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ABSTRACT 
 
The side-looking imaging geometry of synthetic aperture 
radar (SAR) causes inevitable layover in SAR images. 
Separating the contributions from different scatterers has 
been the fundamental for many applications. It is typically 
solved by explicit inversion of the SAR imaging model to 
retrieve the scattering profile along the mixed dimension 
(elevation), which is otherwise known as SAR tomography. 
This paper proposed a robust blind scatterer separation 
method to demix the layovered scatterers, avoiding the 
computationally expensive tomographic inversion. We 
demonstrate that the state-of-the-art principle component 
decomposition-based methods are heavily influenced by the 
nonergodicity of the selected samples, especially in urban 
area, such as point scatterers appearing often on facades. 
The proposed method is shown to be more robust than the 
state-of-the-art. Real data example shows that the proposed 
method outperforms the state-of-the-art by a factor of three 
in terms of the accuracy of the retrieved phase. 
 

Index Terms— blind source separation, tomographic 
inversion, multi-baseline, robust estimation, covariance 
matrix, InSAR, SAR 
 

1. INTRODUCTION 
 
The side-looking imaging geometry of synthetic aperture 
radar (SAR) causes inevitable layover in SAR images, 
especially in mountainous and urban areas. The layover is 
usually separated by SAR tomographic inversion 
(TomoSAR) which is the strict SAR 3-D SAR imaging. 
Because of the ability of layover separation, TomoSAR is 
the most competent multibasline InSAR method for the 
monitoring of urban areas. However, such inversion is much 
more computationally expensive than methods based on 
single-scatterer model, such as persistent scatterer 
interferometry (PSI), because it requires the inversion of a 
much larger equation system plus maxima detection in the 
retrieved reflectivity profile. This hinders TomoSAR to be 
widely applied for deformation monitoring. 

Recently, [1] proposed a principle component analysis 
(PCA)-based method to blindly separate the phase of 
multiple scatterers without explicit performing the 
tomographic inversion. In a more general context, this is 

known as blind source separation in signal processing. It 
showed that the dominant eigenvectors of the sample 
covariance matrix can be regarded as the steering vectors of 
individual scatterers layovered in a pixel. Reasonable results 
were also demonstrated.  

In this paper, we show that such correspondence 
between eigenvectors and scatterers is only mildly fulfilled 
under certain conditions. In addition, such method is based 
on the second order statistics of Gaussian scatterers, and 
hence its performance degrades when dealing with 
heterogeneous scattering mechanism in urban areas. This 
paper proposes a robust blind scatterer separation method in 
urban areas using robust covariance matrix estimation 
techniques. 
 

2. BACKGROUND 
2.1. Mixing model 

Fully coherent model (semi-PS) 
In urban area, the reflectivity profile can be often assumed 
to be fully coherent over the multiple acquisitions. Under 
such assumption, the discrete SAR imaging model can be 
expressed as follows. 
  g Rγ ε  (1) 

where Ng   is the multibaseline SAR measurements, 
N LR   is the so called steering matrix which is basically 

a discrete Fourier transform matrix, Lγ   is the 

reflectivity profile along the elevation direction, Nε   is 
the identically and independently distributed (i.i.d.) noise 
vector, and N, L are the number of images and the 
discretization level in the elevation direction, respectively. 
In urban area, the profile γ  is usually consisted of a few 

dominant peaks. For a K-scatterer profile, the imaging 
model can be simplified to 
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where N
k r   is the steering vector of the kth scatterer. The 

covariance matrix of the observations g is then 
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where  H  is the conjugate transpose operator. The profile 

γ  can be assumed to be uncorrelated, which leads  E Hγγ  

to a diagonal matrix with the expected intensity of 
individual scatterers. The observation covariance matrix can 
be expressed as  
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where 2
k  is the expected intensity of the kth scatterer, and 

2
 I  accounts for the covariance matrix of the noise. 

Without losing generality, we can assume the steering 
vectors kr  are all normalized. 

Such scattering model resembles the layover of PSs. 
However, it is worth mention that the intensities across 
different looks are not assumed to be deterministic. They are 
assumed to be the realization of complex circular Gaussian 
random variables, i.e. Gamma-distribution with two degree 
of freedom. Such semi-deterministic model is more practical 
to describe the PS behavior in real SAR images. This model 
is known to the radar jargon as Swerling II model [2]. 

Decorrelating model (DS) 

For a more general purpose, the decorrelation of the 
reflectivity profile γ  due to geometric or temporal 

decorrelation needs to be considered. For a K-scatterers 
mixture, the imaging model can be formulated as follows 
[1], [3]: 
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where N N
k

C   is its real-valued covariance matrix 

containing the intensity of the kth scatterer and its 
decorrelation matrix. The symbol   denotes an element-
wise product. The fully-coherent model is a special case of 
the decorrelating model where kC  degenerates to constant 

matrices. Despite model (5) taking into account the 
decorrelation being more general, it requires additional 
modeling of the decorrelation covariance tensor, and thus 
the estimation of additional parameters. Therefore, this 
paper adopts the fully-coherent model in equation (4), 
which can be often fulfilled in urban areas. 

2.2. PCA-based methods and limitations 
PCA-based method [1] retrieves the steering vectors of 
individual scatterers by performing eigenvalue 
decomposition on the covariance matrix: 
 HC VDV   (6) 
where V is the eigenvectors, and D is the diagonal matrix of 
the eigenvalues. According to [1], the individual 
eigenvectors correspond to the signal directions, i.e. steering 
vectors, of individual scatterers. And hence, the steering 
vectors can be estimated by  
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where iv  is the columns of V. This strictly assumes the 

steering vectors of different scatterers are orthogonal, which 
can only be mildly fulfilled when the elevation between 
scatterers are large. 

Limitations 
The limitation of [1] is two-fold. On one hand, it is 
performed on sample covariance matrix whose estimation is 
a major challenge in urban areas, due to the heterogeneous 
scattering mechanism among the neighboring samples. It is 
also nearly impossible to find sufficient samples whose 
scattering centers of individual scatterers are identical to the 
corresponding ones in each sample respectively.  

On the other hand, PCA assumes a linear combination 
of orthogonal basis. Therefore, it is not able to fully recover 
nonorthogonal basis. In reality, the steering vectors of 
difference scatterers are seldom completely orthogonal. In 
addition, the directions of the sources are indeterminable 
when the variances of the individual Gaussian sources are 
identical. This can be demonstrated by a 2-D Gaussian 
mixture shown in Figure 1, where the two subfigures show 
2-D mixtures of nonorthogonal and orthogonal Gaussians of 
identical variance. The solid arrows are the true direction of 
the mixed source, and the dashed arrows are the directions 
extracted by PCA. The length of the arrows is the three 
standard deviation of the (estimated) Gaussian distribution. 
The subfigure (a) shows that nonorthogonal mixture of 
Gaussian sources cannot be separated by PCA, while 
subfigure (b) shows that orthogonal mixture of Gaussian 
sources with the same variance can also not be unmixed by 
PCA, because PCA is rotation invariant at identical variance 
of individual Gaussian sources. 

 
(a)                  (b) 

Figure 1. 2-D mixture of (a) nonorthogonal and (b) orthogonal 
Gaussians of identical variance (set to 1). The solid arrows are the 
true direction of the mixed source, and the dashed arrows are the 
directions extracted by PCA. The length of the arrows is the three 
standard deviation of the Gaussian distribution. The subfigure (a) 
shows that nonorthogonal mixture of Gaussian sources cannot be 
separated by PCA, while subfigure (b) shows that orthogonal 
mixture of Gaussian sources with the same variance can also not 
be unmixed by PCA. 



These limitations cause systematic phase bias in the 
estimated steering vectors. The bias increases as the 
intensity or the elevation distance of the scatterers get 
closer. 

3. ROBUST BLIND SCATTERER 
SEPARATION 

 
To improve the existing method, we make use of robustly 
estimated covariance matrix in the blind scatterer 
separation.  

3.1. Robust Covariance matrix estimation 
The maximum likelihood estimator (MLE) for the 
covariance matrix under the assumption of Gaussian 
scatterers is simply the sample covariance matrix: 
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where mg  is the mth sample, and M is the total number of 

samples. As shown in [4], the MLE is not robust against 
non-Gaussian scatterers. It can heavily overestimate 
covariance matrix, especially in urban area. This is usually 
caused by the bright point scatterers which are selected in 
the samples for the covariance estimation. 

A general form of robust covariance estimator can be 
expressed by a weighted sample covariance matrix as 
follows [4], [5]: 
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where  w   is a real-valued weighting function. The weight 

depends on the negative log likelihood 1H
m m

g C g . It down-

weights highly deviating samples whose likelihood is low, 
which greatly depends on the intensities of mg . Equation 

(9) can be solved by an iteratively reweighted approach [5], 
[6]: 
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where n denotes the iteration index.  

One robust weighting function is   1H
m mw


 g g . The 

corresponding covariance matrix estimator is  
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This is also known as the sign covariance matrix (SCM) 
[7], [8], where only the direction of each multivariate 
sample is considered. The real covariance is lost as a result. 
However, the interferometric phase is preserved in the 
estimation. SCM does not require iteration and is robust 
against outliers. 

4. EXPERIMENTS 
 

We compared the proposed method and the state-of-the-art 
on a test building (Bellagio Hotel, Las Vegas). Figure 2 
shows the optical and the SAR amplitude image of the 
building. The yellow arrows on the images indicate the line 
of sight of the sensor, which implies that the façade is 
layovered with the uneven ground in front of it. Seeing from 
the optical image, the façade is fairly vertical, but the 
ground consists of various different objects, e.g. small 
structure, swimming pool, etc. The whole data stack 
comprises 30 TerraSAR-X high resolution spotlight images.  

  
(a)    (b) 

Figure 2. (a) the Google optical image of the test building, and 
(b) the SAR amplitude image. 

To select samples for estimating covariance matrix, we 
did not follow the approach employed in [1] which is a 
statistical test based on amplitude. The reason is that such 
statistical test does not consider the phase center of the 
samples. Instead, an iso-height template is manually drawn 
in the SAR image, which are shown as red curves in Figure 
2. The covariance matrices can be estimated in a sliding 
window manner. Such iso-height template is the ideal 
sample selection window for layovered flat façade and flat 
ground. Despite the fact that the ground layer in the test area 
is not even, such window can at least make sure the phase 
centers of the façade scatterers in each sample are nearly 
identical. 

The template was slid from near-range to far-range (top 
down). By performing the proposed method, we extract the 
two most dominant eigenvectors at each template position. 
They are regarded as the phase centers of the façade and the 
ground (or roof) scatterers. Afterwards, the height of each 
scatterer can be individually retrieved using single-scatterer-
based approach, e.g. PSI.  

Figure 3 shows the height retrieved from the proposed 
method (right) and the state-of-the-art (left). The samples 
used for the estimation of the covariance matrices are 
identical. The figure shows the estimated heights of the two 
layers w.r.t. to the template position. Ideally, one should 
expect some small structures on the ground and a fairly 
straight line representing the façade. However, there are 
many outliers in the estimated height using the state-of-the-
art method. The façade points also have certain systematic 
bias appearing as small undulation. Therefore, the source 

range 

range 



separation is not ideal, despite the samples have been 
optimally selected in the best possible manner. 

In contrast, the façade height shows a much more linear 
structure in the result from the proposed method. The height 
estimates of the second layer are also much more consistent 
and robust. More detailed ground structures have been 
revealed. In particularly, the proposed method also resolved 
the layover between the roof and the façade, which is 
marked by the black ellipse in Figure 3(b). By assuming the 
façade is a straight line, the proposed method outperforms 
the state-of-the-art by a factor of threes in terms of the 
accuracy of the height estimates. 

 
(a)    (b) 

Figure 3. The height estimated from the two most dominant 
eigenvectors from (a) the sample covariance matrix, and (b) 
the sign covariance matrix. The black ellipse marks the layover 
region between the façade and the roof. In the result of the 
proposed method, the façade height shows a much more linear 
structure. The height estimates of the second layer are also 
much more consistent and robust. More detailed ground 
structures have been revealed. In particularly, the proposed 
method also resolved the layover between the roof and the 
façade. 

 
5. CONCLUSION AND OUTLOOK 

 
We demonstrated a robust method to blindly separate 
multiple scatterers layover in a SAR image pixel. It was 
shown that the state-of-the-art method can obtain reasonable 
result only under certain conditions, i.e. large elevation and 
intensity difference between the scatterers. Using real data, 
it was shown that the proposed method outperforms the 
state-of-the-art by a factor of three in terms of the accuracy 
of the interferometric phase estimates, and in turn the 
accuracy of the height derived from the phase. The 
experiment also tells that a robust covariance estimator is 
necessary in urban area, even if the samples are optimally 
selected. The large dynamic range and the complex 
scattering mechanism of the scatterers often cannot 
guarantee a reliable estimate of the covariance matrix. 

Nevertheless, both methods still strictly assume 
orthogonality between the steering vectors of different 
scatterers. This implies that systematic phase bias is 
inevitable in the estimated steering vectors. Therefore, we 

are currently developing algorithms without this 
assumption. 
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