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In this paper we present a constraint based strategy for collaborative spatial exploration. Using multiple agents and a set of soft 
constraints modeled as costs we have developed a collaborative system where each agent chooses its next state optimally with 
respect to compactness and distance based rules, which can model real-world soft constraints. Using random successor state 
reordering, this exploration system is capable to obtain a stochastic behavior, yet keeping the path planning optimality at each 
time step. The constraints are imposed at each time step by using graph search algorithms for planning the route to determine 
the next location that should be visited by the intelligent agent. 
 

1. INTRODUCTION 

There has been a lot of interest in the scientific community 
for self-healing and self-configuring multi-agent systems 
for a multitude of tasks which require redundancy and fault 
tolerance. 

The collaborative exploration system proposed in this 
paper is based on multiple agents which plan their next 
move optimally with respect to some costs using graph 
search algorithms. 

The goal has been to design a multi-agent exploration 
algorithm suitable for the exploration of unknown terrains 
of very large size.  

Our approach has been to design agents with individual 
intelligence, so that each agent plans its next move by itself 
using local information provided by its sensors and a global 
map of the already explored area, which is shared with the 
other agents. Since each agent is subject to some soft 
constraints with the aim of obtaining some desirable 
properties for the exploration strategy, by choosing the path 
costs wisely and using multiple agents, a collaborative 
behavior can emerge.  

In this paper we show that this technique based on soft 
constraints and path planning algorithms is suitable for 
spatial exploration and mapping missions. 

2. EXPLORATION PROBLEM 

The problem of finding minimum length exploration tours 
for offline scenarios (map known in advance) with polygonal 
maps that contain obstacles is known to be NP hard [1], but 
some approximations exist. An approximate algorithm for 
lawn mowing and milling is proposed in [2] which is based 
on constructing an approximate TSP (traveling salesman 
problem) tour. In [3], it has been shown by Arora that the 
Euclidian TSP (traveling salesman problem), which is 
important for the offline exploration problems has a 
polynomial time approximation scheme, proposing an 
algorithm that computes an ( )c11+  approximation to the 

optimal tour in ( ) ( )( )cOnnO log⋅  where n is the number of 
vertices, c is a positive constant and O is the Landau 
notation for the algorithmic complexity. Also, O (a) is the 

algorithmic complexity, the run time grows proportionally 
to a.  

Even without obstacles, finding the optimal solution for 
the single agent exploration problem in the offline case is a 
difficult problem. The first polynomial time algorithm for 
computing the optimum watchman tour (a route so that 
each point from the polygon and the boundary is visible 
from at least one point along the route) was proposed by 
Chin and Ntafos [4] and it has a time complexity of ( )4nO  
where n is the number of vertices. This has latter been improved 
by Tan and Hirata to a time complexity of ( )4nO  [5]. 

An online exploration algorithm for generating in any 
polygon a tour that is shorter than 133 times the optimal 
watchman tour length has been proposed in [6] and it has 
been further improved to a competitive factor of 26.5 [7]. 
This approach is based on a new geometric structure called 
the angle hull which is concerned of the visibility of the 
points of an inner polygon from the outer polygon. 

It has also been proven that the competitive complexity 
of online exploration algorithms for unknown environments 
is 2 [8]. The problem of creating exploration tours for 
unknown 4-connected cellular environments with obstacles 
by using a single agent has been analyzed in [8], where a 
solution that focuses on short exploration tours is given by 
the CellExplore algorithm. CellExplore focuses on an 
exploration strategy that attempts at each step to reserve the 
right cell for the return path, preferring a left turn over a 
straight step, over a right turn and walking back along the 
reserved cells when no forward step is possible. It has been 
shown that this algorithm explores a polygonal map with 
V  cells, E  edges and H obstacles in 

32 −++≤ HEVS  steps [8]. 
Albers, Kursawe and Schuierer have shown that no 

deterministic or randomized online algorithm can be better 
than ( )nΩ  competitive for the exploration of a map with n 
rectangle obstacles [9]. They have also presented an 
algorithm for piecemeal exploration (the piecemeal 
constraint has been defined in [10] and implies that the 
agent must return to the start vertex from time to time) that 
explores a grid with an arbitrary number of obstacles using 
( )EO  edge traversals which is optimal [9]. A sub-exponential 

graph exploration algorithm that achieves an upper bound 
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of ( ) Ed dO log  where d is the deficiency of the graph has 
been proposed by Albers and Henzinger in [11]. 

The collaborative mapping and exploration problem has 
been studied by Cohen who has proposed a method for 
using heterogeneous robot teams based on a navigator and 
several cartographer robots for collective navigation and 
mapping tasks [12].  

Bender and Slonim show that a team of two cooperating 
robots can learn any strongly connected graph with n 
indistinguishable nodes in time polynomial in n by using a 
cooperative algorithm based on random walks. Even more 
notable is their result showing that a team of two cooperating 
robots can be exponentially more efficient than a single 
robot with a constant number of pebbles. 

Autonomous robots have been used successfully for 
geological exploration scenarios, one of the notable examples 
being the Antarctic meteorite search carried out by the 
Nomad robot [13]. 

3. THE COLLABORATIVE 
EXPLORATION PROBLEM 

We have taken into consideration the exploration 
problem for very large areas, commonly encountered in 
extraterrestrial exploration. The exploration is usually 
carried out on vast areas and it is usually preferred that the 
explored area be compact in order to use it for mapping. 

The goal is to explore the area as efficiently as possible 
given a set of exploration rules or desirable properties 
which arise from the exploration task (e.g. area compactness as 
explained above, keeping agents close enough to each other 
to facilitate communication, etc.). 

Without reducing too much the generality of the technique 
that we propose in this paper, we have considered the area 
to be represented by a discrete 8-connected grid ( )EV ,  and 
a visibility horizon of one cell for each agent. 

Since we modeled the area as a discrete grid, it is 
suitable to work with discrete time steps. 

We have considered that an idealized localization system 
and a communication system are already available for the 
agents, but we have taken into account the range limitations 
of the real world communication systems and we have 
modeled them as a soft constraint. During the exploration 
process, the agents had to create a map of explored area. 
We considered the mapping in terms of obstacle identification, 
but the technique can easily be adapted to perform different 
kinds of mapping, like elevation mapping, terrain density 
mapping or almost any kind of mapping which is of scientific 
interest. 

For convenient reasoning, we have used a state based 
approach for modeling the environment. 

Formally, the terrain is modeled by the graph ( )EV ,  
where V is the set of vertices and E is the set of edges. 

On this graph we define several functions. 
a) The function which models the obstacles: 

{ }1,0: →Vof , (1)

⎩⎨
⎧= obstaclean  is  if          ,1

otherwise               ,0  )( vvof . (2)

b) The accessibility function, which tells whether a 
vertex v is accessible from the start vertex v0 or not: 

{ }1,0: →Vaf , (3)

( ) ( ) ( ) ( )( ) ( )
⎩⎨
⎧= =∨∧↓∈∃∧¬     :      ,1

otherwise                         ,0
oao vuufvuVuvf

a vf , (4)

where uv ↓  means that v is adjacent to u. 
This can also be expressed in terms of connectivity as 

follows: 

( ) ( ) ( )
⎩
⎨
⎧ ∧¬

=
otherwise

  toconnected 0,1
,0

vvvofvaf . (5)

c) The cost function, which models the cost for moving 
along an edge from one vertex to another: 

R→Efc : . (6)

The exploration problem consists in finding a path which 
passes through all accessible nodes while minimizing the cost: 
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where n
n VvvvvP ∈= − ),,( 1210 " is the path (vertices 

composing the path are not necessarily consecutive) 
{ }iiii vve ,1,1 −− =  is the edge connecting ii vv   to1− . 

The collaborative exploration problem consists into finding a 
path for each agent of the team, so that all the accessible 
nodes are visited at least once by one of the paths, while 
minimizing the cumulative cost: 
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where: 

( ) ( )∑ −
= −= 1
1 ,1

n
i iicpc efPf  is the cumulative cost of path P; 

Pi is the path followed by the ith agent from the team; 
( ) ( )i

N
iN PVerticesPPPVertices 121, == ∪" ; 

( )iPVertices  is the set of vertices visited by the path Pi. 
The exploration of all the accessible vertices can be used 

for building a map of the environment. 
For the purpose of our research, each agent has been 

modeled as an intelligent agent with its own computational 
capabilities, obstacle detection (within a limited horizon), 
memory and a communication system for sharing information 
with the other agents. 

The agents feature individual intelligence, each agent being 
able to compute his next move by himself, by taking into 
account the information received from its sensors and the 
information from its memory, part of which is shared with 
the other agents. 

Each agent has obstacle sensors with binary outputs, each 
of them signaling if there is an obstacle in the adjacent cell 
from its direction. We performed the simulations using an 
8-connected grid, so the simulated agents had 8 obstacle 
sensors. 
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Each agent also keeps in its memory a map which 
represents the already explored cells (explored by itself or 
by other agents from the team). This map of explored cells 
is shared between all agents. Similarly, each agent keeps a 
map with the cells representing obstacles. This obstacle 
map is built from the sensor inputs and it is also shared 
between all agents. 

We have considered that each agent has a localization 
and communication system already in place, and being 
therefore able to compute the distance from itself to each of 
the other agents. 

4. THE PROPOSED ALGORITHM 

4.1. MODELING THE SOFT CONSTRAINTS 
AS COSTS 

We have considered a cost composed from the following 
components: 

1.  A cost which penalizes the re-exploration of the 
already visited locations 

( ) ( )vfvc e=1 , (9)

where: 

⎩⎨
⎧= exploredalready  is  vertex if          ,1

otherwise               ,0  )( vvfe . (10)

 

2. A locally computed cost which penalizes for the 
non-compactness of the explored area: 

( ) ( )( )∑
↓
∈

−=

uv
Vu

e ufvc 12 . 
(11)

The non-compactness cost is higher if a cell has fewer 
adjacent cells already explored. 

3.  A cost which penalizes the agent if it gets too close or 
too far from the other agent 

( ) ( )( )∑ −−=
i

ivp rrdfvc 2

23 , (12)

where: 
rs is the position corresponding to the vertex v;   
ri is the position of the ith agent from the team; 
dp is the preferred distance between agents; 
( ) ( ) ( )xgxgxf −+= ; 

( ) ( )Rxxxg Q −σ⋅= ; 
( )xσ  is the Heaviside step function; 

R is the radius inside which this cost is zero. 
Q controls how steep this cost rises with the deviation 

from the preferred distance 
The total cost for exploring a state can be expressed as 

follows: 

( ) ( )∑ ⋅=
i

vii cwvc , (13)

where 0≥iw  are constant weights for each term of the cost 
function. 

The higher the value of the parameter w1, the higher is 
the weight of the cost for exploring again the same 

locations from the grid. Similarly, increasing the parameter 
w2 increases the cost for non-compactness of the explored 
area. The parameter w3 is the weight allocated to the 3rd cost 
term, the cost for not staying within the preferred distance 
from the other agents. 

Using the cost function, the cost for moving from the 
vertex vi to the vertex vj (along the edge ei,j) can be 
expressed as follows: 
 

( ) ( )jjic vcef =, , (14)

where { }jiji vve ,, =  is the edge which connects iv  to jv .
 

As it can be observed from the definition of the costs, the 
cost for moving from the vertex vi to the vertex vj (along the 
edge ei,j) depends only on the destination vertex vj. Of 
course, this is an idealized scenario for demonstrating the 
algorithm and in some real-world scenarios one might want 
to also model particular terrain features (slopes, rocks, etc) 
which can lead to a slightly different cost structure, but for 
the exploration algorithm choice of the destination vertex is 
one of the most important aspects. 

4.2. OPTIMAL PLANNING 
USING GRAPH SEARCH ALGORITHMS 

In order to use graph search algorithms like uniform cost 
search or informed search algorithms like A* [14], IDA* 
(Iterative deepening A*) [15] or SMA* (Simplified 
Memory Bounded A*) [16], we have transformed the 
exploration problem into multiple path planning problems. 
We consider that a goal state has been reached during the 
path planning if that state has not been previously explored. 
Therefore, using an optimal graph search algorithm each 
agent finds the solution with the lowest cost at each time 
step, and it moves one step towards that solution. 

Since the agents work in a dynamic environment and the 
other agents also move and explore on their own, in order 
to preserve the optimality at each time step, each agent 
searches again for the solution with the lowest cost, even if 
it hasn’t moved completely along the previously planned path. 

In our study, we have used the A* algorithm with a 
consistent heuristic as a particular implementation of the 
optimal graph search algorithm. The A* graph search 
algorithm is optimal when the heuristic is consistent [14]. 

In order to guide the search towards the frontier, we have 
used the following heuristic: 

( )
( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−=

=
∈

0,1min
2

1max 2
0

usVu
rrsh

uef

, (15)

where 
u is a vertex which has not been previously explored; 
ru is the position corresponding to the vertex u; 
rs is the position corresponding to the state s. 
Latter in this section, we provide detailed explanation on 

the introduction of the 21/  constant. 
In order to prove that h(s) is a consistent heuristic for 

1≥iw  and 0≥iw for 1≠i  we have proved that it never 
overestimates the real cost of the least cost path to an 
unexplored vertex. 

Under these assumptions, for any explored vertex, the 
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following inequality holds true: 

( ) ( ) ( ) eVsscscwsc ∈∀≤⋅≤= ,1 111 , (16)

where ( ){ }1=∈= vfVvV ee  is the set of the explored 
vertices. 

Under the same assumptions, for any unexplored vertex, 
the following inequality holds true: 

( ) ( ) ( ) eVVsscscwsc \,0 111 ∈∀≤⋅≤= . (17)

The optimal path for reaching an unexplored vertex from 
the current vertex is: 
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(18)

The real cost of the optimal path P* for reaching an 
unexplored vertex from the vertex s is: 

( ) ( )∑
≠
∈

=

vov
Pv

vcsg
*

. 
(19)

Considering the equations 16 and 17 and the fact the 
only the last vertex from the optimal path P* is an 
unexplored vertex, the following inequality holds true: 

( )sgP ≤− 2* , (20)

where *P is the number of vertices from the optimal path. 

Considering the grid that we used to model the graph 
that describes the spatial exploration problem, the Euclidian 
distance between two adjacent nodes is at most 2  (for the 
diagonal neighbors), therefore the Euclidian distance from 
the current node to the closest unexplored vertex by 

following the optimal path is at most ⎟
⎠
⎞⎜

⎝
⎛ −⋅ 12 *P  and the 

following inequality holds true: 

( )

⎟
⎠
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⎝
⎛ −⋅≤−

=
∈

12min *
2Vu

0uef

Prr us . (21)

Based on this result, we can conclude that the following 
inequality is true: 

( )

21min
2

1 *
2Vu

0uef

−≤−−
=

∈
Prr us . (22)

Since the path always contains at least two vertices (at 
least the start vertex and the end vertex), the following 
inequality holds true: 

2|*| ≥P . (23)

Considering the equations (20), (22) and (23), we have 
proved that h(s) is consistent: 

)(2|*|)( sgPsh ≤−≤ . (24)

We have shown that the heuristic h(s) that we employed 
is a consistent heuristic and therefore the A* algorithm is 
optimal when used with this heuristic.  

Considering that the search algorithm employed is 
optimal, we can conclude that by following the first step 
from the optimal plan, the agent chooses the optimal action 
available from the current state considering his knowledge 
of the environment (the obstacles that have been already 
discovered, the pheromone map and the sensory input). 
Although not optimal from global perspective, this 
approach is optimal from the perspective of each agent and 
allows each agent to plan its next move independently, 
making the algorithm useful for fault tolerant and self-
healing parallel exploration systems. 

Each agent chooses his next action according to the 
following algorithm, which is based on A* with a 
consistent heuristic:  

 

This approach is optimal at each step from the perspective 
of each agent given his knowledge of the environment, but 
in the worst case, the algorithm needs to explore many 
states for finding the solution. The worst case time 

complexity of the algorithm is ( ) ( )dbOEO =  and its 

worst case space complexity is ( ) ( )dbOVO =  where b is 
the branching factor and d is the search depth. 

If the space complexity is of primary concern, then the 
algorithm could be easily adapted to use the IDA* (iterative 
deepening A*) algorithm which has a polynomial space 
complexity ( )dbO ⋅ . 

Although the worst case time complexity for A* is 
exponential, when the agent is at the exploration frontier, 
the solution states are very close to the current state. 

4.3. NEAR-OPTIMAL PLANNING FOR LOW 
COMPUTATION REQUIREMENTS 

Since the optimal planning at each time step is 
computationally intensive, with a worst case time complexity 

Initialize the priority queue q with the current state 

While q is not empty do: 
( ) ():cos,, popqtplanstate ⋅=   

If state  was already expanded then continue 

If state  is unexplored: 
[ ]0  : plannextAction =  

Break 
End 

Mark state  as expanded 

For each ( )actionCostactionsucc ,,  in 
( )statesuccessors  do: 

 If succ  was already expanded then continue 

( )actionplanPlancandidate ,:  =  
actionCosttCostcandidate += cos:   

( )CostcandidatePlancandidatesucctuple   ,  ,:=  
( )succheuristicCostcandidatepriority +=   :  

( )prioritytuplepushq ,⋅   
End 

End 
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( )dbO , we have also analyzed a more computationally 
efficient approach which still yields near-optimal planning 
at each time step. This method is based on computing the 
path to a solution state and then following this path at every 
time step until the agent reaches that solution state. 
Afterwards, the agent plans a new path to the next solution, 
and so on. 

We have compared the exploration strategy proposed in 
this paper with other approaches found in the literature. In 
order to perform an accurate comparison of the performance, 
we have implemented the other algorithms and we have run 
the benchmark on the same set of maps. 

For the benchmark, we used two maps: one of 30×30 
cells (“Tiny World” from Fig. 1) and another one of 50×50 
cells (“Small World” from Fig. 2). 

  

Fig. 1 – The “Tiny World” map. Fig. 2 – The “Small World” map.

In the Fig. 3, we have shown a typical run of the 
algorithm on a big map, the “World” map. The algorithm 
has been run with 6 agents using the cost function 
introduced in equation 14 and the following parameters: 

1 2 38, 1, 0.25, 6, 2, 10pw w w R Q d= = = = = = . The values 
for the parameters w1, w2, w3 have been chosen so that the 
three costs have comparable values on average. It can be 
observed that the explored area is compact and that the 
agents stay within the preferred distance from the rest of the 
exploration team. 

In Fig. 4 we present the performance comparison graph 
from the results obtained by running the algorithms on the 
“Tiny World” map. The exploration algorithms have been 
ran 100 times, with 1, 3 and respectively 6 agents. The 
results are compared in terms of the total path length for all 
agents required to complete the exploration. 

 
Fig. 3 – A typical run of the exploration algorithm 

on the “World” map (the explored area is marked with light gray). 

We have compared the exploration strategy proposed by 
us with an information driven algorithm based on entropy 
minimization [17], with the node counting algorithm [18] 
which is based on avoiding the states visited in the past, 
with the algorithm based on reflex agents driven by Thrun’s 
rule [19], with vertex ant walk [20] which is a smell 
oriented exploration algorithm and with learning real-time 

A* with a look-ahead of one cell [21, 22].  
From Fig. 4 “Tiny World” (1 agent), we can see that the 

average step count obtained by our algorithm is slightly 
higher than the one obtained by the entropy based algorithm, 
but significantly lower than the step count obtained by the 
other algorithms.  

In Fig. 4 “Tiny World” (3 agents and 6 agents), it can be 
observed that when using multiple agents, the algorithm 
proposed in this paper outperforms both the entropy based 
algorithm and the other ant based algorithms. 

We have also performed the comparisons on a slightly 
larger map, the “Small World” map. It can be observed that 
on the “Small World” map, the performance of the exploration 
strategy proposed in this paper is close to the performance 
of the entropy based algorithm and it outperforms the ant 
based algorithms. A graphical comparison of the performance 
of the algorithms can be seen in Fig. 5. 
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Fig. 4 – Performance comparison graph 
for “Tiny World” map (lower is better). 

In order to show that our results are consistent for a 
wide range of situations, we have also performed an 
analysis on a large number of maps. The maps were 
randomly generated maps with the same size as “Tiny 
World”. 
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Fig. 5 – Performance comparison graph 

for the 30×30 sized map (lower is better). 

As it can be seen from Fig. 5, the performance of the 
exploration algorithm proposed in this paper is close to the 
performance of the entropy based exploration algorithm, 
but with the added benefit of compactness. In Fig. 5, we 
have represented graphically the number of steps required 
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for completely exploring the map, using each of the compared 
algorithms. It can be seen that the results are consistent with 
the findings from the detailed analysis on particular maps, 
presented earlier in this section. 

We have also analyzed the performance of the algorithm 
on larger maps, of 100×100 size, using the same value of 
the parameters, and the results were consistent with the 
ones from smaller maps, as it can be observed from Fig. 6. 
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Fig. 6 – Performance comparison graph for 1 000 runs 
on different maps of size 100×100. 

5. DISCUSSIONS AND CONCLUSIONS 

Although the graph search algorithms are usually very 
computationally intensive, by keeping the agents close to 
the frontier, it is possible to find the solution for the next 
step by expanding only a small number of nodes. Only in 
special cases (when a solution does not exist close to the 
current position of the agent) the full power of the graph 
search algorithm needs to be used in order to find the path 
and it can become computationally intensive. 

In this paper we have shown that it is possible to improve 
the shape of the explored area by imposing soft constraints 
and finding the optimal solution from the perspective of 
each agent (at each time step). 

We have shown that imposing local constraints it is possible 
to obtain a compact exploration area. This behavior has been 
obtained by using only local costs, without the need to 
compute shape factor over the entire explored area. 

The exploration strategy proposed in this paper has been 
studied through simulation and we have shown that in 
certain scenarios it performs better that the entropy based 
exploration algorithm and better than the ant-based algorithms, 
although the advantage of the planning algorithms over the 
ant based algorithms shrinks as the number of agents increases. 

Received on March 19, 2016
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