tonomously. Completely

autonomous execution of

Urban Search and Rescue

(USAR) missions poses re-

quirements on the robotic

systems operating therein.

The variety of such mis-

sions requires the robots

to be modular and flex-

ible in terms of sensor

and planning capabilities.

The robots have to oper-

ate in unstructured indoor

and outdoor environments,

such as collapsed buildings

or gorges. Navigation sys-

tems therefore have to work

without external aids, such as GPS, since their availability cannot be guaranteed. Flying

systems additionally have to provide robust flight capabilities due to changing local wind
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conditions in such environments. A key feature to achieving full autonomy in urban dis-

aster areas is on-board processing and decision making. Search assignments also require

mission-specific recognition capabilities on the robots.

As a first step, we have developed a modular and extensible software framework for au-

tonomous UAVs operating in USAR missions. The framework enables a parallel and

independent development of modules that address individual challenges of such missions.

It features reliable flight and navigational behaviour in outdoor and indoor environments,

and permits execution of higher level functions such as perception of objects and persons,

failsafe operation and online mission planning. The framework is implemented and tested

on a commercial quadrotor platform. A quadrotor has been chosen because of its favorable

rotor size and safety in comparison to a conventional small-size helicopter. The platform

has been extended in terms of sensor, computer and communication hardware (Figure 1).

Similar platforms have already been developed by other researchers. The platforms are

tailored to solve a Simultaneous Localization and Mapping (SLAM) problem. This prob-

lem requires a lot of computational power, which is not readily available on flying systems.

Therefore the authors in [14, 13] send laser scanner data to a ground station for process-

ing. Pose estimation and high-level tasks are done on the ground station, whereas control

and stabilization of the platform is done on the quadrotor. More recently, through op-

timization of algorithms and faster processors, pose estimation and planning has been

done onboard. Notable implementations are laser-based [18] for indoor environments and

monocular visual SLAM [17] for both indoor and outdoor environments. Pose estimate of

the SLAM solution is commonly fused with Inertial Measurement Unit (IMU) measure-

ments in an Extended Kalman Filter (EKF) to obtain a full state estimate, which is then

used for control.

Our approach differs from previous work in three major ways. First, instead of one sensor,

we rely on two complementary exteroceptive sensors. This enables flight in both indoor

and outdoor environments. As in state of the art systems, the respective odometry is

fused with the IMU using an EKF. Second, no geometric map is built. Instead, we correct

for drift errors by recognizing known landmarks in the environment. This lends itself to

navigation in larger environments, as memory requirements are smaller when compared

to SLAM. In order to guarantee our robots’ autonomy, all processing is done onboard,

akin to most recent systems. There are many computationally intensive tasks which need

to run simultaneously – stereo processing, visual odometry, laser odometry and computer

vision. In contrast to state of the art approaches, we adopt a distributed computation

platform consisting of several onboard boards instead of one.

The components of our framework are inspired by the IMAV [20] indoor exploration chal-

lenge. Objective of the challenge is to fly into a house of known shape and dimensions,

detect objects and return outside to land on a defined pattern. Several problems found in

USAR missions have to be addressed.
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Figure 2: The house used for the experiments, located the
DLR outdoor testbed for mobile robots. It corresponds in
shape and dimensions to the house used for the IMAV explo-
ration challenge. Provided are both an indoor environment,
suitable for navigation using a laser scanner, and an outdoor
environment, which is suitable for vision-based navigation.

The UAV system must

firstly find the house, as it

starts behind a wall with-

out direct sight of the house.

Once found, precise de-

tection of and navigation

through either the door,

window or chimney of the

house is required. Pattern

recognition is used for ob-

ject detection and landing

zone identification. Exter-

nal aids, such as GPS or a

motion tracking system, are

not available. Adding arti-

ficial features to the envi-

ronment is penalized. Al-

though not all difficulties of

an USAR mission are ad-

dressed, the navigation, autonomous decision making and object recognition challenges

are present. The size of our 70 cm wide platform in relation to the 1 m wide passages into

the house poses an additional challenge. Our system architecture is explained in terms of

the aforementioned mission.

Current approaches which try to tackle this kind of challenge are using a laser scanner

[13] or monocular vision [15]. The processing in these approaches was done offboard.

For the vision system, artificial features had to be added to the indoor environment. Our

system will use the best odometry sensor in a given situation. Systems have autonomously

flown into the house through the window and doors, however no system has yet flown the

complete mission autonomously.

In this paper, we first present the system architecture and existing software modules in

Section 2. The hardware design and infrastructure enabling the presented architecture is

described in Section 3. Functionality of the experimental system is shown through a flight

experiment in Section 4. Finally, future research directions are indicated.

2 Software framework

Our modular framework consists of intercommunicating components, enabling easy ex-

change of task related functionality and exchangeability of components. To further define

their scope, the components of our system are subdivided considering their degree of

autonomy and cognitive functionality as depicted in Figure 3.

Concerning the level of autonomy, the system is structured into low level and high level
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Figure 3: System architecture and software deployment of components. In addition to
being organized into cognitive layers, the system components are partitioned according to
their autonomy level as well as cognitive functionality.

components. The low-level components are responsible for the data fusion and flight

control of the quadrotor. They allow for reliable autonomous flight and navigation, shared

through an abstract and unified interface between humans and high level components. As

the stability of the system depends on these components, a hard real-time system with a

high execution rate is required. The high level components provide situational awareness

and mission planning functionality with a representation of the environment. Status of

the system, the mission and the environment are monitored and commands are issued

accordingly. They take over tasks usually done by a human operator.

Furthermore, the components are grouped into perception, cognition and action layers [10,

4] as depicted in Figure 3. The perception layer includes all tasks concerning acquisition

and processing of sensor data. Therein, the data fusion component fuses the propriocep-

tive and exteroceptive sensor data. Mission-dependent recognition of world features, such

as persons or interesting objects, is done in the recognition module. World representation

as well as planning and decision making functionalities are realized in the cognition layer.

Lastly, the action layer is involved in stabilizing and moving the UAV in the desired man-

ner. Such categorization allows for a clear definition of the interfaces between components
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and the minimum required set of component functionalities. The realization of this struc-

ture in our experimental system can be presented more clearly when grouped by the layer

subdivision.

2.1 Perception

The UAV should be able to fly in structured indoor environments as well as outdoors.

Indoor environments mostly consist of clearly defined vertical structures (walls) that can

be detected by a laser scanner. However, poor lighting conditions and low number of

environment features make indoor environments unsuitable for a camera-based odometry

system. Conversely, outdoor environments lack clear structures. Sunlit environments con-

tain light in part of the spectrum that coincides with that used by infrared laser scanners,

disturbing the measurements. This makes low-powered light-weight laser scanners, which

are commonly employed on flying systems, unsuitable for such environments. Outdoor

environments have many natural features and good lighting contitions, which makes them

well suited for visual odometry systems. In such environments, previous camera images

can be easily recognized, so the camera can be used for loop closure.

In our approach, we use both laser and stereo odometry for pose estimation. The com-

bination of two odometry approaches allows to compensate drawbacks of a single sensor.

Moreover, the estimation of all 6DoF states can be done using only one filter. This differs

from other approaches, where either laser odometry [18] or monocular visual odometry

[17] is used for pose estimation.

The stereo camera in our system points downwards to ensure that the odometry is available

in outdoor areas, but also to enable detection of a target from above. Drift errors can be

compensated by using keyframes in the visual odometry system, as well as recognition of

known landmarks in a topological map. For the indoor exploration mission, the map is

fixed and predefined, as known landmarks include the window, door and chimney. Their

exact position is known with respect to the house, so they can be used to correct drift

errors. These are detected and tracked using front-facing and upward-facing cameras (not

shown in Figure 1), respectively. Two separate cameras provide more stable tracking than

a pan-tilt unit with one camera of the same weight.

Odometry

Laser odometry The laser odometry system is based on Censi’s Canonical Scan Matcher

[12]. The laser scan is projected to the ground plane in the Laser Transform component,

using attitude information from the Data Fusion component (Figure 3). The projected

data is only valid for scan matching if the scanned environment objects contain vertical

planes. This assumption is valid for most indoor environments. The algorithm uses an

iterative closest point (ICP) variant to compute 3D delta movement information (change

in (x, y) position and yaw angle) between two points in time and the corresponding mea-

surement covariance.
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Visual odometry A correlation-based algorithm [6, 9] is used to obtain a disparity

image from two time-synchronized camera images in the stereo processing component.

Based on this 3D information, the 6D delta position and orientation between two points

in time as well as the corresponding measurement covariance are calculated [5]. The

algorithm supports a key frame buffer so that the delta measurement refers not just to

the last acquired image but to the image in the buffer that gives the delta measurement

with the smallest absolute covariance.

As shown in the experiment in Section 4, the estimated variances for laser and camera

odometry are a good indicator to classify the environment into indoor and outdoor. In

the variance calculation for each sensor it is assumed that there are no outliers in the

measurement. During experiments we have found that, under bad sensor conditions,

outliers in the measurements occured. These could not be detected by a outlier rejection

mechanism using Mahalanobis distance. Therefore, the measurement variance is invalid.

Fusing these measurements would lead to unpredictable behavior of the filter. Because of

this, we switch to the sensor that works well in a specific environment. We assume that the

sensor with the smallest measurement variance is best suited in the current environment

and is therefore used for fusion.

Data fusion

The proprioceptive sensor information from the IMU and the exteroceptive odometry

information has to be fused to get the current system state estimate. There are two main

challenges.

First, the odometry data gives only relative position and orientation information. Second,

the odometry data is time delayed due to measurement and data processing time. Precise

times of measurement are obtained through hardware synchronization triggers. The total

delay of the laser odometry in the experimental system is about 100 ms with an update

frequency of 10 Hz, and for the visual odometry the delay is more than 300 ms, with

a frequency of 3 Hz. Therefore, the measurement refers to a state in the past. As the

estimate is used to control the UAV, and the quadrotor dynamics are fast compared to the

measurement delays, the latter have to be considered in the data fusion algorithm. This

is realized using an indirect feedback Kalman Filter with state augmentation [7] using two

state vectors.

The direct state vector includes position, velocity and attitude (as quaternion) in the

world frame and the biases of the acceleration and gyro sensors in the body frame (∈
R16). Quaternions are used to circumvent the gimbal lock problem that might occur when

using minimal attitude representations. The direct state is calculated by the strapdown

algorithm.

The main filter state vector includes the errors in position, velocity and orientation in

the world frame and the IMU acceleration and gyro bias errors in the system body frame

(∈ R15). Since we assume small errors in the filter, the small angle approximation is
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employed to efficiently represent the attitude. Hence, the scalar part of the quaternion can

be omitted, as it is implicitly defined to 1. This also simplifies modeling of the attitude

sensor noise. A hardware synchronization signal of the laser and the camera system

signaling the start of a data acquisition sequence is directly registered by the real time

system running the filter algorithm. At every sync trigger a sub-state including position

and orientation of the current direct state is saved and augmented to the main filter state.

The delayed delta measurement includes two time stamps for each measurement. These

time stamps are used to find the corresponding states within the state vector and construct

a suitable measurement matrix referencing the selected states.

The absolute position and orientation of the system is unobservable with only delta mea-

surements, which is reflected in an unbounded covariance for these states. Therefore

further absolute measurements are included:

• The height to ground is measured by laser beams reflected to the ground. Height

jumps caused by objects lying on the ground are detected and compensated.

• Measurement of the gravity vector is used as pseudo absolute measurement for roll

and pitch.

• Measurements with respect to known landmarks, if available, are used to correct

position drift errors.

If absolute position measurements arrive only in the range of minutes there might be

small jumps in the position estimate. Nevertheless, these jumps do not cause jumps in the

velocity estimate as its covariance is bounded by the regular delta position measurements.

This is an important feature for the underlying UAV controller, as jumps in the velocity

prediction can significantly degrade flight performance.

Recognition

Identifying and locating persons, animals or objects (e.g. landmarks, signs or landing

zone) is a central issue in USAR missions. The conceptual idea behind the recognition

module is to offer related object detection and recognition services. The module acts as

an interface between the mission planner, environment (cognition) and the sensors. Trig-

gered by the mission planner, it interprets sensory information and returns semantic and

location information respectively. The recognition module supports absolute localization

in a sense that it detects known objects and estimates their relative positions and heading

with respect to the UAV frame. It leverages typical object recognition techniques in com-

puter vision and 3D point-cloud processing. Three demonstrator recognizers are currently

implemented: a pattern recognizer for 2D images, a house detector based on stereo vision

and a laser object detector.

The pattern recognizer is typically used when searching a marked landing zone. The

pattern is a gray-value image or drawing of the landing zone. Together with a description

of its size, the pattern matcher checks for similar occurrences in camera images in a more
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Figure 4: Low-level state machine implemented in the controller component.

efficient way than a common template matching approach. The first steps try to reduce the

problem size by segmenting the image data. A corner detector is applied to the template

image in order to obtain interesting points. Small patches are then generated around these

points and stored in a database. A simple operation to calculate a descriptor of the patches

based on orientation histograms is used [2]. Subsequently, the descriptors are compared

pairwise using Normalized Cross-Correlation (NCC), sorted in an arbitrary number of

classes, and a Bayes classifier is learned. This results in a sequence of descriptors which

in turn define the pattern.

Specifically for the IMAV challenge we have developed a house detector and laser object

detector. The house detector uses disparity images. It is used to detect the house from

above, since the cameras are pointing downward. A combination of principal component

analysis (PCA) and an algorithm similar to the iterative closest point algorithm (ICP) is

used to fit the shape of a model of the house into the point cloud. In addition, parts of

the house (e.g. chimney) are identified in a monocular image of the stereo pair, and fused

with results of the point cloud fitting. The laser object detector is able to detect corners

in a room, walls, and windows.

2.2 Action

The controller component implements a position controller running at 100 Hz on the

real-time system. Control inputs are attitude commands that are sent to the Autopilot,

which implements a PD attitude controller in a 1 kHz control loop. Purpose of the

position controller is to follow a reference position, velocity and acceleration, using the data

fusion’s pose estimate. The position controller is a full-state feedback controller that uses

a combination of integral sliding mode [3] and time-delay disturbance estimation [1]. The

integral action provides a zero steady-state error, whereas the disturbance estimator uses
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Table 1: Activation of system components depending on low-level system state

System state Fusion Control Waypoints

Preparation - - -
Powered off • - -
Landed • - -
Taking off • • -
Flying • • •
Landing • • -
Emergency landing - • -

accelerometer measurements and previous control inputs to respond to disturbances faster.

This combination provides sufficient robustness to fly in indoor and outdoor environments

and through narrow passages.

In-flight switching and configuration of position controller implementations simplifies their

testing. The position between two waypoints is interpolated as a straight line in Cartesian

space using a constant velocity. This interpolated position is run through a linear filter

that represents the quadrotor’s translational dynamics to generate smooth reference tra-

jectories. Using this method, it is easy to configure the transient behaviour of the vehicle’s

position by setting the interpolation velocity and filter parameters. Such configurations

are stored as flight modes (e.g. fast, careful, accurate by decreasing velocity). A uni-

fied interface allows flight modes to be set for each path segment individually. High-level

components can set the flight mode according to the current mission task.

A state machine in the low-level system is implemented in the controller as depicted in

Figure 4, and defines the activation of components based on the readiness level of the

system, as summarized in Table 1. It signals availability of low-level abilities to high-level

components. The system starts in the preparation state, during which data fusion and

position control are disabled, so the quadrotor can be moved freely to a starting position.

This is useful for initialization of the system before a mission, as movement will not affect

the state estimate. It is assumed that the quadrotor is stationary in the powered off state,

so the data fusion is initialized and state estimation starts. Upon engaging the motors, the

system is in the powered on state and the sensor data fusion assumes that the quadrotor

is moving. The initial state therein is landed, which assumes that the quadrotor is still

on the ground. The take off command activates the position control feedback loop, while

commanding the quadrotor to hover at a predefined height above the starting location.

During the ascend, the system is in the transitional taking off state, which can be canceled

with the land command. Once the hover point is reached with defined accuracy, the system

is automatically transitioned into the nominal fault-free flying state. Paths can only be

flown in this state. Landing occurs through the transitional landing state analogously to

taking off. The transitional states ensure that corresponding physical changes have been

safely completed before allowing any other actions to be taken. This abstraction greatly

simplifies experiments, since components are activated and initialized as needed.
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Figure 5: Example of a mission control task – leave house by window. The task is a state
machine comprised of atomic states called abilities. Tasks are fixed and mission specific.

To ensure a fall back strategy in case of fatal errors during flight, a fail-safe state is

implemented in which the system performs an emergency landing routine. For example,

the system enters this state automatically if a data fusion divergence has been detected.

This shall protect the system and minimize the possibility of harm to humans or the

platform itself. In such an event, fused data is not used for position control – instead, only

the raw altitude measurement from the laser scanner is used for descend, while the vertical

velocity is obtained by using an α-β filter of the measured altitude. Attitude stabilization

is active through the autopilot, and does not depend on the fusion information. In this

state, the quadrotor’s horizontal position will drift, but more importantly, the quadrotor

will not crash to the ground, and it is easier for a safety pilot to take the command over.

This method of descend is safer than simply reducing the thrust or turning the motors

off. It has proven useful when during experiments when testing new components.
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2.3 Cognition

Completely autonomous execution of USAR missions requires interpretation of the robot’s

environment and the performing of actions accordingly. To achieve that, the robot requires

a representation of the world, as well as path planning and decision making capability.

In our framework, these are implemented in the cognition layer. Its modularity allows

for implementation of different algorithms through the use of the available interfaces, and

choosing the combination best suited for a particular mission.

In context of the exploration challenge, the current implementation of the environment

component contains a world model and objects therein as a topological map. If a known

object is detected with a high confidence by the recognition component, drift errors can

be corrected by sending the relative location of the object to the data fusion. The mission

control component provides autonomous mission execution through a hierarchical state

machine comprised of tasks. Abilities are atomic states of each task. They represent basic

functionalities or actions provided by other system components, and can be invoked with

parameters.

For example, the FlyTo ability invokes the path planning component which uses Envi-

ronment information to find a list of waypoints from the current position to the desired

topological pose while avoiding obstacles and dangerous zones. Together with the speci-

fied flight mode, the determined path is then sent to the controller for execution, i.e. the

plan is static while the ability is active. Once the last waypoint is reached with sufficient

accuracy, a transition is triggered.

We will illustrate this by the Leave house by window task, depicted in Figure 5. The

quadrotor first flies to a window position that is stored in a map. Once this position is

reached, a window detector tries to determine the window position more precisely using

vision and thereafter slowly approaches it. If successful, the UAV flies to the determined

position.

At this point, visual servoing starts. The position determined by the window tracker is

continuously sent to the controller. The UAV slowly flies through the window midpoint

while the window is visible. Once the other side of the window is reached, the task

is finished. Window detection and tracking services are provided by the Recognition

module. If the window cannot be detected precisely, the FindPositionIndoor fall back

task is invoked. This determines the quadrotor position in relation to the house. In the

case of too many detection or tracking failures, the task exits to a fall back task, like

leaving the house through the door.

3 Hardware and infrastructure

Due to high payload capacity, the Ascending Technologies Pelican quadrotor was chosen

as the flight platform, which is shown in Figure 1. With a total weight of 2.05 kg, our

system hovers at approximately 70% of the quadrotor’s maximum thrust, leaving a con-
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Table 2: Hardware components of the experimental system

Component Hardware

Quadrotor AscTec Pelican
Atom board 1.6 GHz Intel Atom, 1 GB DDR2
Gumstix boards ARM Cortex-A8, 720 MHz, 512 MB RAM
IMU, accelerometer Memsic MXR9500M
IMU, gyroscope Analog Devices ADXRS610
Laser Hokuyo UTM-30LX, 30m, 270◦ scanning range
Cameras PointGrey Firefly FMVU-03MTM/C-CS
XBee XBee 2.4GHz Radio Modem
WLAN Light weight USB module, max 150 Mb/s
Switch 100MBit, 8 Port Switch

Atom

Gumstix RTLinux

Gumstix Linux 1

Gumstix Linux 2

Laser

Cam L

Cam R

Autopilot

Cam up

Cam front
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Figure 6: On-board distributed computation architecture and sensor communication.

trol reserve that is only sufficient for relatively slow maneuvers. Maximum flight time

is approximately 10 minutes with one accumulator. The used hardware components are

listed in Table 2. The most notable difference to similar systems is the time-synchronized

modular computation stack, connected through ethernet.

A Hokuyo UTM-30LX laser scanner and PointGrey Firefly cameras are used as exterocep-

tive sensors via USB, connected to different computers to parallelize the data acquisition

process.

The onboard computational hardware consists of one CoreExpress Atom board, three

Gumstix Overo Tide boards and an ethernet switch, as shown in Figure 6. The Atom board

is used for stereo processing because of high computational requirements. Image processing

and cognition tasks are executed on dedicated Gumstix boards. If more computational

power is required, computers can be added to the system without changes in the system

architecture.

The time-critical strapdown, data fusion and control tasks run on the real-time system. It

is an Ubuntu Linux with an RT-patched kernel, and is connected to the Autopilot which

also provides the IMU. A high IMU poll rate is required for the strapdown algorithm,

therefore I2C communication with the autopilot is running at 400 kHz. The resulting
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a) Modular computation stack b) 8-port fast ethernet switch

Figure 7: Detail of avionics hardware components.

bandwidth allows IMU data polling at 200 Hz and attitude command sending from the

position controller at 100 Hz. All remaining Gumstix computers are running latency-

tolerant high-level tasks such as image processing and mission control on an Ubuntu Linux

operating system.

An 8-port fast-ethernet switch is used for high-bandwidth onboard communication be-

tween the computing hardware, shown in Figure 7. Ethernet has been chosen because

of well-established standard protocols, low-latency communication and readily available

middleware. Screwable GIGCON connectors provide vibration-resistant connections of

the ethernet cables. An external data connection to the system is possible through wired

ethernet, WLAN, XBee modem, and USB. WLAN is made possible through a tiny USB

stick connected to the Atom computer with a maximum bandwith of 150 MBit/s. The

Ubuntu Linux on the Atom processor runs a software bridge where incoming connections

from WLAN are routed to the internal onboard network. A slower and more reliable con-

nection is provided by the XBee modem connected to a serial port of the Atom computer.

Lastly, each of the Gumstix computers provides a serial terminal interface over USB, used

only when the system is not flying.

The distributed approach of splitting tasks among multiple computers requires a suit-

able middleware to enable communication between them. Our software framework poses

the following requirements: scalability and support for distributed nodes; clock synchro-

nisation; flexible data formats and API; small footprint (usable for embedded systems);

suitability for robotic applications and software. As a result of the evaluation of differ-

ent frameworks and middlewares, Robot Operating System (ROS) was chosen as most

suitable, although it lacks clock synchronisation and real-time communication due to its

design.

All real-time critical tasks run as threads in a single process (nodelet), so they communicate

through shared memory. A good example is the data flow from IMU to Data Fusion to

Controller to Autopilot as can be seen in Figure 3. This zero copy transport approach
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Figure 8: Flown path estimated in the experiment. The dashed red line shows the reference
trajectory, while the solid line shows the estimated path. The house outline is shown
in gray. Locations where switching between visual and laser odometry occurs are also
indicated.

is also used to reduce communication overhead where large amounts of sensor data are

shared among software modules.

An open-source implementation of PTPd2 (Precision Time Protocol Daemon) is used for

time synchronization between the computers. Low data bandwidth and a synchronisation

rate of 4 Hz are sufficient to maintain an average deviation of system clocks well below

500µs. The Atom board serves as master clock, and all other computers are configured as

slave clocks. On all computers the PTPd daemon runs with a high real-time priority to

keep operating system scheduling latency as short as possible.

Deployment of compiled nodes and configuration files is done from external development

computers using an enhanced ROS build workflow which invokes rsync for fast data syn-

chronisation to the research platform over ethernet or WLAN. ROS launch files are used

to run and configure nodes across all computers with only one command.

4 Experimental results

A flight experiment was conducted to show the effectiveness of using two sensing paradigms.

Figure 8 shows the estimated path flown inside and outside the experimental facility (de-

picted in Figure 2). Figure 9 shows the reference and estimated system states as well

as absolute covariances of the two odometries. Time instants when the system switches

between visual and laser odometry are marked on the time axis. Due to practical difficul-

ties in outdoor measurements, no ground truth is provided. A rectangular path around

the house was chosen because it was clear of ground obstacles. The quadrotor has been

yawing during the flight so that the laser scan points toward the house.

The quadrotor starts inside the house using laser odometry. Visual odometry is not
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upper plot shows the reference position (xd, yd, zd), estimated position (x̂, ŷ, ẑ) and raw
laser height measurement (zm). The middle plot shows the reference velocity (ẋd, ẏd, żd)
and estimated velocity (ˆ̇x, ˆ̇y, ˆ̇z). The bottom plot shows the magnitude of laser and visual
odometry covariances. Also shown on the time axis are indicators when the system has
switched to visual (V ) or laser (L) odometry. The covariance plot goes out of scope when
a particular odometry is unavailable or too imprecise.

available because the cameras are too close to the ground and so there is not enough

overlapping in the images. At 7.5 s, during autonomous take-off, when the quadrotor is

at 68 cm altitude, the depth image becomes available and the covariance of the visual

odometry becomes smaller than that of laser odometry. Therefore, the system switches to

visual odometry.

Shortly after, the system is commanded to fly outside. At 21 s, visual odometry becomes

unavailable as indicated on the out-of-axis covariance on Figure 9. This is caused at first

by motion blur when the quadrotor starts moving in the weak lighting conditions in the

house. The system automatically switches to laser odometry. During flight through the

1 m wide window, a jump in the raw laser height measurement can be seen due to flying

above the 20 cm wide wall. The jump is detected by the data fusion and a constant

altitude is kept. The vertical velocity is also unaffected, so the vehicle passes smoothly

through the window. The visual odometry is still unavailable as the window pane is too

close to the cameras.

When the quadrotor is outside, the cameras need to adjust their exposure time, so visual
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odometry is again available at approximately 1 m behind the window. It is clearly visible

that the covariance of the laser odometry outdoors is very large compared to indoors, due

to less valid laser measurements. Therefore, only visual odometry is used for the outdoor

flight.

During autonomous landing, the disparity image becomes unavailable under 60 cm of

altitude. This is indicated by the high covariance of the visual odometry. The system

switches to laser odometry.

The reference velocity and position are tracked accordingly to the estimated values. The

position control error with respect to the estimated states is under 20 cm in both indoor

and outdoor environments.

5 Conclusion and future work

We introduced a modular and extensible software and hardware framework for the au-

tonomous execution of USAR missions using aerial robots. An implementation of the

framework on an experimental quadrotor system has been presented. The implemented

computation and communication hardware enables the simultaneous execution of several

computationally demanding tasks, including navigation and computer vision. Further-

more, the hardware can be easily expanded to provide more on-board computation power

if required. Our data fusion enables the seamless use of different sensing paradigms with

delayed information on a highly dynamic quadrotor vehicle. Its effectiveness is shown

by an autonomous flight from an indoor to an outdoor environment through a 1 m wide

window, motivated by an exploration mission to enter and leave a building.

Currently, the system cannot automatically avoid obstacles. Therefore, reactive collision

avoidance schemes will be implemented on the low-level system. This requires the further

development of object recognition and scene interpretation on resource-limited systems.

As resources are limited, merely a subset of tasks can be fulfilled, therefore we will focus

on the elaboration of these tasks.

Our future work also includes miniaturization of the system, mainly through weight re-

duction of the sensing equipment. For this reason, the use of other sensors such as omnidi-

rectional cameras and sonar will be investigated. Instead of stereo cameras, the Microsoft

Kinect is also a viable sensor for obtaining depth images. However, since it uses artificial

infrared lighting, it is only suitable for indoor applications.

In USAR missions it might be necessary to fly to globally defined positions. This capa-

bility will be achieved by integrating GPS into the data fusion. We will also address the

cooperation with multiple mobile and ground robots as well as human interfaces to a team

of robots. Currently, our fusion system is based on local navigation, yet the navigation

will be improved by having higher level position information, e.g. by using a topological

map. In this way, the system is enabled to navigate through large environments on a

strongly hardware limited system.

Supplementary information about the DLR multicopters can be found online [19].
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Paper 3

Autonomous Vision-based Micro

Air Vehicle for Indoor and

Outdoor Navigation1

Korbinian Schmid, Philipp Lutz, Teodor Tomic, Elmar Mair, and Heiko Hirschmüller

Abstract Micro Air Vehicles (MAVs) have become very popular in recent years. Au-

tonomous navigation of such systems plays an important role in many industrial appli-

cations as well as in search and rescue (SAR) scenarios. We present a quadrotor that

performs autonomous navigation in complex indoor and outdoor environments. An op-

erator selects target positions in the on-board map and the system autonomously plans

an obstacle free path and flies to these locations. An on-board stereo camera and Inertial

Measurement Unit (IMU) are the only sensors. The system is independent of external

navigation aids like GPS. No assumptions are made about the structure of the unknown

environment. All navigation tasks are implemented on-board the system. A wireless con-

nection is only used for sending images and a 3D map to the operator and to receive target

locations. We discuss the hardware and software setup of the system in detail. Highlights

of the implementation are the FPGA based dense stereo matching of 0.5 Mpixel images

at a rate of 14.6 Hz using Semi-Global Matching, locally drift free visual odometry with

key frames and sensor data fusion with compensation of measurement delays of 220 ms.

We show the robustness of the approach in simulations and experiments with ground

truth. We present the results of a complex, autonomous indoor/outdoor flight and the

exploration of a coal mine with obstacle avoidance and 3D mapping.

1 c©2014 Wiley Periodicals, Inc. Reprinted, with permission, from Journal of Field Robotics 31.4 (2014),
pp. 537-570, DOI: 10.1002/rob.21506, View this article online at wileyonlinelibrary.com
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1 Introduction

In recent years, MAVs have found their way from research laboratories into many civil

applications. Considering civil markets, there is a wide range of available MAVs. Many

low budget platforms for the consumer market already exist and many more applications

of MAVs for industrial purposes can be expected in the coming decades.

Figure 1: Experimental quadrotor platform for autonomous,
vision based indoor/outdoor exploration.

MAVs can also be useful

tools in disaster manage-

ment and search and res-

cue scenarios (SAR). Af-

ter the Fukushima Daiichi

nuclear disaster in March

2011, MAVs were used to

explore the site. Fire fight-

ers employ MAVs to get

an overview of fire loca-

tions. In mountain rescue,

the time to find missing per-

sons or casualties in danger-

ous areas like avalanche re-

gions could be reduced by

using flying platforms. Additionally, MAVs could serve as mobile radio relays in regions

with missing or destroyed communication infrastructure. Thinking about teams of robots

for SAR missions, MAVs can greatly enhance the abilities of ground robots. In such mis-

sions, ground robots could realize energy efficient transportation and ground manipulation

while MAVs mainly cover the task of exploration.

Most MAVs are directly controlled by pilots. However, manual control requires highly

trained personnel and reduces the area of application. A pilot using direct line of sight

can not fly inside houses or behind obstacles. Flying via First Person View (FPV) requires

a stable, low latency, high bandwidth wireless video link which is difficult to guarantee,

especially inside buildings. To overcome these limitations, some (autonomous) functional-

ity has to be realized on-board the system. This includes on-board control, environment

perception, collision avoidance, environment modeling and path planning. With this func-

tionality, the MAV is able to navigate autonomously even in unknown, cluttered, GPS-

denied environments. The operator can inspect regions of interest and interact with the

system via a low bandwidth radio link, without hard constraints on the operator reaction

time or the radio link latency. If the radio link fails, the system can autonomously return

to a recovery area or its starting point.

Nevertheless, achieving this level of autonomy is a challenging task. Most vertical take-off

and landing (VTOL) MAVs are inherently unstable and highly dynamic. Even though

orientation can be stabilized by proprioceptive sensors like IMUs, information from ex-
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teroceptive sensors like cameras is needed to stabilize position. This information is also

essential for all other navigation tasks. In contrast to ground robots, flying robots have to

navigate in full 3D using on-board sensor information only. Processing high amounts of

exteroceptive data using limited computational resources introduces measurement delays.

Another challenge is the compensation of these delays if used for control. Additionally,

the system has to be robust against failures of the exteroceptive sensors, for example in

case of missing environment features. For flying close to humans (i.e. in SAR scenarios)

or inside buildings, MAVs have to be safe for their environment. Freely spinning rotors

should be protected and small to limit their inertia. Such constraints result in a significant

payload limitation and hence, a strong restriction of computational resources. It is obvious

that the demands of the mentioned applications are highly conflicting with the available

system resources.

Considering these limitations and application requirements, suitable exteroceptive sensors

have to be found. Depth sensors provide ideal input for obstacle avoidance, environmental

modeling as well as ego-motion estimation. While laser scanners or Time of Flight (ToF)

cameras provide accurate depth measurements, their weight is rather high. The Kinect

has become very popular for robot navigation, but it depends on recognizing a pseudo-

random infrared pattern that is projected onto the scene. This technique does not work

outdoors in sunlight. In contrast, passive stereo vision works outdoors as well as indoors

under a large range of lighting conditions. However, sufficient processing power must be

available for stereo matching.

Even though there is a wide range of commercially available MAVs, for research purposes

the system equipment usually has to be adapted carefully to fulfil the projects’ needs.

The respective concept should therefore consider the required modularity and flexibility.

Designing such a platform, as illustrated in Fig. 1, is a time-consuming process with many

pitfalls. We address this challenge in the first part of this article. We give an overview of

existing systems and their algorithmic concepts in Section 2. We introduce our carefully

designed MAV system concept under aspects of common hardware and software issues

in Section 3. We describe the design of a modular perception and navigation device

considering MAV typical constraints and characteristics like weight, power consumption,

high system dynamics, vibrations and others. This tutorial can be helpful to everyone

setting up and equipping an autonomous MAV.

In the second part of the article, in Section 4, we introduce the algorithms running on

our quadrotor for autonomous flights in unknown, unstructured indoor/outdoor environ-

ments. We set a special focus on stereo vision based inertial navigation on resource limited

systems. Additionally, we introduce briefly the used algorithms for control, mapping and

dynamic path planning. The system is extensively tested in simulations and experiments

presented in Section 5. The influence of frame rate and time delays on the navigation

solution is analyzed in Monte Carlo simulations. The robustness of the navigation system

is demonstrated in real system experiments with forced vision dropouts. We show the

interaction of all components in an autonomous indoor/outdoor exploration flight and in
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a possible SAR scenario in a coal mine. We discuss the results and highlight some lessons

learned during development and experiments in Section 6. Finally, we conclude the article

in Section 7.

2 Related Work

There is an increasing body of literature regarding MAVs with different autonomous nav-

igation solutions. In the following, we focus on work with high similarity to ours. We

will also briefly discuss the related work of the topics tackled in the following sections

which are sensor registration, depth image processing, visual odometry and system state

estimation.

Autonomous MAVs Over the last years, autonomous MAV navigation in GPS-denied

environments showed great progress. Bachrach et al. presented on-board pose estimation

of MAVs using a laser scanner [37]. The accuracy was increased off-board by a pose-

graph optimization SLAM algorithm. They demonstrated autonomous exploration and a

flight through a window, while planning was realized off-board. Shen et al. demonstrated

laser based multi-floor navigation and mapping while all algorithms including SLAM with

loop closure were running on-board the MAV [51]. Based on this work, they presented

autonomous MAV operation in a large multi-floor indoor environment with an additional

RGB-D sensor for mapping [58]. However, vertical wall constraints in the ego-motion

calculation were used which limits the operational area.

Huang et al. used visual odometry estimates from an RGB-D sensor (i.e. Kinect) with

IMU measurements for local on-board navigation [46]. Global navigation and loop closure

with SLAM was realized off-board. Due to the use of the Kinect sensor the system can

not operate in outdoor environments with direct sunlight.

Heng et al. realized on-board mapping and path planning based on stereo cameras [45].

The autonomy of the system is limited by the usage of artificial markers or an external

motion tracking system that is required for pose estimation.

Our system is most closely related to the work of Fraundorfer et al. [52]. A forward-

looking stereo camera is used as main sensor for building a global 3D occupancy map

with 0.1 m resolution on-board the MAV. A 2D slice of the 3D octomap is evaluated for

on-board planning and obstacle avoidance as well as frontier-based exploration and wall

following. In contrast to our system the MAV is limited to environments with flat ground.

This is due to the optical flow sensor which drives the system state estimation.

Sensor registration Typically, MAVs use several sensors like cameras and IMUs that

complement each other regarding error characteristics and dropouts. For getting robust

and reliable measurements by fusion, the spatial alignment between the sensors has to

be known. Microelectromechanical system (MEMS) based IMUs provide bias-prone and

noisy measurements of the rotational velocity and translational acceleration, which leads
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to rather poor motion estimation after integration. In order to avoid integration, one

requires complex, error-prone setups [26] or needs to estimate the motion of the system in

an optimization framework which combines both sensor measurements.

Typical optimization approaches use Kalman filters like the Extended Kalman Filter

(EKF) [27] or Unscented Kalman Filter (UKF) [35]. Another possibility is the use of

non-linear batch-optimization [29, 47]. The maximum likelihood estimation (MLE) of

Kalman filters is highly computationally efficient and often used for real-time pose esti-

mation (Section 4.4). The drawback is that its mathematical model requires a piecewise

linear motion and white Gaussian noise. Non-linear least-squares batch-optimization has

in general significantly higher computational costs. However, it only requires the noise

to be zero-mean but neither independent nor identically distributed (i.i.d.) in order to

find the best solution in terms of the lowest variance of the estimate. Such a framework

also allows motion models of arbitrary dynamics. Some methods couple both techniques,

by estimating the trajectory within a Kalman filter and computing the spatial alignment

in an outer, non-linear optimization loop [39]. These so called gray-box approaches try

to combine the efficiency of Kalman filters with the accuracy of non-linear optimization.

However, that way the non-linear optimization can only use computationally expensive fi-

nite difference approximation for gradient computation, while maintaining the constraints

implied by the Kalman filter on the systems’ motion and noise.

Our system consists of rigidly mounted sensors, which do not require an online estimation

of the spatial alignment. In our opinion, sensor registration should be performed as an

offline step where applicable. It increases the alignment accuracy and reduces the state

space of the navigation filter, which leads to lower computational complexity and modeling

errors. Hence, in Section 3.3 we describe an approach for computing the spatial alignment

by non-linear batch-optimization of the measurements.

Depth image processing Dense depth images are an important base for detecting

obstacles, environment modeling, and ego-motion estimation. We focus on passive stereo

cameras since they are light weight and work in indoor and outdoor environments under

a wide range of lighting conditions.

The drawback of stereo matching is the required processing power, which is limited on

mobile and especially on flying systems. Correlation based stereo methods have been an

obvious choice for flying systems [53, 44], due to their simple design and rather low pro-

cessing requirements. However, correlation methods are known to blur object boundaries

and are unable to detect small or thin structures [14]. Global methods that optimize a

cost function offer much higher spatial resolution since they can perform pixel-wise match-

ing [17]. Methods that are based on this principle are known as Dynamic Programming,

Graph Cuts and Belief Propagation. However, these methods require much higher pro-

cessing resources. More recently, local methods that are based on adaptive weighting [24]

and slanted support windows [43] proved to be competitive to global methods, but again

at an increased runtime.
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Semi-Global Matching (SGM) [31] is based on the principle of pixel-wise matching, sup-

ported by a global cost function. The quality is comparable to other global methods.

However, the algorithm uses simple operations, is regular and easy to parallelize. This

makes real-time implementations on the GPU [42, 30] and FPGA [38, 33] possible. Es-

pecially FPGA implementations are suitable for mobile robotics, due to their low weight

and energy consumption in comparison to CPUs and GPUs.

In the Middlebury benchmark2, SGM shows an average performance. However, the

strength of SGM is its robustness in practice without parameter tuning, which can be

achieved in real-time. Therefore, SGM and its adaptations belong to the top performing

methods in the KITTI benchmark3. Further tests confirm the advantages of SGM in real-

world applications [36]. Daimler is using SGM as part of their 6D vision system4 for driver

assistance, which is commercially available in cars since summer 2013. In our system we

are using the same FPGA implementation of SGM.

Visual odometry For flying robots, it is very important to know their current pose

accurately and at any time. For our application we cannot use any external tracking

system or infrastructure. GPS is also not always available for combined indoor/outdoor

flights. Therefore, the system has to determine its pose and movements through its own

sensors, which are the cameras.

There are many possibilities for computing the pose through visual odometry. Mono cam-

era based approaches [18] can only determine the motion with 5 Degrees of Freedom (DoF)

in an unknown environment. However, the missing scale information is very important for

control of flying systems.

Modern approaches are often based on matching dense depth images [60, 50, 49], but

require high processing power and are often implemented on the GPU. Furthermore, these

methods depend on small movements between successive frames, which make a high frame

rate necessary for highly dynamic systems. Our approach is based on [13, 20], which

utilizes the available depth images from stereo matching, but works only on features to

save processing time and make large movements or rather low frame rates possible. We

explain the algorithm in more detail in Section 4.3.

System state estimation Combining visual with inertial sensing has been extensively

demonstrated for mobile robot navigation. Kalman filters are often used for sensor data

fusion. Considering the fast dynamics of MAVs, measurement time delays can become

problematic for control, if an ill-posed estimation strategy is chosen.

Time delays are often ignored. The resulting negative effect is softened by separating

attitude and position estimation [52]. Using stereo cameras, visual odometry is computed

at 10 Hz. A reference frame is maintained as long as feasible to avoid local drift. A

2 http://vision.middlebury.edu/stereo
3 http://www.cvlibs.net/datasets/kitti
4 http://www.6d-vision.com
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downward facing optical flow camera (in conjunction with a sonar sensor for altitude)

provides velocity measurements which are used in a simple Kalman Filter to estimate the

partial state. The integrated velocities are then combined with the output of the visual

odometry via a low-pass filter for providing a complete pose estimate. Nevertheless, in this

configuration, attitude estimation can not profit from visual information. Furthermore,

the bandwidth of the position controller is limited by the time delay.

A common approach for delay compensation is measurement buffering [46, 62]. Mea-

surements of a modified PTAM monocular SLAM algorithm are used as absolute pose

measurements. During processing time, the system state is propagated by the IMU while

all measurements are buffered. At the arrival of the delayed pose measurement, buffered

data is reprocessed. This approach is optimal in the sense of filtering, but can introduce

CPU load peaks dependent on the delay duration and therefore, influence real-time be-

havior. Furthermore, processing of several time delayed measurements is problematic.

Another method for delay compensation in Kalman filters extrapolates measurements us-

ing past and present estimates of the Kalman filter [10]. An optimal gain is calculated for

processing the delayed measurement. While the method is well suited for real-time pro-

cessing as it prevents CPU load peaks, only one delayed measurement source can be

incorporated.

We use a third approach for delay compensation, delay compensation by state augmen-

tation. A special form of state augmentation is stochastic cloning, which was used for

fusing delta poses of a vision system with IMU measurements [16]. We use this technique

combined with hardware triggers, starting filter augmentation to implicitly compensate for

delays. Furthermore, we keep some augmentations within the filter to realize key frame

based odometry for local drift-free navigation. The algorithm is described in detail in

Section 4.4.

3 Navigation box setup

Commercially available MAV platforms are a good starting point for developing au-

tonomous flying robots. Our system is based on an Ascending Technologies5 Pelican

quadrotor. The modified MAV is depicted in Fig. 1. All the sensing and processing re-

quired for the fully autonomous operation of the robot is realized on-board, as illustrated

in Fig. 2. The necessary low level adaptation of a commercial platform is a complex task

with many pitfalls. Hardware and software aspects as well as sensor calibration have to

be considered in the system design.

3.1 Hardware

On the hardware side, we consider an electronic and mechanical design which is primarily

driven by algorithmic and corresponding sensor requirements. The hardware has to be

5 http://www.asctec.de/
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Figure 2: Hardware, software and data flow overview of the presented system. The system
consists of a ground segment (Ground Station) and a flight segment (navigation box and
MAV). The navigation box consists of three computation units (Core2Duo, Gumstix and
FPGA), as well as sensors and communication hardware. It is linked mechanically and
electrically (in terms of power supply) to the MAV. Furthermore, attitude commands are
sent to the MAV’s Autopilot. The computers must be time-synchronized for sensor data
fusion. We use hardware triggers for camera synchronization and exact image timestamp-
ing. All autonomous functionality, including mapping and planning, runs on-board the
flight segment.
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lightweight, robust and of limited size. Furthermore, the energy consumption of electron-

ics and rigid mounting of sensors have to be taken into account. The electronics include

sensors, embedded computers, and associated communication hardware. These are assem-

bled into a stack that enables simple mechanical integration with the commercial MAV.

We call the resulting stack the navigation box.

Electronics

The most limiting factor for MAV electronics is weight and power consumption, which has

an important impact on the choice of sensors and computational hardware.

We employ PointGrey Firefly FMVU-03MTM/C-CS cameras in stereo configuration as

main exteroceptive sensor. The cameras are equipped with Computar HM0320KP lenses

(f = 3 mm, horizontal FOV = 80.5◦, manual aperture). As inertial measurement unit,

we chose an Analog Devices ADIS16407 MEMS IMU which has factory-calibrated and

temperature compensated sensors. It measures all three spatial axes in the accelerometer,

gyroscope and magnetometer plus atmospheric pressure.

The autonomy functionality on the MAV is split into low-level, real-time (RT) and high-

level, computationally intensive tasks without real-time constraints (Non-RT). The system

robustness can be increased by further separating safety critical from noncritical tasks by

hardware.

The setup should be lightweight and flexible at the same time offering a wide range of

hardware interfaces. The resulting demands can be summarized as follows:

• Separation between RT and Non-RT processing.

• Availability of common embedded interfaces (I2C, UARTs, SPI, GPIOs and ADCs)

as well as high level interfaces such as Ethernet, Firewire and USB.

• Flexibility of the hardware setup to allow fast modifications and development cycles.

• High computing power at low weight and power consumption.

Building upon COTS (commercial off the shelf) hardware, which is inexpensive and readily

available, allows for fast prototype development cycles. Today most industrial embedded

computing manufacturers offer systems with separate computer modules (CPU + RAM)

and peripheral boards. By means of this scheme it is possible to update the computer

module while keeping the peripheral board. This allows keeping up with the latest improve-

ments in computing power without time consuming and error-prone customized hardware

designs. In our opinion, flexibility is more valuable for a research platform than higher

efficiency through time consuming individual designs.

Therefore, as RT embedded processing component we chose a combination of Gumstix

OVERO WaterStorm COM and Gumstix Tobi peripheral boards due to their compact

size and high computing power. The Non-RT system component builds upon the COM

93



AUTONOMOUS VISION-BASED MICRO AIR VEHICLE
FOR INDOOR AND OUTDOOR NAVIGATION

express industrial standard and comprises of an Intel 1.8 GHz Core2Duo based COM mod-

ule and the Ascending Technologies Mastermind peripheral board. For real-time stereo

vision processing we use a Xilinx Spartan 6 LX75T FPGA development board which is

connected to the Core2Duo board via PCIe. Table 1 lists the features of the RT and

Non-RT processing units.

Table 1: Processing hardware specification.

Gumstix Specification Mastermind Specification

Form factor Proprietary COM Express Compact

COM Module / OVERO WaterStorm / Kontron COMe-cPC2 /
peripheral board OVERO Tobi AscTec Mastermind

Processor(s)
OMAP3730 SoC (1GHz Cortex A8, Core2Duo L9400 @1.8GHz
800MHz DSP, SGX530 GPU)

Memory 512 MB DDR 4GB DDR3

Interfaces
GPIOs, I2C, SPI, UART, USB, GPIOs, UART, ADC/DAC
USB, Fast Ethernet Gigabit Ethernet, Firewire

Max power 3 W 20 W

Weight 37 g 345 g

The RT and Non-RT computers are connected via Ethernet. Our current system architec-

ture allows for easy extension of more computing hardware by simply adding more RT and

Non-RT computers together with a custom designed small footprint Ethernet switch [61].

An overview of the hardware setup and interconnection is given in Fig. 3. The weight of

all components is listed in Table 2.

FPGA
(Spartan6)

Non-RTmodule
(Core2Duo)

RTmodule
(Gumstix)

Cam
Left

Cam
Right IMU

Autopilot

sync

U
S
B

U
S
B

S
P
I

PCIe Ethernet UART

W
L
A
N

X
B
ee

Figure 3: Hardware connection overview

A crucial problem in mobile robotics is reliable wireless communication. Besides the

mandatory remote control (RC) link which is operated by a safety pilot, it is useful to have

a high bandwidth wireless communication link for online system debugging. Applications

further require a robust data link, suitable for indoor and outdoor environments.

94



3. NAVIGATION BOX SETUP

Table 2: Component weights

Component Weight

Mastermind board + peripherals 345 g

FPGA board 95 g

Gumstix OVERO (COM + Tobi Board) 37 g

IMU and baseboard 22 g

Cams and Lenses 2 x 33 g

Mounts and cables 171 g

Total 739 g

In order to satisfy these requirements, we employ two different communication channels. A

WLAN module (IEEE 802.11bgn) provides high data rate communication while an XBee

module (IEEE 802.15.4) provides a robust, low bandwidth data link. Because the latter

has a lower bandwidth, it allows for a significantly higher system gain6 and, therefore,

facilitates long distance communication. Our WLAN module supports 5.8 GHz opera-

tion mode, which enables robust communication in indoor areas with a crowded 2.4 GHz

frequency band. Nevertheless, for outdoor usage we consider the 2.4 GHz band as more

appropriate because of lower signal attenuation (free space path loss). The features of

both interfaces are summarized in Table 3.

Table 3: Specification of on-board communication hardware

WLAN Module XBee Module

Model Ubiquity SR71-E Digi XBee Pro

Communication standard IEEE 802.11n (MCS15 &HT20) IEEE 802.15.4

Used frequency band ISM 2.4 / 5.8 GHz ISM 2.4 GHz

Approx. system gain 95 dBm 118 dBm

Antenna printed, 2x diversity wire antenna

Max. net data rate 4 MB/s 80 kB/s

Interface PCI-Express UART

Max power consumption 4.3W 1W

Mechanical integration

All the sensors, computers and communication hardware are integrated into the stand-

alone navigation box as illustrated in Fig. 4. The only physical connections with the MAV

are four screws, the power source and the data link with the autopilot. In that way, the

electronic and software components can be easily integrated and tested independently of

the MAV.

6 System gain = transmitter power + antenna gain + receiver sensitivity
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Figure 4: Exploded and assembled view of the processing stack, showing (1) FPGA card,
(2) Core2Duo board, (3) Gumstix (4) plate that carries the stack, (5) IMU (not visible in
assembled view) and (7) stereo camera assembly. The stack is mounted to the quadrotor
via (6), which is rigidly fastened to the plate (4). Dampers are placed on (4), so that the
whole stack is damped w.r.t. the quadrotor frame. This allows fast (dis)assembly of the
quadrotor without losing IMU to camera calibration.

The design of the navigation box is driven by sensor requirements. Firstly, the ego-

motion sensors, i.e. IMU and stereo cameras have to be rigidly mounted relative to

each other providing a high stiffness. Especially the stereo-matching algorithm is sensitive

to rotational deflections of the cameras. We have mounted the cameras on the same plate

as the IMU, which guarantees a stiff connection between them. Secondly, we want to

reduce the influence of the propeller vibrations on the IMU. The propellers rotate at 3000-

6000 rpm, introducing mechanical vibrations to the frame that can lower the quality of

motion estimation. Hence, the cameras must not be mechanically connected to a load-

bearing structure, such as the MAV frame. Our solution was to use the navigation box

as the mass of a mechanical low-pass filter between the MAV and the IMU by connecting

it only at four damped connectors to the quadrotor frame. We can use a simplified

representation of the navigation box as a second-order mass-spring-damper system, with

input at the MAV frame mounting point. Its undamped natural frequency will then be

ω0 =
√
k/m, where k is the stiffness of the mounting and m the mass of the navigation

box. Therefore, we must lower the natural frequency of the navigation box with respect to

the frame, in order to lower the amplitude response at higher frequencies. This is achieved

by using the weight of the navigation box and using dampers to additionally lower the

mounting stiffness.

The cameras are placed on top of the computing stack in order to have an image while the

MAV is standing on the ground for stabilizing the ego-motion estimation. The Gumstix

computer, Core2Duo, and FPGA boards are vertically stacked to fit into the bottom of
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the Pelican MAV. We use milled 1.1 mm-thick carbon fiber plates for the intermediate

plates to minimize weight. A carbon fiber plate below the FPGA board allows mounting

of additional sensors, such as sonar or a downward facing camera.

In our previous system, the computing and sensor equipment was tightly integrated with

the MAV frame [61]. We have found that separating sensors from the MAV frame has

greatly improved sensor signal quality. For motion estimation this is due to lower vi-

brations and the stiff camera fixture. Mechanical robustness has also increased, i.e. our

equipment is better protected if a crash occurs. Due to the enclosed setup, sensor re-

calibration can be done independently of the MAV.

3.2 Software

The low-level software system should facilitate development on distributed, embedded

systems. Scheduling constraints and transparent communication have to be taken into

account.

Operating Systems

The navigation box contains different CPU boards with RT and Non-RT constraints.

Considering RT operating systems (RTOS), we have to ensure software interoperability

towards the Non-RT systems. The requirements can be summarized by:

• Same communication infrastructure (middleware) on RT and Non-RT OS.

• Availability of open-source software for maximum flexibility and community support.

• Device driver availability for the used sensor/system configuration (ARM, x86).

• POSIX7 compatible API on both systems for consistency and portability.

We found that these requirements can be best satisfied by using a uniform OS on both

systems. Our solution is based on a standard off-the-shelf Linux distribution (Ubuntu

12.04 LTS) with a real-time capable kernel for the RT system. We considered several

approaches to realize a real-time capable Linux system:

PREEMPT RT patches make sections of the Linux kernel and its drivers preempt-

able that are ordinarily blocking. That also includes IRQ routines, which become

preemptable kernel threads. Most spinlocks are converted into mutexes and priority-

inheritance also works for kernel spinlocks and semaphores. While the kernel itself

is fully preemptable [56], the conversion of various device drivers is still a work in

progress.

RTAI Linux makes use of a real-time co-kernel which puts all incoming interrupts in an

interrupt pipeline and dispatches interrupts to real-time tasks (scheduled by the co-

kernel) first. After completion of all real-time tasks, interrupts get transferred to the

7 POSIX = Portable Operating System Interface
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non-real-time tasks associated with the actual Linux kernel. Although it’s similar

to Xenomai, it focuses more on lowest technically feasible latencies while exposing

only its native API to the programmer.

Xenomai is a spin-off of RTAI Linux that makes use of a real-time co-kernel as well.

Unlike RTAI it aims for clean extensibility and portability by offering a variety of

different programming APIs (skins) such as POSIX, VxWorks, pSOS or RTAI. Also

Xenomai is embracing PREEMPT RT as means of offering a single-kernel approach

with its rich set of RTOS APIs.

For our setup, the PREEMPT RT kernel approach provides most benefits. One advantage

over RTAI is its POSIX API. Already by its native design of building upon the vanilla

kernel, support for different hardware architectures is superior to a dual kernel approach.

A co-kernel approach introduces the need to maintain also the real-time kernel and to

keep up with the latest architecture support improvements that come with upstream

kernel updates. Furthermore, RT and Non-RT systems only differ in their kernel which

facilitates system maintenance.

Crucial aspects of real-time operating systems involve scheduler and interrupt latency8.

Our system should be able to run threads at a maximum sample rate of 1 kHz on a ARM

Cortex architecture. In order to verify whether we can obtain latencies well below the

required sampling period for control and sensor data fusion, we use the following measure

for benchmarking.

Periodic high resolution timers are assigned to a set of threads with different scheduling

priorities and a sampling period ts. The only duty of every task is to save the current

timestamp t1, sleep until the assigned timer expires, save another timestamp t2 and cal-

culate the deviation of sampling period by ∆t = t2 − (t1 + ts) which is an estimate of the

scheduling latency. Fig. 5 shows how the two timestamps are defined.

t

Thread woke up
Timer expired

Sleeping

Running

Thread
State

Δt
1

Δt
2

Δt
3

Expected Wakeup
Actual Wakeup

. . .

Figure 5: Measuring scheduler latency between triggered and actual wakeup-time

8 Scheduler latency is also known as ’dispatch latency’, the latency caused due to thread context switch-
ing.
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For benchmarking, we use the tool cyclictest9 which resembles exactly the mentioned

behavior. We demonstrate the timing differences between a vanilla Linux kernel and one

with the PREEMPT RT patch set applied. The program was invoked10 with 4 concurrent

threads. The priority of the highest prioritized thread was set to 75, 500 histogram bins

for data output were used and the wakeup interval was chosen to be 1 ms. Every run

took around one hour, which makes a total sample count of around 3.6 × 106. During

benchmarking a set of computing (FPU), file I/O and peripheral I/O intensive tasks11

were used to maintain a constant load average close to 1.0. The load scenario was carefully

chosen to reproduce the actual system load. Fig. 6 depicts two histograms showing the

results of two cyclictest runs on the same ARM-based Ubuntu Linux 12.04 system, the

first on a vanilla kernel (version 3.0.22) and the second on a patched kernel (version

3.0.22-rt37). While the unpatched kernel shows comparable results in the mean section,

the highest latency exceeds 26 ms. The highest latency occurring on the RT kernel was

334 µs.
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a) Non-RT histogram. Kernel version: 3.0.22,
Max./avg./min. latency: 26383 (out of
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b) RT histogram. Kernel version: 3.0.22-rt37,
Max./avg./min. latency: 334/168/0 µs

Figure 6: Scheduler latency histograms of RT and Non-RT kernel based on ARM kernel
version 3.0.22. The scheduler tick clock was running at 1.3 MHz. System load average has
been close to 1.0

These tests prove the suitability of the PREEMPT RT approach: Scheduling constraints

well below 1 ms are fulfilled with high sensor IO and CPU load. Convenient system

maintenance and a clean software architecture which exhibits the same API as the Non-

RT operating system is provided.

9 ’cyclictest’ is part of the ’rt-tests’ benchmarking suite, see https://www.osadl.org/

Realtime-Preempt-Kernel.kernel-rt.0.html#externaltestingtool
10 Program invocation: ./cyclictest -t 4 -p 75 -h 500 -i 1000
11 Generating load: Traversing the filesystem with find /, whetstone floating-point benchmark, polling

IMU at 819 Hz
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Communication

In order to exchange timestamped sensor data in a distributed system, all system clocks

have to be synchronized. We employ an open-source implementation of PTPd2 (Precision

Time Protocol Daemon). Running the synchronization daemon with a rate of 4 Hz is

sufficient to maintain an average deviation of system clocks well below 500µs. The Non-

RT computer serves as master clock while the RT computer is configured as slave. The

PTPd daemon runs with a high real-time priority to minimize the influence of operating

system scheduling latency.

For communication within a distributed system, a consistent and transparent inter-process

communication infrastructure is needed. We found that the Robot Operating System

(ROS) is suitable for our purpose: it is versatile, runs on both x86 and ARM architectures

and has flexible and dynamic data messages. It is a widespread middleware in the robotics

community, which makes it very easy to exchange code with other research facilities and

groups. As ROS is not intended for real-time applications we extended inter process

communication by modified nodelets to fit our real-time communication requirements.

As shown in Fig. 3 on-board communication between the RT and Non-RT computing

units is realized by an Ethernet connection while the downlink to the ground station is

established via WLAN. These two independent network segments need to be unified to

enable the middleware to transparently communicate between all computers. Therefore,

we employ a software bridge on the Non-RT computer which connects WLAN and Ethernet

peers in the same subnet. Since forwarding is done at the MAC layer, all IP based protocols

pass the bridge transparently.

3.3 Spatial sensor registration

Especially in the context of highly dynamic systems, accurate temporal and spatial align-

ments play a crucial role for reliable data fusion. Temporal synchronization is assured by

actively triggering the cameras, while storing the respective timestamps. Hence, for the

spatial alignment, which we are discussing in the following, we assume accurately syn-

chronized measurements. In our setup we have to estimate the rigid-body transformation

between two cameras and an IMU. The extrinsic calibration between the stereo camera

pair is estimated together with the intrinsic parameters in a non-linear optimization frame-

work [22, 20].12 It remains to compute the spatial alignment between cameras and the

IMU.

A straight-forward solution is to extend the state space of the navigation filter by the

6D spatial transformation parameters and hence, estimating the spatial alignment in real-

time, together with the system pose. No offline calibration step is required. However,

estimating the spatial registration together with the actual pose may result in poor pose

estimation and spatial registration in the case of bad initialization or ill-posed motion at

12 A publicly available tool, called Callab, for intrinsic and extrinsic camera calibration can be found at
www.robotic.dlr.de/callab
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the beginning. Therefore, an initialization phase is advisable, where the system performs

a motion which allows for a well-posed state estimation. Furthermore, when processing

the data in real-time, linearization errors and sequential data processing are introduced.

These drawbacks can be overcome by non-linear batch optimization. It comes with higher

processing costs and hence, it is not real-time capable anymore. Like in Kalman filters,

batch optimization techniques also require a representation of the trajectory to combine

measurements with different timestamps. A significant advantage of batch optimization,

beside the batch based processing of the data, is its higher flexibility in choosing an

appropriate representation of the trajectory.

We will now focus on computing the spatial alignment by batch optimization of the mea-

surements [47]. For generalizing the framework for arbitrary exteroceptive sensors which

provide relative motion measurements, we use the visual odometry results as input in-

stead of triangulated landmarks or feature rays. As representation of the trajectory we

use a cubic B-spline. This implies the assumption that the trajectory associated with the

calibration sequence can be modeled by means of twice differentiable smooth parametric

curves p(t) and r(t) describing position and orientation at time t, respectively. Quater-

nions will be used to represent orientations, thus r(t) is a four-dimensional curve, while

p(t) is obviously three-dimensional. Using this curve model certainly constitutes a restric-

tion, since it imposes a number of constraints on the trajectory, e.g. piecewise linearity

of the acceleration between knots. Note however, that it is still more general than the

commonly encountered assumption of piecewise linearity of motion, which is usually made

in filter-based approaches.

Objective function The relationships between the measurements of different sensors

can be established as [23, 28]:

ω̂B = IωB − eBIωB = RB
C

(
CωC − eCωC

)
(1)

and

IaB − eIaB + RB
E g

E = RB
C

(
Cv̇C − ėCvC

)
− ω̂B ×

(
ω̂B × pBBC

)
− ˙̂ωB × pBBC (2)

In above formulæ, ωB denotes the real, error-free angular velocity and ex represents the

error of a specific measurement x. The relative pose measurements of the camera are in-

terpreted as velocity measurements CvC . For clarity, the reader is referred to Appendix A

for the notation. Unfortunately, a direct comparison as outlined above is usually not possi-

ble, because the sensor measurements occur at different time instances. The measurement

101



AUTONOMOUS VISION-BASED MICRO AIR VEHICLE
FOR INDOOR AND OUTDOOR NAVIGATION

errors δx at time-instance t can be formulated by the following equations:

δIω = Iω − bIω −ω(t) (3)

δIa = Ia− bIa + r(t) •
(
ITvq g

E
)
• r̄(t)− p̈ (t) (4)

δCω = RB
C
CωC −ω(t) (5)

δCv = RB
C
CvC + ω(t)× tBBC − ṗ (t) (6)

with

ω(t) = 2 Ivq (r̄(t) • ṙ (t)) , (7)

Ivq =




1 0 0 0

0 1 0 0

0 0 1 0


 , (8)

r̄(t) = diag (−1,−1,−1, 1) r(t) , (9)

where bIω and bIa denote the IMU biases. The errors are expressed in the IMU frame

(body frame) to make the expressions simpler, whereas the frame index is neglected for the

sake of readability. The only measurement revealing information about the real orientation

of the IMU relative to the world coordinate frame is the gravity vector. However, this

becomes irrelevant if we also estimate the orientation of the gravity vector relative to the

initial pose of the IMU gB0 . That way, the trajectory starts at the origin of the IMU

coordinate frame, aligned to its axes and can be estimated independently of the world

coordinate frame.

The errors are weighted with the pseudo Huber cost function h(δ) [19], which is differen-

tiable and robust against outliers. It is defined as

h(δx) = 2b2x



√
δTx δx
b2x

+ 1 − 1


 . (10)

A common choice for bx is 3σx, where σx denotes the standard deviation of the noise and

x the kind of measurements for Iω, Ia, Cω or Cv, respectively.

Concatenating the matrices of all the error vectors for each measurement ∆x yields the

total error matrix ∆ = (∆Iω ∆Ia ∆Cω ∆Cv). Thus, the objective function g(∆) can be

formulated as

g(∆) =
∑

x∈{Iω,Ia,Cω,Cv}


 1

σ2
x

∑

δx∈∆

h(δx)


 . (11)

B-Spline based trajectory modeling The model for our trajectory representation

needs to be twice differentiable to provide the second derivative of the position for accel-

eration estimation p̈(t) (see Eq. 4). Therefore, a B-spline curve of third-order is required

but also higher-order curves could be used as trajectory model. We are now going to
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introduce our notation used for such curves. More detailed information about B-splines

can be found in the literature [15, 12]. We define a B-spline curve as

s(t) =
M∑

i=1

ci bki (t), (12)

where ci ∈ Rd are the d-dimensional control point values, bki (t) denotes the i-th basis

function of order k (for a cubic B-spline k = 4) and M is the number of knots. With

c, we denote the vector
(
cT1 c

T
2 . . . c

T
M

)T ∈ RMd of concatenated control point values.

Furthermore, we assume that an equidistant knot sequence is used.

It is well-known, that B-splines are linear in parameters, which means that the evaluation

of the above equation at several parameter locations t = (t0 t1 . . . tn) is equivalent to com-

puting the matrix-vector product B(t)c for a suitable basis matrix B(t). More formally,

this is expressed as

(
s(t1)T s(t2)T . . . s(tn)T

)T
= B(t)c . (13)

For d-dimensional control point values, the basis matrix has the shape

B(t) =




bk1(t1) bk2(t1) . . . bkm(t1)

bk1(t2) bk2(t2) . . . bkm(t2)
...

...
. . .

...

bk1(tn) bk2(tn) . . . bkm(tn)



⊗ Id, (14)

where Id is the d×d identity matrix. At this point we want to emphasize the importance of

synchronized measurements as discussed in Section 3.2. It is obvious, that if the vector of

parameter locations t remains constant, so does the matrix B=B(t). It has a significant

impact on the processing complexity of each optimization step if the matrix B has to be

computed only once. Furthermore, B-spline derivatives are again B-splines and as such

are again linear in parameters. In our optimization process, we are going to evaluate the

spline and its derivatives at the respective measurement timestamps. This means that

spline derivatives can also be computed by simply evaluating B′c for some appropriate

matrix B′ representing the basis matrix of the derived spline.

In our implementation we need a B-spline of dimension d = 7 and thus, ci ∈ R7 to model

the trajectory

s(t)=
(
p(t)T r(t)T

)T
. (15)

Note that the quaternions are constrained to be of unit length, which yields the expected

six degrees of freedom for rigid body motion.

The control point vector of the B-spline is part of the parameter vector θ, which is subject

to optimization. Furthermore, this vector contains two IMU bias terms, which are assumed

to be constant for the short calibration sequence. The initial direction of the gravity vector,
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the quaternion and the vector describing the transformation between the IMU and camera

coordinate system are also included. Hence, the parameter vector in our optimization is

defined as follows:

θ =
((
cT1 c

T
2 . . . c

T
M

)
bTIω bTIa qBC

T
gB0

T
tBBC

T
)T

. (16)

Constraints and optimization details There are some constraints on a few parame-

ters which have to be satisfied for optimization. The unit property of the control points

of the B-spline and the quaternions have to be ensured. Furthermore, the gravity vector

has to be of length 9.81 and the first control point of the spline is constrained to represent

zero rotation and zero translation to avoid dependencies in the optimization parameters.

This is because both, the direction of the gravity vector and the pose of the IMU, are

going to be optimized – at the beginning of the trajectory one of these parameters has to

be fixed to prevent redundant degrees of freedom.

We use sequential quadratic programming (SQP) as optimization algorithm, because it

is known to work well for nonlinear optimization problems and it allows implementing

equality constraints [11]. For optimization purposes it is generally necessary to compute

the gradient of the objective function, as well as an appropriate Hessian approximation.

The gradient of the objective function can be computed by applying the chain rule and for

approximating the Hessian of the system, the popular Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method [11] is used.

Nonlinear optimization does not guarantee to find the global optimum. It depends on the

convexity of the problem and the initial values of the parameters to optimize whether a

local or the global optimum is found. We do not want to relax the problem to become

convex, which comes with relaxation errors, but we rather try to find good starting points

for the parameters which also speeds up the optimization process.

Parameter initialization The gravity vector gB0 can be initialized as the mean over

the first accelerometer measurements assuming that the translational acceleration at the

beginning is negligible small, so that the sensor measurements consist mainly of the gravity

force. The resulting vector has to be scaled to have a length of 9.81. The bias terms bIω

and bIa can be initialized with zero vectors or the mean over the first measurements in

case of a static period at the beginning of the calibration sequence. For accelerometer

measurements the estimated gravity vector has to be subtracted.

An initialization of the translation is rather complicated to achieve. Either one can extract

a first estimate for tBBC from a CAD drawing or a complex setup as described in [26] has

to be used. However, experiments have shown that once the angular alignment is properly

initialized, the translation converges reliably and hence, it does not have to be initialized

accurately and can be set to zero too.

Actually, the angular alignment can be estimated without ever considering the transla-

tional alignment between the sensors. This can be done by applying conventional hand-eye
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calibration algorithms, such as the closed-form solution introduced in [8], on the delta ro-

tations measured by the cameras and integrated from the gyroscopes. In case the biases

of the gyroscopes cannot be estimated in advance, e.g. as described earlier, they can be

computed together with the alignment in a non-linear optimization framework [48].

Finally, the number of B-spline knots and their location on the time-line has to be chosen

and the B-spline control points have to be initialized. A high number of control points

means less smoothing and higher flexibility, but also increases the complexity of the com-

putation and the possibility of over-fitting. In our setup we use an empirically chosen

value: 0.6 times the number of camera measurements. A more general solution would be

to evaluate the measurements of the accelerometers and the gyroscopes to adapt the knot

vector and the number of control points to satisfy the requirements given by the motion

dynamics. The B-spline can then be initialized by an approximation over the camera

measurements [55].

Comparative evaluation For validating the assumption that a non-linear batch opti-

mization for spatial calibration is more accurate than Kalman filter based approaches, we

show a brief comparison of the results of our solution to the ones of a UKF and a grey-box

implementation. In the experiment we processed seven different runs with an IMU camera

setup. Fig. 7 illustrates the results for translation estimation as separate boxplots for each

algorithm and axis. Due to the fact that we do not have any CAD drawings for ground

truth, we assume that the consistency over the runs correlates with the achieved accuracy.
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b) rotational alignment

Figure 7: Registration results of seven different runs acquired with the same setup. Plot
(a) shows the translational alignment and plot (b) the Euler angles ψ of the rotational
alignment. The boxplots on the left (B) represent the results of the discussed non-linear
optimization technique, the boxplots in the middle (G) denote the estimates of a grey-box
implementation and the right ones (K ) a UKF based estimation.

The plots show that especially the translation estimates of our approach are significantly

more consistent than the ones of the UKF and also outperform the grey-box implemen-

tation. For the rotation estimation we achieve similar results as the grey-box approach,

whereas the Kalman filter based solutions are significantly worse. More comprehensive
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results can be found in the literature [47].

4 High level system design

The introduced navigation box is the basis for high level software modules implementing

perception, sensor data fusion, control, mapping and path planning. Perception is split

into three threads as shown in Fig. 8.

acquisition
ImageRight

cam.

Time−

stamping

Rectification
acquisition
ImageLeft

cam.

Visual Odometry

Rectification

FPGA

Semi−Global Matching

CPU thread 2CPU thread 1 CPU thread 3

Disparity image

Pose

Pose error

Figure 8: Overview of the stereo image processing pipeline.

4.1 Capturing Stereo Image Pairs

The first perception thread is responsible for capturing synchronized stereo images. Syn-

chronization is especially important for a highly dynamic system. It is guaranteed by

using the start of the integration time of the left camera as hardware trigger for the right

camera. Additionally, we require a precise timestamp, which is difficult to get from USB 2

based cameras. Therefore, we send a software trigger to the left camera and store the

system time as timestamp for the next image pair. Explicitly triggering the left camera

instead of letting it free running also ensures that only those images are captured which

can be processed by stereo matching and visual odometry. This is important for reducing

the processing workload of our sensor data fusion algorithm, which augments the current

system pose every time a new image is captured (see Section 4.4).

Additionally to capturing the images, the thread also controls the exposure time and gain

settings of both cameras, because the auto exposure does not work together with the

external trigger on our cameras. The images have a resolution of 752× 480 pixels. While

the thread requires almost no processing time, the latency for capturing and transmitting

the images to the main memory is about 65 ms.

4.2 Stereo Processing

To simplify the processing of stereo images, the image pair is rectified according to the

intrinsic and extrinsic camera parameters that are determined in advance. Rectification is

implemented by a lookup table for reducing the processing time to just a few milliseconds.

Dense stereo matching is implemented by Semi-Global Matching (SGM) [31]. The method

performs pixel-wise matching, which is optimized by path-wise optimization of a global cost
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function. The cost function prefers piecewise smooth surfaces by penalizing neighboring

pixels with different disparity values. Path wise optimization is performed symmetrically

from 8 directions through the image. A left-right consistency check is used for identifying

and invalidating occlusions and mismatches. A segmentation filter on the disparity image

is used for finding and invalidating small disparity segments that are unconnected to the

surroundings. This cleans up the disparity image from possible remaining clutter.

A previous study [34] has identified Census [9] as the best and most robust matching cost

against radiometric differences. Census computes a bit vector that encodes the relative

order of intensities in the neighborhood of each pixel. We commonly work with a 9 ×
7 pixel window. For each pixel in the window that is brighter than the center pixel, a

corresponding bit is set. The resulting 64 bit vector then characterizes the center pixel.

Pixel-wise matching for SGM is done by computing the Hamming distance between the

bit vectors of corresponding pixels.

In our experience, SGM behaves robustly and is not susceptible to the parameter settings

in contrast to some other stereo matching methods. Due to its regular algorithmic struc-

ture and the fact that it just adds and compares integer values in the inner loop, it can be

easily parallelized by multi-threading as well as with vector commands like with the SSE

intrinsics that are available on modern x86 CPUs. Nevertheless, SGM requires a lot of pro-

cessing resources and would not be suitable for real-time processing on a resource limited

system. Therefore, we use an FPGA implementation of SGM that has been implemented

by Supercomputing Systems13 for our former cooperation partner Daimler. An earlier pro-

totype has been described by Gehrig et al. [33]. The implementation runs on a Spartan

6 FPGA that has a very low energy consumption. It expects images of 1024× 508 pixels

with 12 bit radiometric depth and uses a disparity range of 128 pixels. Since our cameras

have a lower resolution, the remaining space is simply filled by black pixels. Currently we

also use 8 bit images only. The runtime for SGM based stereo matching is about 68 ms,

which results in a maximum frame rate of 14.6 Hz.

The stereo processing thread requests new images from the capture thread, performs recti-

fication, sends the images to the FPGA via PCI express, receives the disparity image and

performs the segmentation filter for cleaning up images. Since the FPGA has implemented

a double buffer, rectification and sending of images to the FPGA is done while the FPGA

processes the previous image pair. Similarly, post filtering is performed while matching

the next image pair on the FPGA. Therefore, with a frame rate of 14.6 Hz, the stereo

processing thread causes a CPU load of 46 %.

4.3 Visual Odometry

Our visual odometry is based on feature matching in subsequent left images. For feature

detection we used the Harris corner detector for a long time [5]. Recently we switched to

AGAST [40] for reducing the processing time from more than 20 ms to about 3 ms per

13 www.scs.ch
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image. The threshold of AGAST is continuously adapted such that the detector delivers

approximately 300 features per image. However, only corners for which a disparity is

available are maintained so as to have the possibility to reconstruct all corners in 3D.

For computing feature descriptors with radiometric robustness, we apply a Rank filter

with a window size of 15 × 15 pixels to the image and then extract a region of 19 × 19

pixels around each corner. The feature descriptors are matched by the sum of absolute

differences. Computing and matching feature descriptors is implemented using SSE intrin-

sics. The resulting descriptor is very robust against radiometric differences and tolerant

to small rotations (e.g. up to 15 degrees) around the optical axis of the camera [20]. It

is not invariant to larger rotations or to scaling differences. However, even with a highly

dynamic system, there will not be large rotations or scaling differences with an antici-

pated frame rate of 10-15 Hz. Therefore, we do not need rotation and scaling invariant

feature descriptors like SIFT [21], which are computationally expensive and potentially

less discriminative, due to their invariance.

Since the rotation of the system around the vertical axis can quickly cause large image

shifts, we do not try to track features. Instead, an initial matching of all features of the

current image to all features of the previous image is performed, for finding the most

likely correspondences. Matching features vice versa from the previous to the current im-

age is used to sort out unstable matches. Outliers in the correspondences are identified by

building all possible pairs of corners and comparing the distances of their 3D reconstruc-

tions in the current view to the distances of the 3D reconstructions of the corresponding

corners in the previous view. A fast algorithm finds a large cluster of corners where

all relative distances between their 3D reconstructions match the 3D reconstructions of

their correspondences [13, 20]. In comparison to RANSAC, this method does not use any

randomization, but can still deal with much more than 50 % of outliers.

As a side effect of switching from Harris corners to AGAST, we noticed that after the

outlier detection, more correspondences are available for computing the rigid motion,

although both corner detectors have been set to deliver the same number of corners. We

cannot yet explain this positive effect.

The rigid motion is computed by singular value decomposition [7, 2] followed by mini-

mizing the ellipsoid error [3] using non-linear optimization by the Levenberg-Marquardt

algorithm.

For estimating the error of the calculated rigid motion, an image error of 0.5 pixels is

assumed in all corner positions. This error is propagated into the six parameters of the

rigid motion using the Jacobian matrix [59].

Incrementally adding the rigid motions of subsequent images for calculating the visual

odometry leads to an increasing error, even if the system is moving slowly or standing

still. To avoid this, we are using a history of a small number (e.g. 3 to 5) of key frames

[59]. The motion is not only calculated to the previous image, but also to all key frames.

This leads to n estimates of the current pose, with n corresponding error estimates. The

pose with the lowest overall error (i.e. sum of errors to the key frame and from the key
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frame to the current image) is used as the final estimate. After this determination, the

current image replaces the one in the key frame history with the largest overall error. In

this way, the algorithm seeks to minimize the overall error. If the system is standing still,

the error would not increase at all. Thus, making visual odometry drift free.

The literature contains details of the original method [13, 20] and the extensions for

estimating the error and maintaining a key frame list [59].

The calculation is implemented as further thread that gets the left stereo images and the

corresponding disparity images from the stereo processing thread. We have optimized

visual odometry for speed since earlier publications [64], without changing the algorithm.

The CPU load of the visual odometry thread with 300 features and 3 key frames is now

about 36 % at a frame rate of 14.6 Hz. This leads to a total CPU load of 82 % of one CPU

core for the capture, stereo, and visual odometry thread. The latency between capturing

the images and getting the final delta pose estimate is about 220 ms.

4.4 Sensor data fusion

We fuse the time delayed delta measurements from the visual odometry system with IMU

measurements. The on-board calculated state estimate is used for control. S ce MAVs

are inherently unstable and have fast system dynamics, they require a high controller

bandwidth for stabilization. Therefore, the time delays introduced by the vision pipeline

have to be taken into account. Furthermore, the algorithm has to run in hard real-time,

which requires a guaranteed maximum processing time. Therefore, the processor load

should be balanced, independently of measurement time delays.

We implemented the sensor data fusion algorithm as Extended Kalman Filter (EKF). It is

practical to realize the estimator as indirect filter in feedback configuration. This means

that not the system states themselves (direct states) but only the errors of the system

states (indirect states) are estimated. The indirect states are used to correct the direct

states immediately after calculation. This decoupling has several advantages [1, Chapter 6,

p. 296]:

• Fast system dynamics are tracked within the direct system state, using a computa-

tional cheap algorithm. The slower error dynamics can be accurately tracked by a

computationally more expensive filter running at a lower frequency.

• Time delays in additional sensor measurements have only to be considered within

the filter.

• The direct system state can still be calculated even in the case of a failure of the

filter.

• As the system state is corrected after each filter update we can assume small angles

in the attitude error, which can be efficiently represented by an error angle vector

of size 3 (instead of 4 for a gimbal lock free quaternion representation).
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Figure 9: State estimation system design. The direct system state (x) is calculated at high
rate by the Strap Down Algorithm (SDA) using acceleration and gyroscope measurements
(a, ω) of the IMU. An EKF uses (time delayed, relative) measurements to calculate at a
lower rate the state errors (δ) which are immediately used for state correction.

Our vision aided INS-filter framework, first introduced in [57], is depicted in Fig. 9. Sen-

sor data preprocessing can be easily realized on a system without real-time constraints,

whereas the actual filter runs on a real-time system. The filter framework can process any

combination of relative or absolute measurements with or without (varying) time delays.

For measurements with considerable time delays as well as for relative measurements the

exact moment of the measurement start is registered in the EKF by a hardware trigger

signal. The system state error calculated by the EKF (δ) is used for direct system state

(x) correction. For clarity, the reader is referred to Appendix A for the notation. We omit

the indices for the sensors and the reference frames where negligible. We define the direct

and indirect system states, respectively, as

x =
(
pE,TNxB

vE,TNxB
qNx,TB bTa b

T
ω

)T
∈ R16 (17)

δ =
(
δpT δvT δσT δbTa δb

T
ω

)T
∈ R15 (18)

including position, velocity, orientation, and IMU acceleration and gyroscope biases. As

we assume small angle errors between filter updates, we can parameterize the orientation

error as an orientation vector. x is calculated by the Strap Down Algorithm (SDA) at a

frequency up to the full IMU sampling rate.

Strap Down Algorithm (SDA) The SDA is used to calculate the motion of the robot

from linear acceleration and angular velocity measurements. Due to limited accuracy of

the used MEMS IMU and the assumption of an approximately flat earth in the limited area

of flight, earth rotation and system transport rate can be neglected. Furthermore, it can

be assumed that the IMU measurements represent sufficiently well the specific force fBEB
and angular rates ωBEB, respectively. Employing rigid body kinematics and the Bortz’
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orientation vector differential equation we find the following motion equations:

ṗEEB = vEEB (19)

aBEB = fBEB + gB (20)

v̇EEB = R(qEB)fBEB + gE (21)

qEB = q(σ) =

(
cos(σ/2)
σ
σ sin(σ/2)

)
(22)

σ̇ = ωBEB +
1

2
σ × ω +

1

σ2

(
1− σ sin(σ)

2(1− cos(σ))

)
σ × (σ × ωbnb) (23)

With the assumption of a nearly constant orientation vector σ between the discrete time

steps Tk−1 and Tk the delta orientation vector can be approximated from Eq. 23 by:

∆σ ≈ ωBEB(Tk − Tk−1) (24)

Using (22) the orientation quaternion at time Tk is calculated from the orientation at Tk−1

by:

qEBk = qEBk−1
• q(∆σ) (25)

Finally, discretizing (21) under the assumption of constant acceleration between time steps

Tk−1 and Tk we get:

vEEBk ≈ R(qEBk−1
)

(
aBEB +

1

2
σ × aBEB

)
(Tk − Tk−1) (26)

Extended Kalman Filter The EKF is used to estimate the indirect system state by

processing time delayed relative (key frame) measurements coming from the stereo visual

odometry system.

For the inertial navigation system error propagation we employ the following linearized,

continuous-time error transition model for system error propagation [28]:

δ̇ = F δ + Gn

=




O3x3 I3 O3x3 O3x3 O3x3

O3x3 O3x3 −
⌊
aEEB

⌋
−RE

B O3x3

O3x3 O3x3 O3x3 O3x3 −RE
B

O3x3 O3x3 O3x3 O3x3 O3x3

O3x3 O3x3 O3x3 O3x3 O3x3



δ

+




O3x3 O3x3 O3x3 O3x3

RE
B O3x3 O3x3 O3x3

O3x3 RE
B O3x3 O3x3

O3x3 O3x3 I3 O3x3

O3x3 O3x3 O3x3 I3



n

(27)
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The uncertainties in the error propagation for translation and rotation are modeled as

additive zero-mean, white Gaussian noise (AWGN). The accelerometer and gyroscope

biases are modeled as random walk processes driven by AWGN. The noise vector ns has

the spectral density Q, such that

Q = diag(Qa,Qω,Qba ,Qbω) (28)

Qs = E
[
nsn

T
s

]
| s ∈ {a,ω, ba, bω} . (29)

We use the following (approximated) discretizations of F ,G and Q for the time interval

T at time step k which are calculated as:

Φk = eΦT (30)

GkQkG
T
k =

1

4
(I + Φk)GQG

T (I + Φk)
T T (31)

For processing relative (key frame) pose measurements in an optimal way we use state

augmentation by stochastic cloning [16]. In its original form time delays are not considered.

The arrival of a relative measurement triggers the start of the next one. Hence, the end

of the preceding relative measurement coincides with the start of the new one. The state

at the end of a relative measurement is augmented to the state vector so that it can be

referenced by the succeeding measurement.

Nevertheless, considering systems with fast dynamics, the time span between the real end

of a relative measurement and the arrival of the measurement data can be unacceptably

high due to communication and processing time delays. To compensate for these delays and

to achieve a non delayed, optimal state estimate, we trigger the filter state cloning by sensor

hardware signals, indicating the exact time of a measurement. When the delayed relative

measurement arrives, it can reference the exact start and end states of the measurements

and correct all states including the augmentations. The filter framework can directly

process all possible combinations of time delayed, overlapping and relative measurements

at the time of arrival. This results in a delay free system state estimate available at any

time, which is crucial for stable system control.

Furthermore, it is possible, depending on the available processor resources, to hold aug-

mented states in the filter instead of deleting it directly after the arrival of the measurement

data. If a relative state sensor is able to recognize a measurement start or end point that

is augmented in the filter, the proposed navigation filter is equivalent to an indirect EKF

position SLAM but can compensate for measurement time delays. We use this mechanism

to hold a fixed number of augmented poses corresponding to stereo odometry key frames.

For a general representation of filter augmentation we use in the following, the term main

state for the estimated states at the current time and augmented states for the rest of the

state vector. It is not necessary to augment the whole main state for the processing of

relative measurements but only the parts a relative measurement refers to. In general,

state augmentation and removal for the direct and indirect states at time k can be written
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as:

x̄k = Skxk (32)

δ̄k = Skδk (33)

where Sk is a state selection matrix with dimension (n+ ak + a)× (n+ ak), n denotes the

size of the main state vector, ak the number of initially augmented states at time k, and

a the number of states to augment or remove from the state vector.

The augmentation of a part of the main state to the state vector in between the main

state and the already augmented states, Sk, can be written as:

Sk =



In×n 0n×ak
Īa×n 0a×ak
0ak×n Iak×ak


 (34)

where Ii×i is the i × i identity matrix, Īi×j denotes an identity matrix containing only

the rows that correspond to states that should be augmented and 0ak×n is the ak × n zero

matrix.

To remove an augmentation from the state vector, Sk can be written as:

Sk = Ī(n+ak+a)×(n+ak) (35)

where a is negative and Ī is an identity matrix of size (n+ ak) × (n+ ak) with the rows

removed that correspond to a state that should be removed.

With this notation the augmented/de-augmented state covariance matrix can be written

as:

P̄ = E[δ̄kδ̄
T
k ] = E[Skδkδ

T
kS

T
k ] = SkE[δkδ

T
k ]STk = SkPS

T
k (36)

As we have a closed loop error state space filter representation, only the filter covariance

is involved in the prediction step. The augmented error propagation matrix (Φaug,k) and

the noise propagation matrix (Gaug,k) are defined as:

Φaug,k = diag(Φk, Ia+k ×a
+
k

) (37)

Gaug,k =

(
Gk

0a+k ×n

)
(38)

where a+
k is the number of augmented states at the time of prediction k. The filter

covariance prediction can be realized by the standard Kalman Filter prediction step:

P−k+1 = Φaug,kP
+
k ΦT

aug,k +Gaug,kQkG
T
aug,k (39)

where P−k+1 is the a priori error state covariance at time step k+1 and P+
k the a posteriori

covariance matrix at time step k.
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The special form of Φaug,k and Gaug,k can be exploited in the filter implementation to

get a prediction step with a complexity rising only linearly with the number of augmented

states.

The augmented filter update is realized as standard EKF update:

Kk = P−kH
T
k (HkP

−
kH

T
k +Rk)

−1 (40)

P+
k = (I −KkHk)P

−
k (41)

δ = Kkyk (42)

where Kk is the Kalman Filter gain, Hk the measurement matrix, Rk the measurement

noise covariance matrix and yk the measurement residual.

The measurement matrixHk is of dimension m×(n+a+
k ) where m is the number of sensor

measurements. The first n columns of the Hk matrix correspond to the main state. For

time delayed, relative measurements the columns of Hk corresponding to the referenced

augmented states are filled with the relative measurement matrices.

We use a pseudo measurement to exploit the gravity vector for roll and pitch stabilization

[28]. The measurement equation is given by:

ãBEB +R(qBE)gE = R(qEB)T




0 −g 0

g 0 0

0 0 0


 δσ + nã (43)

where nã denotes the AWGN of the measurement with variance R = E[nãn
T
ã ]. The

pseudo measurement is valid as long as the acceleration is dominated by gravity. This

can be reflected by a measurement variance depending on the currently commanded flight

dynamics.

A general odometry sensor provides noisy position and orientation changes of the sensor

between two points in time T1 and T2.

x̃T2T1 =

(
p̃C1
C1,C2

q̃C1
C2

)
+ n̄x̃ (44)

where n̄x̃ is a AWGN random variable modeling the sensor noise (with rotational noise in

quaternion representation). Position and orientation states at time Tx are augmented to

process the measurement. The augmented sub-states can be written as:

δaug,Tx =
(
δpTx δσTx

)T
(45)

xaug,Tx =
(
pE,TE,Bx

qE,TBx

)T
(46)

Considering the known, static camera to IMU calibration (tBB,C , RC
B), the estimated sensor
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delta pose between T1 and T2 is:

xT2T1 =

(
RC
BR

B1
E (pEE,B2

− pEE,B1
+ (RE

B2
−RE

B1
)tBB,C)

qCB • qB1
E • qEB2

• qBC

)
=

(
pC1
C1,C2

qC1
C2

)
(47)

The measurement equations can be derived as:

x̃T2T1 	 x
T2
T1

=
(
H1 H2

)(δaug,T1

δaug,T2

)
+ nx̃ (48)

with the measurement submatrices as:

H1 = RC
BR

B1
E

(
I3×3

⌊
pEE,B2

− pEE,B1
+RE

B2
tBB,C

⌋

03×3 I3×3

)
(49)

H2 = RC
BR

B1
E

(
−I3×3 −

⌊
RE
B2
tBB,C

⌋

03×3 −I3×3

)

and the definition of 	 as:

x̃T2T1 	 x
T2
T1

=

(
p̃C1
C1,C2

− pC1
C1,C2(

diag(2 2 2) 03×1

)
q̃C1
C2
• qC2

C1

)T

which is a subtraction of the position part and the delta rotation for the attitude part,

computed between the two delta orientations and approximated by the error angle vector

representation.

The measurement noise nx̃ is again characterized by its covariance matrix Rx̃ = E[nx̃n
T
x̃ ]

calculated by the odometry algorithm. Rotational noise is parameterized by Euler angles

corresponding to n̄x̃.

Hard real-time requirements The state estimation framework is used for system

control and therefore has to run in hard real-time. The maximum processing time has to

be determined and limited to the sampling period interval. For the introduced estimator,

the maximum execution time can be determined for a constant number of states measuring

the execution time of one filter augmentation, one filter prediction and two updates of

constant measurement vector size. Furthermore, we have to add the execution time for

one SDA calculation step, the maximum time the direct state vector might be locked by

the SDA thread. By limiting the maximum number of states, hard real-time execution

can be guaranteed independently of varying measurement time delays.

The maximum number of filter states determines the maximum number of key frames that

can be used by the visual odometry system considering real-time requirements. The key

frame buffer of the visual odometry system and the corresponding augmented states within

the EKF framework have to be synchronized to keep the number of state augmentations at

a minimum. For synchronization, the visual odometry system sends a list of timestamps
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of the currently buffered key frames with every calculated delta pose measurement at

the current time tn, starting at tp1 and ending at tp2. The EKF framework uses this

information to remove all state clones and buffered direct states with timestamp t < tp2

which are not in the key frame list. In this way we limit the number of clones in the filter

to a minimum which is the number of used key frames plus the number of image triggers

between tp2 and tn.

4.5 Position tracking control and reference generation

The MAV’s position and yaw are controlled based on the motion estimate of the sensor

data fusion. For this purpose a cascaded position tracking controller is implemented,

along with a reference generator and a low level state machine responsible for keeping

the system in a known state. The reference generator is used to create smooth position,

velocity, acceleration and yaw commands for the controller to track, based on a list of

waypoints. The flown path then consists of straight-line segments between the waypoints.

Good position tracking performance is crucial when transitioning between indoor and

outdoor areas, and when flying indoors in tight spaces. Flying in this multitude of envi-

ronments makes the robot susceptible to a range of time-varying external disturbances.

When flying outdoors, especially in the vicinity of buildings, sudden wind gusts can occur.

Furthermore, flying through openings and in hallways can introduce air vortices which

can be detrimental to the flight performance. In order to compensate for this, we employ

an acceleration-based disturbance observer in the position control loop. Lastly, we don’t

consider time delays in the controller, as these are handled by the fusion algorithm.

Position tracking control. We employ a classical cascaded control structure depicted

in Fig. 10 for position tracking of the quadrotor [32]. Attitude stabilization and control

is achieved by the Asctec Autopilot board using a PD Euler angle controller, which uses

its own IMU and attitude estimate. We implemented a tracking position controller on the

real-time Gumstix computer, using the current position and attitude estimate provided by

the fusion. Internally, the position controller calculates a desired force f on the quadrotor

in the fixed world frame. This must be converted to a valid attitude and thrust input

u = [φ, θ, r, T ]T for the autopilot, where φ is the desired roll angle, θ is the desired pitch

angle, r is the desired yaw rate, and T is the desired thrust.

Using the autopilot attitude controller has several implications. First, the PD controller

cannot achieve perfect tracking and no feedforward angular velocity can be sent. Second,

the orientation estimate used for control will differ from that of our data fusion. Therefore,

we add an integrator for the roll and pitch inputs to compensate both effects. Lastly, the

yaw control input is the desired rate, so yaw control is achieved by a proportional controller.

We want to track a reference position xd, velocity ẋd, acceleration ẍd and yaw angle

ψd. This is achieved by a PD feedback controller with acceleration feedforward and a

disturbance observer (DOB). The DOB structure originates from [4] and [6], and has more
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Figure 10: Block diagram of the position controller with disturbance observer.

recently been applied to quadrotors in [25] and [54]. Here we assume a simplified model of

the quadrotor with mẍ = f +h, where m is the quadrotor mass, ẍ the acceleration, f the

control input and h the external disturbance and model error acting on the system. The

expression h cannot be used directly due to noise in the acceleration signal and possible

high-frequency disturbance that cannot be compensated by the system. Therefore, we

filter the pseudo-measurement with a first-order lowpass filter (Tds+1)−1, where Td is the

filter time constant. Our controller then has the form

f0 = m
(
ẍd −KD

˙̃x−KP x̃
)
− ĥ

˙̂
h =

1

Td
(mẍ− f)

(50)

With this approach it is easy to tune the response of the disturbance observer, as the

time constant is its only parameter. The control inputs must be saturated, also to prevent

wind-up of the disturbance estimate. Using the observer also removes the need for an

integrator in the position controller, greatly simplifying the tuning.

Reference generation. The input to the controller is a list ofN waypoints p1,p2, . . . ,pN .

To prevent control jumps and ensure predictable behavior, the list passes several steps to

obtain the reference trajectory, as depicted in Fig. 11. Firstly, a waypoint monitor deter-

mines whether the current waypoint pi has been reached. We consider that a waypoint

is reached when the estimated position has been within a radius of tolerance from the

waypoint for a minimum amount of time. When the condition is fulfilled, we switch to

the next waypoint. Secondly, the path is a line between two waypoints. We interpolate

the path with a varying velocity v. Lastly, the reference trajectory (position xd, veloc-

ity ẋd, acceleration ẍd) is obtained by an asymptotic M -th order lowpass filter λM

(s+λ)M
,

where M > 3 to obtain acceleration. The maximum velocity can be specified by vmax and

aggressiveness of the path can be set by the filter parameter λ. By flying to waypoints in

this way, transitions between waypoints will be smooth. Our approach is similar to that

presented in [41].

Our path planner does not plan any trajectory velocity, but instead only sends a list of
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ẍd

-

pdṗdpi
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Figure 11: Overview of reference trajectory generation and control structure.

waypoints to be flown. Therefore, a method to compute the required velocity on the path

is required, for example to fly the path with a constant velocity. However, this might

not always be possible. In some situations, such as strong wind gusts that cannot be

compensated, the quadrotor can lose track of the reference. To ensure that the reference

position does not go too far away from the real MAV position, we change the interpolation

velocity according to the current position tracking error. The input pd to the lowpass filter

will not change if the tracking error is above a threshold R. Hence, we change the velocity

according to v(‖x̃‖) = sat
((

1 − (‖x̃‖/R)
)2) · vmax . This quadratic function results in

near maximum velocity close to the trajectory and slows down only on large errors. Once

the error reaches the threshold R and above, the reference stops.

Low level state machine For ensuring that the system is always in a known state, a

simple state machine is implemented at the controller level. Most importantly, this is to

prevent any integrators in the controller to update when the system is not flying, i.e. when

the control loop is not closed. It also manages state of the reference generator, e.g. to

reset the reference when the quadrotor has landed and was manually moved to another

location during experiments. Additionally, it provides safety from wrong operator actions,

e.g. that the system must first be flying before any paths can be sent. The state machine

is described in detail in our previous work [61].

4.6 Mapping, planning and mission control

The basis for our mobile robot navigation in cluttered environments is a metric repre-

sentation of the environment. While for ground based robots a 2.5D representation is

usually sufficient, on flying systems a full 3D representation is needed. Only with such

a representation, planning through windows or under bridges can be realized. Therefore,

we use a probabilistic voxel map implemented as an octree which is provided by the Oc-

tomap library [63]. Fig. 12 depicts the processing pipeline for map building. Considering

a static environment, we lower processing time by resampling the depth images at a lower

frequency than available from the FPGA. The resulting depth images are converted to a

point cloud. Inserting high resolution point clouds into a probabilistic voxel map is com-

putationally expensive as for each point a ray-cast through the map has to be calculated.
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In the near range a map voxel may be represented by several points of the point cloud.

Therefore, we use a voxel grid prefilter with the same resolution as the voxel map. The

resulting, filtered point cloud is inserted into the map by ray-casts using the robot pose

calculated by the sensor data fusion.

Depth image Resampling
Point cloud

conversion

Point cloud

filter
Octomap

Figure 12: Data processing pipeline for map generation.

The path planning module uses the map to calculate an obstacle-free path from the cur-

rent robot position to a given waypoint. We cut a horizontal plane at the current altitude

of the robot and its height as thickness out of the octomap. The voxels of this plane are

projected down into a 2D horizontal map. We employ the ROS Navfn package imple-

menting Dijkstra’s algorithm for 2D path planning at the current height of the robot. By

running the planner at the frequency of the mapping module, newly appearing obstacles

are avoided. The calculated path consists of a list of densely spaced waypoints, discretized

in the map grid.

Before commanding the plan to the controller, we first prune the plan to reduce the

number of waypoints. Pruning is based on comparing the arc length of a path segment to

its straight-line approximation. We iterate through all plan waypoints and compare the

arc lengths between the last accepted waypoint pm and the currently considered waypoint

pk to a straight line between the two. Hence, we compare the values

Larc =
k∑

i=m+1

‖pi − pi−1‖, Lstraight = ‖pk − pm‖

and accept the waypoint pk−1 (thereby setting m = k−1) if the relative difference exceeds a

threshold, i.e. if Larc > (1+ε)Lstraight for small ε. By filtering the path in this way, straight

paths are approximated by a small number of waypoints, whereas path segments with high

curvature (i.e. around obstacles) are represented by a higher number of waypoints. Using

the reference generation strategy introduced in Section 4.5, the flight velocity is effectively

increased in obstacle-free areas, whereas it is decreased in cluttered environments. Lastly,

we calculate the required yaw orientation such that the MAV is always oriented toward

the next waypoint, in order to obtain a map in the flight direction.

We realize mission control by employing the ROS SMACH library. It facilitates the imple-

mentation of complex robot behaviors using the concept of hierarchical state machines.
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5 Experiments

We verify the introduced system concept in experiments considering several aspects. First,

we analyze the influence of vision dropouts, as well as measurement time delays and

frequency on the quality of the sensor data fusion. Therefore, we simulate a quadrotor

and its sensors flying highly dynamic maneuvers. Next, the quality and robustness of

the stereo odometry inertial navigation is evaluated on a hand-held device with the same

hardware configuration as described in Section 3.1 and on the navigation box mounted on

the quadrotor. Finally, we demonstrate the combined operation of all modules, realizing

autonomous functionalities needed for MAV flight in cluttered indoor/outdoor SAR and

disaster management scenarios.

5.1 Influence of odometry measurement frequency and delays

As presented previously [57], pose measurement frequency and time delays influence the

quality of system state estimation, which is essential for accurate MAV control. To study

this effect we simulated a quadrotor on a pre-defined trajectory. A virtual IMU measures

quadrotor accelerations and angular rates on three axes. The corresponding measurement

is modeled as the real measurement plus additive white Gaussian noise (AWGN) and a

bias driven by a random walk process. Additionally, we simulated the IMU barometric

sensor as height measurement plus AWGN. We used noise parameters available from the

datasheet of our real IMU. Stereo odometry is simulated as a virtual delta pose sensor.

The key frame system was simulated to hold one key frame for one second. The delta pose

is disturbed by AWGN with a base standard deviation of σpos = 0.01 m for position and

σatt = 0.02 rad for attitude measurements. The standard deviation is varied over time

by multiplication with a factor between 1 and 100 to simulate bad lighting conditions or

missing environment features. The delta pose measurement is delayed by a variable time

delay.

To cover different dynamic flight conditions, the trajectory consists of three parts. In the

first part after take-off (12 s), a short, highly dynamic maneuver is conducted by com-

manding a flip. Accelerations of up to 3 g are measured. In the second part (16 s to 150 s)

a long and slow flight path on a square is commanded. Finally, in the third part (150 s to

300 s), the randomly generated trajectory shows long term fast dynamics with up to 1 g

accelerations on the horizontal plane corresponding to roll and pitch angles of up to 50◦.

Velocities go up to 4 m/s. The trajectory and its estimate are depicted in Fig. 13. For

this example plot the delta pose sensor runs at f=9.5 Hz with a measurement time delay

d = 100 ms. Fig. 14 depicts the corresponding error plot. Errors are illustrated in blue

and their estimated three sigma bounds in red. It can be seen that in phases of uncer-

tain delta pose measurements the covariances show peaks as expected. The uncertainties

for the x and y-axes rise slowly, whereas the corresponding velocity errors are bound to

about 3 cm/s. The errors for the z-axis are bound by the simulated barometric height

measurement.
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Figure 13: Simulated flight with delta pose sensor running at f=9.5 Hz with measurement
time delay d = 100 ms and key frame hold of 1 s. Plots from top to bottom: Standard
deviation of delta pose measurement; Reference position (px,y,z) in red, estimated position
in blue; Reference velocity (vx,y,z) in red, estimated velocity in blue; Reference angles (roll,
pitch, yaw) in red, estimated angles in blue. The trajectory includes a flip (t= 12 s), a
slow passage (t= 12 s to t= 150 s) and a highly dynamic passage (t= 150 s to t= 300 s)
with velocities of up to 4 m/s and accelerations of up to 1 g resulting from roll and pitch
angles of up to 50◦. Scale of the plots’ y-axes changes at t=150 s.

121



AUTONOMOUS VISION-BASED MICRO AIR VEHICLE
FOR INDOOR AND OUTDOOR NAVIGATION

10−2

10−1

100

101

σ
[m

]

0 50 100 150 200 250 300

−0.5

0

0.5

e p
,x

[m
]

0 50 100 150 200 250 300

−0.5

0

0.5

e p
,y

[m
]

0 50 100 150 200 250 300

−0.02

0

0.02

e p
,z

[m
]

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

e v
,x

[m
/
s]

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

e v
,y

[m
/
s]

0 50 100 150 200 250 300

−0.04

−0.02

0

0.02

Time [s]

e v
,z

[m
/
s]

Figure 14: Simulated flight with delta pose sensor running at f=9.5 Hz with measurement
time delay d = 100 ms and key frame hold of 1 s. Plots from top to bottom: Standard
deviation of delta pose measurement; Errors for position (ep,x,y,z) and velocity (ev,x,y,z)
in blue and the corresponding estimated 3σ bounds in red. The estimate covariances rise
during phases of bad odometry measurements. The x, y position error rises slowly, the
z position error is bound by an absolute barometric height measurement. The velocity
errors are bound by the position measurements.
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We varied the frequency of the simulated key frame odometry sensor from f = 15 Hz to

f=1 Hz as well as the delays of the measurement arrival from d= 1
f − dt to d=dt with a

sampling time of dt=5 ms. For each dataset 20 Monte Carlo simulations were performed

resulting in a total of 800 runs. For control applications we are especially interested in

the velocity estimate in the body frame. In the absence of an absolute measurement of

the yaw angle, we transformed the ground truth velocities from the simulated world frame

to the estimated world frame. In this way the velocities are directly comparable. Fig. 15

depicts the dependency of the mean of the root mean square errors (RMSE) over all runs

for position and velocity.
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Figure 15: Root Mean Square Errors (RMSE) for varying frequencies and measurement
delays. For each frequency/delay combination the mean of 20 runs is depicted.

The position RMSE is almost constant for varying measurement delays. The direct delta

pose measurement has a strong influence on the position compared to the double integrated

acceleration. The constant key frame hold time of 1 s has the effect of an absolute position

measurement for the period of the key frame. Therefore, the effect of varying measurement

time delays with constant frequency on the position estimate is small. From Fig. 15.c) it
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can be seen that the quality of the position RMSE rises exponentially with the frequency

of the measurement. The shorter the intervals during the measurement updates, the lower

the influence of the double integrated accelerations.

In contrast to the position RMSE, the RMSE of the velocity estimate depends linearly

on the delay of the measurement update. This can be explained as there are no direct

sensor measurements for velocity but the estimate is calculated by integration of accelera-

tion measurements and indirect corrections via delta poses. The noise of the acceleration

sensors has, therefore, a stronger influence. The longer the measurement time delay, the

greater the influence of integrated acceleration noise on the velocity. As seen for the posi-

tion, the accuracy of the velocity estimate also rises exponentially with the measurement

frequency (Fig. 15.d)).

5.2 System validation on a handheld device

For the second experiment, we built the navigation box (see Section 3.1) in form of a

hand-held device (see Fig. 16) to validate the system concept on real hardware. By using

a hand-held device we separate the estimation from the control problem. In the following

we will present some experimental results [64].

Figure 16: Navigation box as hand-
held device.
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Figure 17: Experimental outdoor trajectory
measured by tachymeter (ground truth), vi-
sual odometry and sensor data fusion.

We conducted several outdoor experiments using a tachymeter (Leica TP1200 ) for ground

truth validation. Therefore, we mounted a 360◦ prism on top of the device. The tachymeter

can automatically track the position of the prism with an accuracy of about ±5 mm.

We carried the device on a triangular trajectory of about 70 m as illustrated in Fig. 17.

Thereby, we considered three different experimental setups:

• Setup 1 : To analyze the influence of visual odometry key frames on the estima-

tion accuracy, we disabled key frames, continuously integrating the motion between

consecutive images.
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• Setup 2 : To validate the system configuration used on our MAV, we set the param-

eters for the visual odometry system to 300 features and 5 key frames.

• Setup 3 : Robustness of the state estimation in case of vision dropouts is essential for

control of MAVs. Therefore, we forced two vision dropouts during the run by holding

a hand in front of the cameras. During the first, lasting about 5 s, we conducted

mainly a translational motion. During the second, we turned the device quickly by

130◦ to guarantee losing the connection of all key frames.

Table 4: Outdoor experiments with ground truth. From left to right: Number of run,
distance of run, number key frames (KF) divided by total number of images (TF), mean
of visual odometry position error (Ēestabs), mean of estimation position error (Ēestabs), maxi-
mum of visual odometry error (Ecammax), maximum of estimation error (Eestmax), final visual
odometry position error (Ecamend ), final estimation position error (Eestend), relative final visual
odometry error (Ecamrel ), relative final estimation error (Eestrel ).

Run Dist[m] KF/TF Ēcamabs [m] Ēestabs[m] Ecammax[m] Eestmax[m] Ecamend [m] Eestend E
cam
rel [%] Eestrel [%]

1 68 1.00 0.64 0.32 1.69 0.89 1.69 0.88 2.46 1.29

2 63 1.00 0.92 0.57 1.66 1.13 1.66 1.10 2.64 1.75

3 66 1.00 0.61 0.39 1.44 0.90 1.32 0.86 2.00 1.30

4 68 1.00 0.71 0.51 1.78 1.49 1.70 1.45 2.51 2.13

5 68 0.42 0.32 0.36 0.81 0.70 0.59 0.63 0.88 0.93

6 69 0.53 0.64 0.58 1.32 1.18 1.27 0.88 1.84 1.27

7 67 0.51 0.48 0.40 1.01 0.95 0.90 0.77 1.35 1.16

8 – – – – – – – – – –

9 70 0.71 8.52 0.57 26.47 1.14 26.47 0.84 38.06 1.21

10 69 0.69 7.66 0.55 20.28 1.86 20.28 0.67 29.22 0.97

11 70 0.71 7.65 0.63 23.25 1.75 23.25 0.97 33.26 1.39

12 70 0.72 8.13 0.38 25.86 1.28 25.85 1.13 37.16 1.62

For each setup, we conducted 4 runs. Table 4 summarizes the experimental data while

Fig. 18 depicts the error plots for each setup. During run 2, the tachymeter tracking

was lost but could be recovered. During run 8, the tracking was completely lost so no

ground truth is available. Analyzing the influence of key frames (setup 1 vs. setup 2), as

expected, visual odometry becomes more accurate. During the starting phase while the

device is standing on the table the effect of key frames can be clearly seen. While there

is a position drift in setup 1, the drift is completely compensated in setup 2. It has to be

mentioned that the positive effect of key frames during the experimental run is limited as,

due to the lack of nearby obstacles, we pointed the stereo cameras mainly to the ground.

With a camera ground distance of about 80 cm only few key frames can be re-referenced

while walking. The ratio of key frames and total number of frames (KF/TF) is therefore

relatively high at a value of around 50 %.
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Figure 18: Error of visual odometry and fusion estimate. Top: visual odometry without
key frames and 300 features; middle: visual odometry with 5 key frames and 300 features;
bottom: visual odometry with 5 key frames and 300 features, forced interruptions marked
as solid areas

Besides accuracy, robustness of the state estimate in the case of vision dropouts is essen-

tial for control of inherently unstable MAVs. Setup 3 demonstrates the effect of vision

dropouts. During the first dropout of about 5 s with mainly translational motion, the

position error of the visual odometry system rises drastically while the effect is strongly

limited for the sensor data fusion estimate. At the second dropout with a fast 130◦ turn,

orientation is completely lost by the visual odometry resulting in a fast rise of errors

with the distance moved. Orientation was accurately tracked by the IMU during vision

dropout, which results in almost no influence on the estimate.

The sensor data fusion errors show a similar behavior for all three setups. They are all

smaller than 1.5 m after a run of 70 m corresponding to worst experiment errors less than

2.2 %. On MAVs, vision dropouts can easily occur during fast maneuvers provoking motion

blur. The introduced visual/inertial navigation system was shown to deliver a robust state

estimate in such situations as well. A video of the experiments is available online [66].
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5.3 System validation on the quadrotor platform

We evaluated the quality of the estimation results of the navigation box and the effective-

ness of its damped mounting in quadrotor flight experiments. With the fast movements

of the MAV and the limited dynamics of the tachymeter tracking, we could not provide

a ground truth for the flown trajectory. Instead we started and landed the quadrotor at

the same position and used the position difference as quality criterion.

The manually flown trajectory (see Fig. 19) starts outside a building in the center of a

gully (radius 0.38 m) surrounded by lawn. The quadrotor is flown around the building to

the entrance door. After entering the building, the left corridor (corridor 1) is traversed

to return to the entrance hall via a laboratory on the right side. From the entrance hall,

the quadrotor is flown to the second floor via the staircase. The corridor above corridor

1 is traversed to leave the building through a window close to the starting point. The

quadrotor is landed on the center of the gully to close the trajectory loop after a path

length of 110 m. A video of the visualized on-board data is available online [66].
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Figure 19: Path and on-board map of a manually flown indoor (green) and outdoor (red)
trajectory of 110m. Grid resolution is 1 m.

The trajectory includes several challenges for the navigation solution: Outlier rejection

for visual features has to be robust as leafs on the ground are stirred up by the quadrotor

downwash. The lighting conditions between indoor and outdoor areas vary strongly. In

poorly textured indoor areas (white walls in the corridors) visual odometry easily drops

out. The building is left through the window at a height of about 4 m above lawn with

self similar texture.

The position estimation errors of ten experimental runs are summarized in Table 5. All

ten runs resulted in an estimated position loop closure error smaller than 2.20 %. Pure

visual odometry has a mean loop closure position error of 8.15 % while the fusion with

IMU results in a mean error of 1.27 %. The resulting on-board maps are precise enough
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Table 5: Manually flown indoor and outdoor trajectory of 110m. From top to bottom:
Final visual odometry position error (Ecamend ), relative final visual odometry error (Ecamrel ),
final estimation position error (Eestend), relative final estimation error (Eestrel ).

Run 1 2 3 4 5 6 7 8 9 10 Mean

Ecamend [m] 5.38 6.14 7.83 3.50 12.80 13.61 7.88 11.26 16.25 4.95 8.96

Ecamrel [%] 4.89 5.59 7.12 3.18 11.63 12.37 7.16 10.24 14.77 4.50 8.15

Eestend [m] 2.42 1.29 1.41 1.31 0.96 1.37 0.89 1.98 1.56 0.76 1.40

Eestrel [%] 2.20 1.17 1.28 1.19 0.87 1.25 0.81 1.80 1.42 0.69 1.27

for path planning and obstacle avoidance. The experiments proved the robustness of the

navigation solution in geometrically unconstrained scenarios (no flat ground or vertical

wall assumptions).

5.4 Autonomous indoor and outdoor flight

We verified autonomous flight behavior on a further mixed indoor and outdoor flight

using our quadrotor platform [65]. Initially the quadrotor was placed in the 1.8 m wide

corridor 1 of the building described in Section 5.3. After the commanded take off, the

operator could select goals on the on-board 3D map transmitted to a ground station. The

commanded waypoints lead the quadrotor from its starting point through a window to the

outside of the building. Fig. 21 illustrates the on-board world representation just before

crossing the window. After circling the building, the MAV was commanded to re-enter

via a door and to return through the corridor to its starting point. Appearing obstacles

were autonomously avoided due to continuous re-planning.

The transition from indoor to outdoor and vice versa is challenging in several aspects:

the lighting conditions change quickly and usually the visual odometry shows dropouts

for several images until the camera shutter is re-adapted. In contrast to our odometry

system, feature-based SLAM methods can easily lose the correspondence connection and

need reinitialization. Wind conditions change suddenly between a narrow indoor corridor

with self induced turbulence and a wide outside free space with possible wind gusts. In our

case, we conducted the indoor/outdoor transition through a 1.25 m wide window, while

the quadrotor has a diameter of 0.77 m. Therefore, the obstacle map has to be accurate

for finding a valid path through the inflated window frame and the controller has to follow

the planned path precisely to prevent collisions.

The experiment was successfully repeated three times. Fig. 20.a) shows a 3D reconstruc-

tion of the flown area, recomputed offline at a higher resolution of 2.5 cm using only

on-board calculated depth images and fused poses. No offline optimization or loop closure

was applied. In Fig. 20.b) the environment representation is shown as it is calculated

on-board and used for path planning and obstacle avoidance.

The experiment showed the feasibility of autonomous quadrotor navigation in uncon-

strained, mixed indoor/outdoor environments. The navigation solution is accurate enough
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for safe flight in cluttered environments. Computationally expensive SLAM algorithms

can increase global positioning accuracy especially in the case of loop closures. Neverthe-

less, they are not necessary for safe navigation. A video of the experiment is available

online [66].

Start

Window

Door

Outdoor area

Indoor area

a) Offline 3D reconstruction with 2.5 cm resolu-
tion.

Start

Window

Door

Outdoor area

Indoor area

b) On-board computed octomap with 10 cm reso-
lution.

Figure 20: Offline 3D reconstruction with 2.5 cm resolution using on-board calculated
ego-motion estimates and depth data only. The indoor trajectory is marked in green,
while the outdoor trajectory is marked in red.

Figure 21: Stereo depth image, on-board camera view, on-board computed octomap, and
flown path before flying through the window.

5.5 Exploration in a coal mine

We tested the introduced MAV in a possible disaster management scenario, a coal mine

in Recklinghausen/Germany. We used the waypoint navigation system introduced in Sec-
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tion 5.4 to enable the operator to explore two corridors in the mine. At the end of the

second corridor the quadrotor was commanded back to its starting point. Figures 22.a)

to 22.c) show the experimental setup with the two corridors and depict the on-board map

and the flight path of about 100 m. A video of the experiments is available online [66].

The environment is challenging in several aspects: Firstly, the lighting conditions below

ground were poor. Therefore, we equipped the system with camera synchronized LED

flash lights. Secondly, flying in narrow corridors causes air turbulences demanding for a

fast control strategy. Thirdly, the downwash of the MAV raises dust which can be prob-

lematic, especially for the vision system. Fourthly, the navigation algorithm can not rely

on flat ground or vertical wall assumptions. Finally, heavy machines and generators in the

corridors produce a strong magnetic field which is why magnetic compass measurements

are not reliable.

a) First corridor: Quadrotor flying
over a hand car

b) Second corridor: Flight in a
dusty surrounding

c) Visualization of on-board
map (grid resolution 1 m)

Figure 22: Autonomous flight in a coal mine: The operator guides the quadrotor by setting
waypoints in the on-board map. Based on the map an obstacle free path is calculated on-
board. Waypoints are approached autonomously.

The experiments showed that the introduced navigation system is robust under rough

environmental conditions, like dust and poor lighting, which might occur during search

and rescue missions. Despite multiple dropouts of the stereo depth images due to dust, the

navigation solution could be used for accurate system control and on-board mapping.

6 Discussion

In this chapter we summarize key issues and reveal some lessons learned. Furthermore,

we discuss the results of the conducted experiments and give an outlook on future work.

6.1 Low level system setup, lessons learned

As MAVs are inherently unstable, robustness of the computer that is running the controller

is essential. Distributing high level and low level tasks on different computers improves

the robustness of the system as they can influence each other only by predefined com-

munication interfaces. Especially during controller development, redundancy using two

independent autopilots helps a safety pilot to keep control at any time.
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While transferring algorithm tests from simulations to real hardware, we realized that the

bulk of occurring problems was caused by timing issues. Considering sensor data fusion,

the processing of delta measurements makes the algorithm strongly sensitive to small er-

rors in timing of the task scheduler. The sensitivity of the relative timing error of a system

scheduler rises with the frequency of the executed task. Considering the fast dynamics of

a flying system, the controller has to run at a high rate compared to ground based mobile

robots. The use of a real-time OS can help to lower the influence of timing errors. Further-

more, using an operating system simplifies the development of complex, multi-threaded

algorithms such as, for example, our sensor data fusion. Employing the same operating

system for RT and Non-RT tasks simplifies system maintenance and improves interop-

erability of algorithms. As shown in Section 3.2, Linux with the PREEMPT RT kernel

patch is suitable as such an operating system also on embedded ARM based computers.

A further pitfall using distributed systems is sensor data timestamping. Employing hard-

ware triggers for sensors guarantees an exact registration of measurement times on all

systems. Nevertheless, the data itself has to be timestamped and registered with the cor-

responding trigger. Therefore, all communicating systems have to use a common time

base for accurate synchronization.

Hence, the timing behavior and flexibility of the communication channel are of great im-

portance. Using standard communication interfaces such as Ethernet, even for the system

running the controller, gives great flexibility in the development phase. Communication

latencies can be reduced by applying Quality of Service (QoS). Standard software network

bridges realize a transparent communication and debugging of all systems. Changing

communication routes from wired to wireless does not affect the development process.

An FPGA extension of computers can drastically unburden CPU load if used for compu-

tationally intensive but parallelizable algorithms. Their power consumption is also lower

than that of CPUs or GPUs. Nevertheless, development of complex algorithms for FPGAs

is a time consuming task compared to CPU programming. Hence, the algorithms should

be well established and tested before implementing them on an FPGA to limit expensive

changes.

Combining all electronics and sensors in a modular unit, separate from the quadrotor

frame, has several advantages. The combined weight of all components can be used for

vibration damping. In case of crashes, most of the energy is absorbed by the quadrotor

frame, while electronics are protected by the dampers. Furthermore, the box can be easily

exchanged or used on different platforms. Mechanical stiffness of the sensor mounting can

be realized and maintained more easily as there is no direct connection to load-bearing

structures. This is especially important for the calibration of the extrinsic stereo camera

configuration but also for the camera/IMU registration.

The accurate estimation of the spatial alignment between stereo cameras and IMU has been

shown to be only partially crucial. While the rotational alignment influences the accuracy

of the motion estimation significantly, an inaccurate translational alignment only has a

small impact on it. The poor signal-to-noise ratio of the accelerometers results in small
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weights for the acceleration measurements in the update step of the navigation filter.

Hence, an erroneous translation calibration can not much affect the motion estimation

result. This fact is also the reason for the poor observability of this parameter during

registration. An improved signal-to-noise ratio, e.g. applying highly dynamic motions

during registration, is beneficial for the estimation result. If a quick spatial alignment

is required, the rotation can be computed in closed form as explained in [48], while the

translation can simply be measured with a ruler. In our experience, the resulting accuracy

is sufficient for exploration flights with slow dynamics.

6.2 Experiments

Simulation results of Section 5.1 show that the proposed vision inertial navigation frame-

work delivers robust and consistent system state estimates even during failures of the

visual odometry system (VO). Using key frames, the position estimate is locally drift

free. The simulated trajectory shows fast dynamics which are accurately tracked while

measurement time delays of the VO are compensated. The introduced sensor data fusion

algorithm complies with the requirements of robustness and accuracy for navigation of

highly dynamic flying platforms.

Variation of odometry frequency and delays are shown to have an influence on the state

estimation quality. Position accuracy is hardly influenced by delays while velocity accu-

racy decreases linearly with delays. On the other hand, position and velocity accuracy

increases exponentially with frequency. Considering these results, parallelization of the

vision pipeline on an FPGA is a useful mean for accuracy improvement. Processing fre-

quency is strongly accelerated using parallelization. Delays introduced by pipelining have

a comparably small effect on the accuracy.

Our visual odometry/IMU fusion system is well suited for autonomous navigation tasks

of small mobile robots. The system is demonstrated to be robust and accurate using real

sensor data while all information is processed on-board. Even in the case of long vision

dropouts, the conducted experiments on a hand-held device show a stable and accurate

estimation behavior. The position accuracy results are comparable to runs without vision

dropouts. The position accuracy using the navigation box as hand-held device or mounted

on the quadrotor are comparable due to the damped mounting.

The introduced system realizes a robust, vision based MAV autonomy concept for SAR and

disaster management scenarios. Its proof is shown in the presented exploration missions

in an unconstrained indoor/outdoor environment and in a coal mine. The active LED

illumination enables the system to fly in badly illuminated scenarios as the coal mine.

Furthermore, it reduces the time of vision dropouts during indoor/outdoor transitions.

6.3 Future work

There are still many challenges which have to be solved before an MAV can be used in

real SAR scenarios. For our platform, one of the most limiting factors is the short flight
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time of less than 10 minutes. We are working on its prolongation by lowering the weight

of the payload and developing a more efficient flying platform. Another limitation of our

current system is the limited field of view of the camera system. We are working on a new

quadrotor design that allows the mounting of cameras with a wider field of view.

Considering path planning, the current 2D planner does not exploit the possibilities of the

3D on-board map. We are working on a full 3D trajectory planner. Furthermore, dynamic

obstacles should be considered by reactive collision avoidance.

7 Conclusion

We presented an MAV for vision based autonomous operation in search and rescue and

disaster management scenarios. The presented quadrotor test platform can navigate in

cluttered indoor and outdoor environments. No radio link to a ground station is needed for

safe navigation. All algorithms including stereo image processing, visual odometry, fusion

of odometry and inertial sensor data, control, mapping, and path planning are realized

on-board. Considering SAR scenarios, complex exploration missions can be accomplished

by an operator selecting goals of interest in the on-board map.

Designing autonomous MAVs on the basis of commercially available platforms is challeng-

ing and time consuming. Aspects of computational resources, weight as well as sensor

equipment and placement have to be considered carefully. We delivered an in-depth in-

sight into the design of our MAV platform. Our system includes a Core2Duo board for

non-real-time and an OMAP3730 based processor board for real-time tasks. Depth image

calculation of the on-board stereo camera rig is implemented on an FPGA. Using kernel

scheduler benchmarks we demonstrated that Linux with applied PREEMPT RT kernel

patch is suitable as real-time operating system for low-level tasks and together with an

unpatched non-real-time Linux we achieve a unified operating system interface on all used

computer boards. Furthermore, we introduced our non-linear batch-optimization based al-

gorithms for extrinsic camera to IMU calibration, which outperform conventional Kalman

filter based approaches.

Based on the presented low-level system we introduced our high-level MAV design. Depth

images with a resolution of 0.5 MPixel are calculated at a rate of 14.6 Hz using an FPGA

implementation of Semi Global Matching (SGM). The results are used for stereo odometry

calculation with key frame support. Our sensor data fusion algorithm combines inertial

measurements with key frame odometry. Delays of about 220 ms introduced by the vision

pipeline are compensated. The used key frame system allows a local drift free navigation.

The estimated system state is used for control and mapping. Therefore, depth images are

combined in a probabilistic octree. The on-board map is the basis for path planning and

obstacle avoidance.

We demonstrated the robustness and accuracy of the odometry based fusion algorithm in

Monte Carlo simulations. A highly dynamic quadrotor trajectory including a flip is used

to evaluate the influence of odometry dropouts as well as the influence of measurement
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frequency and delay variations of 1 to 15 Hz and 0 to 1 s, respectively. The simulation

accuracy results demonstrate that the fusion algorithm fits well to the timing properties

of the FPGA vision pipeline. In real system experiments, the odometry inertial fusion was

extensively tested. We demonstrated accurate results using a handheld device including

the same electronic and sensor hardware as employed on our MAV. Forced vision dropouts

in the experimental setup demonstrated the robustness of the system. In further experi-

mental scenarios, we used our quadrotor platform to prove the introduced MAV autonomy

concept in two exploration settings: a challenging mixed indoor/outdoor scenario and a

coal mine.

The next important step is to improve the endurance of the MAVs, e.g. by hardware

optimization or cooperation with ground based robots. We are confident, that this is

the last big step towards flying platforms becoming helpful and important tools for SAR

missions and disaster management scenarios.
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Appendix

A Mathematical Notation

The notation and definitions described here will be used in the following paragraphs.

Vectors are written in boldface. The following coordinate frames will be used directly, as

succeeding sub- or superscript, but might be also neglected in some equations for the sake

of readability:

• E: Earth fixed frame with the z-axis aligned with the gravity vector

• B: Body frame aligned with the IMU coordinate system

• C: Frame of the left camera

• Xk: Frame X at time step k

The following preceding superscript are used to reference the sensors by which the mea-

surements are acquired:

• C: cameras

• I: IMU

Matrices/Vectors:

• RY
X : Rotation matrix from frame X to frame Y

• qYX : Rotation quaternion from frame X to frame Y

• σYX : Rotation vector from frame X to frame Y in orientation vector representation

• R(qYX),R(σYX): Rotation matrix of corresponding orientation quaternion or vector,

respectively

• pXXY : Translation vector from X to Y expressed in X

• vXXY : Velocity of Y relative to X expressed in X

• bx: IMU biase of sensor x

• aXXY : Acceleration of Y relative to X expressed in X
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• XωY : Rotational velocity measured by sensor X expressed in frame Y

• gE : Gravity vector

Operators:

• bac: 3× 3 skew matrix such that bac b is the cross product of a and b

• diag(X1,X2, . . . ): diagonal matrix with X1, X2, . . . as diagonal elements

• E[n]: mean of the stochastic variable n

• •: quaternion multiplication

• ⊗: Kronecker matrix product
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Paper 4

Local reference filter for life-long

vision aided inertial navigation1

K. Schmid, F. Ruess, and D. Burschka

Abstract Filter based system state estimation is widely used for hard-realtime appli-

cations. In long-term filter operation the estimation of unobservable system states can

lead to numerical instability due to unbounded state uncertainties. We introduce a filter

concept that estimates system states in respect to changing local references instead of one

global reference. In this way unbounded state covariances can be reset in a consistent

way. We show how local reference (LR) filtering can be integrated into filter prediction

to be used in square root filter implementations. The concept of LR-filtering is applied to

the problem of vision aided inertial navigation (LR-INS). The results of a simulated 24 h

quadrotor flight using the LR-INS demonstrate long-term filter stability. Real quadrotor

flight experiments show the usability of the LR-INS for a highly dynamic system with

limited computational resources.

1 c©2014, International Society of Information Fusion (ISIF). Reprinted, with permission, from Infor-
mation Fusion (FUSION), 2014 17th International Conference on. IEEE. 2014
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1 Introduction

System state estimation for control requires sensor data fusion in hard realtime. For this

purpose, probabilistic filters are often used due their simplicity, low computational com-

plexity and deterministic timing behavior. To guarantee long-term stable state estimation

a numerically robust filter implementation as well as full system state observability are

fundamental. While numerically stable algorithms as for example square root filters are

well established, a state estimation formulation with full observability can not always be

guaranteed. This situation is critical in two aspects: firstly, unbounded filter covariances

can cause numerical instability. Secondly, linearization of non-linear systems often as-

sumes small state errors. If the errors rise unbounded the filter can become inconsistent.

An example of an unobservable set of states are yaw and position estimates in Vision

Aided Inertial Navigation Systems (VINS) [8]. We will explain the general concept of

local reference (LR) filtering using the example of VINS.

VINS is used on many robotic systems to estimate the current robot pose and further

states, as for example velocity. These estimated system states are the basis for autonomous

mobile robot operation including low level control, path planning and obstacle avoidance.

For inherently unstable and highly dynamic systems, as for example flying robots, state

estimation in hard-realtime is essential for system control.

In the recent years, the development of VINS showed great progress. Mourikis et al.

[5] demonstrated a hard-realtime capable mono vision/IMU fusion algorithm using an

Extended Kalman Filter (EKF). In their aproach a certain window over past poses is kept

within the filter state vector to process feature measurements taken from different locations

along the traveled trajectory. Using limited data windows makes realtime implementation

possible but turns the system into an odometry system as trajectory loop closures can not

be integrated.

In contrast to pure odometry systems, map based approaches make loop closures possible.

Kaess et al. [7] combined filtering and smoothing to realize loop closures and a realtime

capable state estimation system. A separator state on top of the smoothing problem

representing Bayes tree is used as interface between a global smoother and a local filter.

In a synchronization step, updates on the separator are exchanged between filter and

smoother. The current separator is continuously marginalized out of the filter to transfer

states from the filter to the smoother and use a new separator state. Even though, the

increase of globally referenced state uncertainty can be drastically reduced in the case of

trajectory loop closures, it is still globally unbounded.

A further map based approach, which tackles the problem of bad scalability and global

inconsistency for EKF-SLAM (Simultaneous Localization and Mapping) based systems,

is sub-mapping [4]. Local sub-maps, with arbitrary origins, are combined within a global

EKF. The demonstrated reference transformation of features can be adapted to realize

state transformation for vision aided inertial navigation and locally limit the uncertainty

increase of unobservable states. In our paper we generalize this idea and introduce a tech-
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nique to overcome the general problem of unbounded filter covariances for unobservable

filter states. Further, we consider hard-realtime constraints.

In our local reference filter a transformation function between the unobservable states and

a local reference is defined while the local reference is augmented to the filter state vector.

The filter prediction step is used to switch the filter states and its covariance to the new

local reference which is marginalized out at the same time. We demonstrate the concept

on a vision-aided inertial navigation filter. We sporadically change the filter reference

frame to a new frame with a lower relative uncertainty compared to the current system

state. All filter states and covariances are transformed to the new local reference frame

which can be a node of any (non-realtime) high-level navigation system either topological

or metric (as for example from a SLAM backend). In this way we separate local realtime

state estimation from global navigation and relax timing constraints on the latter one.

The implementation is realized as square root UD filter [1] to improve numerical stability

on embedded computers with limited floating point precision. The main contributions of

this paper are:

• a Local Reference Square Root filter concept (LR-filter) to realize long-term stable

state estimation including unobservable states

• the application of the LR-Filter concept to inertial navigation (LR-INS)

• a mechanism to combine global (topological or metric) navigation with long term

stable, local, metric state estimation with hard-realtime constraints

This paper is structured as follows: in Section 2 we explain the general concept of the

LR-filter and its implementation in square root form. In Section 3 a Local Reference

Inertial Navigation System (LR-INS) is developed. In Section 4 we prove long-term filter

stability in a simulated 24 h quadrotor flight experiment and present experimental results

of real quadrotor flights employing the LR-INS. We discuss results and limitations of the

introduced LR-Filter in Section 5 to conclude the paper in Section 6.

2 Local Reference Filtering

In the LR-filter, the global state reference is transformed to a local reference to limit the

unbounded increase of filter state covariances for unobservable system states. In terms

of filtering, this includes state augmentation, marginalization and transformation. These

operations can be included into a modified filter prediction step which we will derive in

the first part of this Section. We give a short overview of the Square Root UD Filter and

apply the modified Local Reference Filter prediction to Square Root filters. By including

all operations into the square root UD prediction step, the covariance matrix factorization

and its numerically superior properties can be kept at any time.
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2.1 State Augmentation, Marginalization and Reference switching within

Prediction

To change the reference of filter states and its corresponding covariance matrix a new local

reference has to be defined including at least states corresponding to the unobservable

system states. This local reference can be a partial clone of the current system state

optionally combined with sensor measurements. At time k, we augment the local reference

to the current state vector xk by:

x̄k =

(
xk

xaug

)
= g(xk, zk) (1)

where zk is a sensor measurement disturbed by Additive White Gaussian Noise (AWGN)

with covariance Rk. The filter covariance for the new state vector is calculated using the

Jacobian of g:

P̄k =
∂x̄k
∂xk

P k
∂x̄k
∂xk

T

+
∂x̄k
∂zk

Rk
∂x̄k
∂zk

T

= AkPA
T
k + T kRkT

T
k

(2)

where Ak is the augmentation matrix, T k is a noise transformation matrix. Using stochas-

tic cloning [3], the augmentation matrix has exactly one 1 per row and the noise transfor-

mation matrix is the zero matrix.

We can apply a regular prediction step to the augmented state which results for the

covariance prediction in:

P̄ k+1 =ΦkAkP kA
T
kΦT

k + (GkQkG
T
k + T kRkT

T
k ) (3)

where the augmented system matrix Φk is an identity matrix of corresponding size with the

original system matrix in the upper left corner. The augmented noise propagation matrix

Gk is a zero matrix of corresponding size with the original noise propagation matrix in

the top rows.

Analogously to Equation 1, we can define a transformation function f that transforms the

system states at time k + 1 (including all augmentations) into the new reference frame

defined by the augmented state and, at the same time, removes the augmented reference

state from the filter:

¯̄xk+1 = f(x̄k+1) (4)

Using the Jacobian of f(·) the transformed state covariance can be calculated as:

¯̄P k+1 =
∂ ¯̄xk+1

∂x̄k+1
P̄ k+1

∂ ¯̄xk+1

∂x̄k+1

T

=

=SkΦkAkP kA
T
kΦT

kS
T
k

+Sk(GkQkG
T
k + T kRkT

T
k )STk

(5)
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Equation 5 can be rewritten as:

¯̄P k+1 = Φ̃P kΦ̃
T

+ G̃Q̃G̃
T

(6)

which is exactly the form of a filter prediction step except for the (potentially) non

quadratic form of the system matrix Φ̃. We will exploit this similarity in Section 2.3 to

integrate state augmentation, propagation, marginalization and reference switching into

the square root UD prediction algorithm.

Even though all operations for local filtering can be carried out within one prediction step,

they do not have to be executed at the same time. For example, a reference switch can

be executed at any time after the augmentation of a potential reference. Nevertheless,

reference switching can be realized without the risk of covariance rank deficiencies due to

state cloning if the formulation from Equation 5 is used. Otherwise, state cloning may

create a problem for square root filter propagation algorithms.

2.2 Square Root UD filter

Often only single precision FPUs are available on small embedded computers. As per

Maybeck [2], the naive implementation of Kalman filters inherently involves unstable nu-

merics. Square root filters have vastly superior numerical properties. By factorization

of the covariance matrix, symmetry and positive definiteness are implicitly guaranteed.

Implemented in single precision they are at least as precise as a naive implementation

in double precision for a modest increase in computational load. State cloning, which

brings the covariance matrix close to a singular state, can be critical especially in a naive

implementation. A numerically stable implementation should be preferred. Therefore, we

shortly recap the Square Root UD filter algorithm. The square root UD-Filter (SRUD)

developed by Bierman and Thornton [1] uses a matrix factorization of the filter covariance

matrix in the form P = UDUT where U is a strictly upper triangular matrix and D a

diagonal matrix. As per Maybeck [2], in terms of numerical stability and complexity, the

SRUD filter is comparable to square root filters using Cholesky factorization but without

the need for calculating actual square roots. The introduced method can be easily applied

to both formulations. To stay consistent with the original SRUD publication, we keep the

formulation with a strictly upper triangular matrix U instead of a strictly lower triangular

matrix L as in the equivalent and more common LDLT decomposition.

Under the assumption of a diagonal noise matrix Q, without loss of generality as a Kalman

propagation noise term G̃Q̃G̃T can always be decomposed to result in a diagonal noise

matrix Q, the filter prediction step

Uk+1Dk+1U
T
k+1 = ΦkUkDkU

T
kΦT

k +GkQkG
T
k (7)
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can be reformulated as

Y DY T

Y =
(
ΦkUk Gk

)
, D = diag(Dk,Qk)

(8)

The prediction step in UDUT form is realized by triangularization of Y by the Modified

Weighted Gram-Schmidt (MWGS) algorthim or by weighted Givens rotations. The result-

ing quadratic, strictly upper diagonal part of Y corresponds to Uk+1. The corresponding

Dk+1 matrix results from the triangularization process.

Filter updates are realized in two steps: first measurements are decorrelated by diagonal-

izing the measurement noise matrix R. Then, several scalar updates are carried out via

modified Cholesky rank one downdates.

2.3 Local Reference Square Root UD Filter

State augmentation and reference switching can be implicitly realized in UD-form without

de- and refactoring of the covariance matrix. In Section 2.1, we showed that filter state

augmentation and reference switching can be seen as covariance prediction in a naive filter

implementation. We use this formulation as basis for implicit state augmentation and

reference switching for a UD factorized covariance matrix. Substituting the covariance

matrix P in Equation 6 by its UDUT factorization leads to the prediction step

Uk+1Dk+1U
T
k+1 = Φ̃UkDkU

T
k Φ̃

T
+ G̃QkG̃ (9)

which is equivalent to the regular SRUD prediction Equation 7 except for the non quadratic

form of the system matrix Φ̃. At this point the diagonal matrix Dk still has the size of

the old state vector before augmentation or marginalization. Applying triangularization

on Y of Equation 8 implicitly adapts the size of Dk+1 corresponding to the new state

vector size. Nevertheless, triangularization might fail if the resulting covariance matrix

is singular, depending on the used algorithm. Stochastic cloning always introduces a

covariance matrix rank deficiency directly after cloning. By combining augmentation and

prediction the matrix rank can be filled up by the system noise within one prediction step.

Therefore, special care has to be taken to choose a suitable discrete approximation of the

continuous prediction noise term G(t)Q(t)G(t)T .

3 Local Reference Inertial Navigation System

In this Section we apply the concept of LR-Filtering to vision aided inertial navigation.

We fuse odometry measurements of a stereo camera system with acceleration and angular

rate measurements of an IMU. Furthermore, we assume the sporadical availability of 6D-

landmark measurements. The pose of the landmark is included into the state vector to be

used as new local reference the filter states can be switched into.
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3.1 Vision Based Keyframe Inertial Navigation

Our inertial navigation system, previously introduced in [9], is based on an error state

space Extended Kalman Filter in feedback configuration. The current kinematic and dy-

namic states are calculated by the computationally cheap strap down algorithm (SDA) at

frequency fSDA. The frequency is chosen corresponding to the expected system dynamics.

The filter is running at frequency fEKF ≤ fSDA calculating the error covariances of the

system states. The result of the filter update step is used for state correction whenever a

measurement is available. We define the direct system main state and the corresponding

indirect (filter) main state as:

x =
(
pNx,TNxB

vNx,TNxB
qNx,TB bTa b

T
ω

)T
∈ R16 (10)

δ =
(
δpT δvT δσT δbTa δb

T
ω

)T
∈ R15 (11)

where the direct state includes the body position, velocity and orientation quaternion rel-

ative to the navigation frame Nx and IMU accelerometer and gyroscope biases. Using

quaternions as attitude parameterization guarantees an efficient and gimbal lock free ro-

tation representation. The indirect main state includes the corresponding errors of the

direct state. As we assume small angle errors, attitude errors in the indirect system state

can be expressed as three dimensional orientation vector with minimal parameterization.

For the inertial navigation system error propagation we employ the following linearized,

continuous-time error transition model as for example derived by Wendel [6]:

δ̇ = F δ + Gn

=




O3x3 I3 O3x3 O3x3 O3x3

O3x3 O3x3 −
⌊
aNxNxB

⌋
−CNx

B O3x3

O3x3 O3x3 O3x3 O3x3 −CNx
B

O3x3 O3x3 O3x3 O3x3 O3x3

O3x3 O3x3 O3x3 O3x3 O3x3



δ

+




O3x3 O3x3 O3x3 O3x3

CNx
B O3x3 O3x3 O3x3

O3x3 CNx
B O3x3 O3x3

O3x3 O3x3 I3 O3x3

O3x3 O3x3 O3x3 I3



n

(12)

where aNxNxB is the specific force (body acceleration relative to the current navigation frame

Nx expressed in Nx), b. . .c the skew symmetric matrix operator of a vector and CNx
B the

rotation matrix transforming a vector expressed in the body frame to the frame Nx. The

uncertainties in the error propagation for translation and rotation are modeled as additive

zero-mean, white Gaussian noise (AWGN). The accelerometer and gyroscope biases are

modeled as random walk processes driven by AWGN. The noise vector ns has the spectral
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density Q, such that

Q = diag(Qa,Qω,Qba ,Qbω) (13)

Qs = E
[
nsn

T
s

]
| s ∈ {a,ω, ba, bω} . (14)

The system matrix F is discretized at time step k for the filter time interval T = 1/fEKF

as Φk = eΦT .

Our visual odometry algorithm provides a transformation measurement from a keyframe

to the last captured image with the according measurement noise. The algorithm choses

the keyframe with the smallest accumulated measurement noise as reference. In this

way, drift can be avoided while moving in a small area or while standing, compared to

frame to frame odometry. To process these delta pose measurements and compensate

for measurement delays introduced by the vision pipeline, we clone the robot pose at the

time of image capturing. Whenever a new image is captured by the stereo cameras, we

register the hardware camera synchronization trigger to instantaneously initiate pose state

cloning. Analogously to Equation 1 we define the augmented state vector as:

x̄k =

(
xk

xp,σ

)
= gx(xk, z̃k)

δ̄k =

(
δk

δp,σ

)
= gδ(δk, z̃k)

(15)

where xp,σ = (pNx,TNxB
qNx,TB )T and δTp,σ = (δTp δ

T
σ )T are pose and pose error, respectively, at

time k. As no measurements are involved the noise transformation matrix T k of Equation 2

is the zero matrix while Ak = ∂gδ
∂δk

. Further details on the keyframe based VINS, including

corresponding measurement Equations, can be found in [12].

3.2 Local Reference Augmentation

Similarly to visual odometry measurements, we employ state cloning for the processing of

6D landmark measurements of a camera. We clone the current robot pose as frame Bz

at the exact time of the camera hardware trigger measuring a potential reference frame

Nx+1 (PRF). At the time of arrival of the measurement the PRF state is augmented in

the filter using its measurement noise R for initialization. This augmentation is similar

to classical EKF-SLAM feature augmentation except for two differences: first, we use

an error state space filter formulation. Second, the robot measurement pose and PRF

augmentation can occur at different times. These measurement time delays are implicitly

compensated by state cloning at the exact hardware trigger time of image capturing and

referencing the corresponding augmented robot pose in the filter update step. The PRF

pose augmentation measurement, corresponding to Equation 1, is expressed in the current
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navigation frame Nx as

gx,Nx+1
(x, z̃Nx+1) =

(
δNxNxNx+1

δNxNx+1
)

)

(
pNxNxBz +CNx

Bz
(CBz

C p̃
C
CNx+1

+ pBBC)

qNxBz q
B
C q̃

C
Nx+1

) (16)

where pNxNxBz is the augmented estimated robot pose at time of image capturing, p̃CCNx+1

the PRF position in the camera frame, pBBC the known translation vector between IMU

frame and camera, CNx
B the estimated rotation matrix between navigation and IMU frame,

qBC and CB
C the known camera orientation between IMU and camera frame as quaternion

and rotation matrix respectively and q̃CNx+1
the PRF orientation measurement quaternion.

From Equation 16 we can derive gδ,Nx+1
and find the relevant parts of the noise augmenta-

tion and noise transformation matrices referencing the partial error state δTp,σ augmented

at the time of image capturing as:

Aδp,σ =

(
I3x3 −

⌊
CNx
Bz

(CBz
C p̃Nx+1

+ pBzC )
⌋

03x3 I3x3

)

T δp,σ ,k =

(
CNx
c 03x3

03x3 CNx
c

) (17)

After augmentation of the PRF further PRF measurements can be processed in the filter.

Therefore, we repeat state cloning at the exact camera measurement trigger time to save

the new body frame Bz and process the (delayed) arriving measurement by the linearized

PRF error measurement equation expressed in the camera frame Cz with RCz
Nx

= RC
BR

Bz
Nx

zδ = Ξ

(
δp,σ

δNx+1

)
+ nNx+1

Ξ =

(
−RCz

Nx
RCz
Nx

⌊
pNxNxB − p

Nx
NxNx+1

⌋
RCz
Nx

03x3

03x3 −RCz
Nx

03x3 RCz
Nx

)
(18)

3.3 Navigation Frame Switching

Position and yaw relative to the initial reference frame are unobservable. Therefore, we

switch the filter reference to an augmented PRF. All states relative to the navigation frame,

which are poses and velocities, have to be transformed into the new reference frame Nx+1.

We know the PRF estimate relative to the current reference frame Nx by the translation

vector pNxNxNx+1
and the rotation as matrix C

Nx+1

Nx
and corresponding quaternion q

Nx+1

Nx
.

In analogy to Equation 4, we can formulate reference switching as function on the current
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state vectors. Direct state positions, velocities and orientations are transformed as

pNx = C
Nx+1

Nx
(pNx − pNxNxNx+1

) = C
Nx+1

Nx
∆pNx

v
Nx+1

NxB
= C

Nx+1

Nx
vNxNxB

qNx+1 = q
Nx+1

Nx
qNx

(19)

The corresponding linearized transformations in tangent space can be derived as:

δ
Nx+1
p = C

Nx+1

Nx
(δNxp − δNxNxNx+1

+
⌊
∆pNx

⌋
δNxσ,Nx+1

)

δ
Nx+1
v = C

Nx+1

Nx
(δNxv,NxB +

⌊
v̂NxNxB

⌋
δNxσ,Nx+1

)

δ
Nx+1
σ = CN1

Nx
(δNxσ − δNxNx+1

)

(20)

In the same transformation, we marginalize out the PRF state. After filter switching the

PRF measurement of Equation 18 becomes an absolute pose measurement.

In some situations a full reference switch is not practical. For UAV navigation, for example,

the navigation frame x-and y-axes should be orthogonal to the gravity vector. This can be

realized by manipulating the rotation matrixC
Nx+1

Nx
in a way that only a rotation about the

gravity vector is applied. Even the identity matrix can be used as transformation matrix

defining the current orientation as the new reference orientation. Nevertheless, using the

latter alternative yaw drift is not bound whereas using the former the yaw reference is

readapted to a local but static reference frame. We employ option one in the following

experiments.

4 Experiments

We demonstrate the concept of our LR-INS in simulations and in quadrotor flight ex-

periments. In both situations we switch off the keyframe feature of our visual odometry

system to accelerate the increase of covariances for unobservable states. The resulting

frame to frame odometry is used on many vision based UAVs and can be compared to a

configuration with velocity measurements from optical flow sensors.

4.1 Simulated UAV flight

We show the long-term stability of the LR-INS in a simulated 24 h quadrotor flight. In our

simulation environment, we defined four distinct landmarks. The quadrotor is randomly

commanded to the landmark locations. With the quadrotor closer than two meters a noisy

PRF measurement expressed in the virtual camera frame is simulated. Furthermore, IMU

measurements and delta pose measurements (also in virtual camera frame) are simulated

during the entire flight time. All sensor measurements are disturbed by zero mean AWGN.

Table 1 lists the corresponding simulation parameters. The same parameters are used

within the filter. Considering the simulated visual odometry sensor we choose rather

conservative frequency and noise parameters compared to our real implementation to
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Figure 1: LR-INS filter results for a 24 h quadrotor flight: estimation errors in red and 3σ
uncertainty bounds in blue. The Normalized Estimation Error Squared in blue (NEES) is
weighed by the number of included states, its mean is marked by the red line.

accelerate the increase of state uncertainty and emphasize the effect of reference switching.

Figure 1 depicts the LR-INS filter results for position, velocity and attitude. All estimates

stay well inside their 3σ uncertainty bounds except for some sporadic outliers on the z-

axis. Furthermore, all uncertainties are bound due to regular local reference switching.

During the 24 h flight the reference frame was switched 6386 times. We use the Normalized

Estimation Error Squared (NEES) divided by the number of included states to rate the

consistency of the filter. For an ideal filter the weighted NEES should have a mean

of 1. We get a NEES mean of 0.83, 0.44 and 0.09 for position, velocity and attitude,

respectively. This means that the filter covariance estimates are conservative for all three

states which is important for most applications. The deviation of the NEES from 1 has two

reasons: First, our simulation framework does not simulate variations in the IMU sensor

biases. Second, linearization of the non linear system and measurement equations causes
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Table 1: 24 h Simulation parameters

Parameter Value Unit

IMU frequency 180 Hz
Acceleration std. dev. 1e-2 m/s2

Gyroscope std. dev. 1e-3 deg/s
Visual odometry frequency 5 Hz
Visual odometry position std. dev. 1e-3 m
Visual odometry orientation std. dev. 5e-1 deg
PRF frequency 5 Hz
PRF std. dev. 2e-2 m
PRF std. dev. 1e-1 deg
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Figure 2: LR-INS filter results for a 24 h quadrotor flight, zoom-view for position and yaw
angle at t=12h. Estimation errors in red and 3σ uncertainty bounds in blue. Black circles
indicate augmentation of PRF, magenta circles mark filter switch into PRF.

sub-optimal estimation results. Hesch et Al. [11] analyzed VINS consistency considering

changes in the system mode observability due to linearization effects. Their method can

be applied to our VINS to further improve filter consistency.

Figure 2 depicts a 2 minute zoom view for unobservable x-position and yaw angle. The

estimates for the other unobservable states, which are y-and z-position, show a similar

behavior. The moment of PRF augmentation is marked by black circles, the filter switch

into the PRF by magenta circles. With the integration of PRF measurements the state

uncertainties are stabilized. As expected, they drop as soon as the PRF is used as new

filter reference. At the time of switching the state errors do not completely vanish as we

switch into the estimate of the new local reference while the ground truth gives the real

PRF poses.

4.2 Relative UAV navigation

We verified the usability of the LR-INS approach in flight experiments using the quadrotor

platform depicted in Figure 3. The system is equipped with a sensor unit [10] including a

stereo camera system an ADIS16405 IMU, a core2duo computer board for visual odometry

calculation, an FPGA board for Semi Global Matching (SGM) stereo image processing

of 0.5 MPixel@14.6Hz and an Omap3530 based real-time processor board for sensor data
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fusion and control.

Disparity images are the basis of our key-frame based visual odometry algorithm. Using

hardware acceleration increases the measurement frequency but we still have a latency of

about 250 ms for the entire vision pipeline. The measurement delay is implicitly com-

pensated by the hardware triggered pose augmentation of the LR-INS. An analysis of

the influence of visual odometry measurement delay and frequency can be found in [9].

Figure 3: Quadrotor platform used for LR-
INS flight experiments.

The left stereo camera is used for PRF

detection. Four PRFs in form of APRIL

tags are spread within the experimental

area. This area of 4x5x2m (LxWxH) is de-

fined by our motion capture system which

tracks the pose of a marker mounted on

the quadrotor serving as our ground truth.

The relative positions between the PRFs

are used as controller waypoints. With the

quadrotor reaching the waypoint a switch

into the PRF is conducted and the next

waypoint is set (at the last waypoint starting at the first again). In Figure 4 we depict

the estimation errors compared to ground truth.

Similarly to our simulation, the covariances for position drop at the time we switch into a

PRF. As we set the ground truth relative to the measured landmark as well, the measured

errors become zero. In contrast, the yaw angle covariance becomes higher at switching

time. This is caused by the high measurement uncertainty of the PRF compared to

the very small yaw drift between filter switches. The increase of yaw covariance induces

spikes in the covariances for roll and pitch which are caused by the transformation by the

uncertain yaw angle.

Considering error values, the quality of the estimate for position is worse than what we

usually achieved using visual odometry only (as for example published in [12]). Fur-

thermore, small jumps in the position error can be observed. These are caused by bad

measurements from the APRIL tag detector. As we do not have the real covariance of the

PRF measurement we use constant values. Considering the angle errors, there are small

oscillations. It can be seen that in these areas the ground truth also sometimes drops

out completely. This supports the assumption that the oscillations are coming from bad

ground truth measurements.

The NEES shows regular patterns and is considerably higher than in our simulations. We

assume that both effects are caused by the static measurement covariances of the APRIL

detector which does not reflect the real quality of the measurement. Therefore, we are

working on a quality measurement of the detector.

Nevertheless, the actual goal of reference switching, the limitation of covariance increase

of unobservable position and yaw can be clearly seen. The quadrotor conducted a flight
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Figure 4: LR-INS filter results for a real quadrotor flight:

locally precise to the given references. The whole filter runs with hard-realtime constraints

as it is used for control of the highly dynamic quadrotor.

5 Discussion

The introduced LR-filter is a simple method to realize long-term stable filter based state

estimation including unobservable system states. By the integration of all needed opera-

tions into a general filter prediction step the actual filter implementation method can be

freely chosen. State augmentation and reference switching can be easily integrated into

square root filters which are numerically superior compared to naive implementations.

The computational overhead of square root implementations can be lowered by choosing

a clever state ordering. Re-triangularization within the prediction step proceeds from the

first row not in triangular form to the matrix triangle base. Therefore, states constant

during prediction should be held at the triangle peak whereas changing states should be
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kept close to the bottom of the triangle.

Filter methods are a good choice in applications with hard-realtime constraints and lim-

ited computational resources. Nevertheless, linearization effects degrade the theoretical

optimality of the filter. Depending on the non-linearity of the state switching function

further linearization errors are induced. Nonlinear, iterative fixed lag smoothers would not

suffer from these effects but at the cost of higher computational requirements. Unbounded

covariances for unobservable states would not result in numerical problems for smoothers

as the anchor state prior can be easily changed.

Our experiments demonstrated that the application of the LR-filter to vision aided inertial

navigation results in a long-term stable navigation solution, the LR-INS. In our experi-

ments, we used exteroceptive PRFs. Nevertheless, it is also possible to use directly an

augmented robot pose as reference frame for switching. Furthermore, a filter switch could

be realized only internally. By re-transforming the estimated system states back to the

original global frame, state transformation can be made transparent to external modules

as for example a controller while the increase of state covariances is still limited. It has to

be considered that the covariances refer to the local reference and not to the global.

The LR-INS can be easily combined with other high level navigation solutions as for

example topological navigation or SLAM systems that can also be based on different

sensor domains. Human like navigation from one distinct landmark to the next can be

easily realized at low computational cost. Considering multi-robot scenarios, navigation

relative to a common (changing) reference can be easily realized with a simple navigation

filter.

6 Conclusion and Future Work

We introduced a Local Reference filter approach for stable long-term state estimation

including unobservable states. All required operations, which are state augmentation,

marginalization and transformation are included into a modified filter prediction step.

With this formulation local reference filtering can be integrated into numerically stable

square root filters. We applied the LR-filter to vision aided inertial navigation and devel-

oped the Local Reference Inertial Navigation System (LR-INS).

We conducted a 24 h simulation of the LR-INS with 6386 reference switches. We showed

that the covariances are bound for all states including position and yaw which are un-

observable. The evaluation of the Normalized Estimation Error Squared (NEES) showed

that the filter is conservative but consistent.

We demonstrated the usability of the LR-INS for control of a highly dynamic, inherently

unstable quadrotor with limited on-board processing resources. Switching continuously

its reference frame, the quadrotor can navigate robustly using time delayed relative pose

updates from an on-board stereo-odometry system. The LR-INS was demonstrated to be

suitable for navigation and control of systems with hard-realtime constraints.

As a next step, we will combine our Local Reference Inertial Navigation System with a
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high-level, scalable, topological mapping approach. In this way long-term locally metric

navigation can be realized on resource limited mobile robotic platforms.
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