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Earth Observation Image Semantic Bias: A
Collaborative User Annotation Approach
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Abstract—Correctly annotated image datasets are important
for developing and validating image mining methods. However,
there is some doubt regarding the generalizability of the models
trained and validated on available datasets. This is due to
dataset biases, which occur when the same semantic label is
used in different ways across datasets, and/or when identical
object categories are labeled differently across datasets. In this
article, we demonstrate the existence of dataset biases with a
sample of 8 remote sensing image datasets, first showing they
are readily discriminable from a feature perspective, and then
demonstrating that a model trained on one dataset is not always
valid on others. Past approaches to reducing dataset biases have
relied on crowdsourcing, however this is not always an option
(e.g., due to public-accessibility restrictions of images), raising
the question: How to structure annotation tasks to efficiently and
accurately annotate images with a limited number of non-expert
annotators? We propose a collaborative annotation methodology,
conducting image annotation experiments where users are placed
in either a collaborative or individual condition, and we analyze
their annotation performance. Results show the collaborators
produce more thorough, precise annotations, requiring less time
than the individuals. Collaborators labels show less variance
around the consensus point, meaning their assigned labels are
more predictable and likely to be generally accepted by other
users. Therefore, collaborative image annotation is a promising
annotation methodology for creating reliable datasets with a
reduced number of non-expert annotators. This in turn has
implications for the creation of less biased image datasets.

Index Terms—Dataset Biases, Remote Sensing Images, Se-
mantic Image Annotation, Sensory and Semantic Gaps, User
Evaluation

I. INTRODUCTION

THE ever-growing volume and diversity of image
databases increases the importance of diverse and gen-

eralizable datasets for the training and validation of content-
based image retrieval methods. This raises the question: How
generalizable are the different existing datasets as training
data? Torralba and Efros [1] assessed the biases of different
photographic multimedia image datasets by training a model
on one dataset and testing it on another one. The authors found
a low degree of generalizability across the datasets, and even
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expressed doubts whether existing datasets are too limited to
be considered as a reflection of the real world.

Dataset biases occur when the same semantic label is used in
different ways across various datasets, and/or identical object
categories are labeled differently across datasets. This could
be due to the dataset creation and image selection methods,
which are also influenced by the purpose of the dataset. Biases
can also be introduced by the annotators, due to the existing
sensory and semantic gaps. The sensory gap refers to the
difference between object perception with the naked eye, and
the perception of the object based on the images created from
sensor-recorded signals [2], [3]. The semantic gap is defined
as the difference between the user and computer understanding
of objects in an image [3], [4], [5], as well as the differences
between various users’ image understanding [6]. For remote
sensing images, these biases are more pronounced due to their
specific characteristics, such as resolution, perspective, and the
variety of sensors being used (e.g., Synthetic Aperture Radar
(SAR) or optical multispectral images), which record signals
very differently from the human visual system [7].

In this article, we evaluate the biases and generalizability
of eight remote sensing image datasets. These datasets were
created by different authors following specific criteria (label-
vs. image-based), using image products with diverse properties
acquired from SAR and multispectral (optical) sensors. We
train a classifier on one of the eight datasets and test it on the
others from the same sensor type. The results show a signif-
icant decrease in classification performance when compared
with training and testing on the same dataset. This decrease is
even larger when we train on a dataset from one sensor type
and test it on datasets from another sensor type. Therefore,
training or validating a content-based image retrieval method
on one dataset does not necessarily mean that it will generally
perform well. Although this is a problem several researchers
may assume exists, measuring and minimizing its effects has
not been sufficiently addressed. This leads to the question:
How to create image datasets which are less biased and more
representative of the real world?

Torralba and Efros [1] recommend annotating images
through crowdsourcing, which is an approach based on dis-
tributing a task across many people and integrating the indi-
vidual efforts to achieve the final results, thereby reducing the
effects of subjective biases. Crowdsourcing was found to be a
promising procedure for creating datasets [8], and is used for
image annotation through various platforms and approaches
such as LabelMe [9], Amazon Mechanical Turk [8], and
“Games with a Purpose” [10], [11]. Some examples using
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publicly available satellite imagery include Tomnod1, a crowd-
sourcing platform on which volunteers annotate satellite data
as part of campaigns searching for specific objects. Geo-Wiki2

is another platform using crowdsourcing for several tasks,
including the improvement of land cover maps.

Crowdsourcing image annotations, however, is not always
an option for remote sensing images, due to restrictions on
the public access of the images, the complexities of certain
images (e.g., TerraSAR-X image products [12]), or to the small
number of experts available for the annotation of specific types
of images. Therefore, remote sensing image datasets built
via crowdsourcing are not plentiful, and expert annotations
are usually relied on for dataset creation. However, due to
the presence of the sensory and semantic gaps, even expert
annotators can bias a reference dataset through errors in
their annotations [13], or their subjective understandings [6].
This method of dataset creation is further limited by the
relatively small number of experts available, and the large
effort necessary to produce large scale datasets.

Although experts are relied on for image annotation,
See et al. [14] showed that non-experts can produce anno-
tations of the same quality as experts, depending on how
the image annotation task is structured. Hutt et al. [15]
further demonstrate that annotation task structure can have a
great influence on the results. The authors found that ranking
tasks (i.e., ordering images according to a specific attribute)
produced the highest accuracy, inter-annotator agreement, and
reliability— compared with scoring or classification tasks.
This highlights the fact that task structure should be considered
as an important component in designing efficient annotation
methodologies.

In this article, we further study the task structure and its
influence on user behavior, performance, and image under-
standing in annotation tasks. This will lead us to design
better annotation task structures, using a reduced number of
annotators, achieving more reliable image annotations. This
in turn has implications for the creation of less biased image
datasets. More specifically, we analyze user behavior and
image understanding in individual vs. collaborative image
annotation scenarios. We conduct experiments where users
annotate satellite images — either collaboratively (with a
partner) or individually — and we study the effects of this
task structure on the efficiency and learnability of the anno-
tation task, as well as on the quality and consistency of the
annotations produced. These experiments were followed by
user interviews, which assessed users’ perceptions of the task,
such as their confidence in the correctness of their annotations.

Our results indicate that the annotation obtained through
a collaborative approach, involving 6 pairs of users, has
6.5% higher precision and 22% fewer missed labels compared
with the individual users, even though collaborators spent an
average of 7% less time performing the task. All users learn
to identify the objects under varying conditions over time;
however, the collaborators demonstrate an increased ability
to identify the more difficult object categories. Furthermore,

1http://www.tomnod.com
2http://www.geo-wiki.org

the collaborators’ overall performance is considerably less
variable (more than 10 times less variable), and therefore more
predictable, than the individuals’ performance. According to
the results, the agreement between user labels among the
collaborators is 79.6% while among the individuals it is 65.2%.
This reflects the fact that verbal discussions on the label
meanings resulted in more consistent and detailed annota-
tions. Additionally, collaborators reported a higher interest in
continuing the annotation task. This consistency and reduced
variability in performance allows a consensus in annotation
results to be reached with fewer users. Therefore, collaborative
approaches should be further considered in designing efficient
annotation methodologies, particularly when the number of
available annotators is limited (e.g., in the case of non-public
remote sensing images) in order to efficiently use the power
of consensus.

The rest of this paper is organized as follows: Section II
discusses the sensory and semantic biases existing in the eight
selected remote sensing image datasets. Section III analyzes
the degree of shared features between these datasets, while
Section IV evaluates the generalizablility of the different
datasets as training datasets. Section V discusses the effects of
the collaborative task structure on user performance, and out-
lines the implications for creating less biased image datasets.
Conclusions are presented in Section VI.

II. SENSORY AND SEMANTIC DATASET BIASES

Although efforts are placed to create unbiased and general-
izable datasets which represent the real world, strong biases
are still present [1], [6]. In this section, we experimentally
demonstrate the sensory and semantic biases existing in remote
sensing image patch datasets, and discuss some potential
causes of these biases. Image patch datasets are usually created
for patch-based analyses of high resolution remote sensing
images, by cutting the full-sized scenes into smaller tiles
known as “patches.”

For these experiments we chose eight different datasets,
selected for the diversity of their sensors, as well as for
the diverse methods used to generate them. Please refer to
Table I for a description of the datasets, and to Fig. 1
for sample image patches of each dataset for the categories
“Urban/Residential areas” and “Agricultural fields.” Datasets
D1-D6 all correspond to high resolution SAR images. D1-D4
were created by the same annotator, providing the interesting
possibility of comparing datasets while holding the annotator
constant. The datasets were generated using an “image-based”
approach. In this approach, a remote sensing scene is selected,
and then split into image patches of a certain dimension.
Since this is done disregarding image content, the resulting
image patches are not centered on an object, and therefore
usually their main concept is not clear. Consequently, different
annotators will have different interpretations of the image
patch content, caused by the existing sensory and semantic
gaps, and this introduces biases into the datasets. In this dataset
generation method, the number of image patches per class
are not equally distributed, because categories are generated
organically, meaning that they are selected to reflect existing



3

ID Datasets Sensor Resolution Dataset Size No. of No. Patches Patch Size Generation
(m) (No. of Patches) Classes per Class (pixels) Method

D1 VHR SAR RU [16] TerraSAR-X 1.25 7187 40 Not Equal 160× 160 Image-based
D2 VHR SAR DE & CH [16] TerraSAR-X 1.25 7176 42 Not Equal 160× 160 Image-based
D3 VHR SAR CN [16] TerraSAR-X 1.25 1014 7 Not Equal 160× 160 Image-based
D4 VHR SAR CU [16] TerraSAR-X 1.25 1008 9 Not Equal 160× 160 Image-based
D5 15 Class TerraSAR-X [17] TerraSAR-X 1.20 3434 15 Not Equal 160× 160 Both
D6 11 Class TerraSAR-X [18] TerraSAR-X 1.00 1100 11 Equal 160× 160 Label-based
D7 UC Merced Land Use [19] Optical (RGB) 0.30 2100 21 Equal 256× 256 Label-based
D8 RS Dataset [20] Optical (RGB) 0.50 600 12 Equal 600× 600 Label-based

TABLE I
CHARACTERISTICS OF THE DATASETS
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Fig. 1. Example patches corresponding to the category “Urban/Residential areas” for the datasets (a) D1, (b) D2, (c) D3, (d) D4, (e) D5, (f) D6, (g) D7, (h)
D8. And corresponding to the category “Agricultural fields” for the datasets (i) D1, (j) D2, (k) D3, (l) D4, (m) D5, (n) D7, (o) D8.

patch content, as opposed to using preselected categories.
Image patches often present heterogeneous image content, and
this is reflected in labels such as “High density housing area-
type 3” (indicating that not all high density housing areas
look alike), or “Forest with different objects.” Additionally, the
purpose of the dataset determines which images are selected,
and this limits the dataset to that purpose.

The image-based dataset generation method stands in con-
trast to the “label-based” one used for D6-D8. In this method,
different categories and their corresponding labels are first
selected, and then visually homogeneous image patches whose
content clearly represents the label are hand-picked. In these
datasets, the number of patches are usually equally distributed
between categories, and labels tend to be clear-cut, such
as “Grassland” and “Pond.” In this way, ambiguities which
could lead to divergent understandings are reduced, therefore
decreasing the effects of the sensory gap. Since the semantic
gap builds on the sensory gap [6], it is also reduced. However,
it was experimentally shown in [6] that these gaps are mostly

reduced for the annotator and the specific purpose of that
dataset (which guides the pre-selection of the labels), and
therefore semantic and sensory biases are still present in the
dataset. Additionally, the categories in these datasets tend to be
highly homogeneous, and usually not reflecting the complexity
of acquired remote sensing images.

D5 corresponds to high-resolution SAR data, and its genera-
tion method finds a middle ground between these image-based
and label-based methods. D5 was created based on existing
annotated SAR data; additional categories were then defined
and image patches containing the appropriate content were
added.

A. Experimental Procedure

The eight datasets from Table I are compared to understand
their semantic content intersections. The co-occurence of
categories with synonymous semantic labels was calculated
between datasets. We refer to this as a semantic content
intersection. For example, D1 has different labels for urban
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Fig. 2. (a) Semantic content intersection between datasets. (b) Percentage of
exact label matches within the intersected semantic content. The numbers on
the axes correspond to the different datasets as listed in Table I. The numbers
inside the matrices refer to percentages.

and housing areas, such as “High density housing area type
1” and “High density urban area,” while D6 has the label
“Urban.” These labels are synonymous, and as depicted in
Fig. 2 (a), 37% of the categories within these two datasets
have intersecting semantic content. Considering only the in-
tersected semantic content, Fig. 2 (b) shows the co-occurence
of exactly matching labels (category names). Referring back to
the example of D1 and D6, of the 37% intersecting semantic
content, only 49% are an exact match between the assigned
labels.

B. Results and Discussion

Referring to D3 and D6 in Fig. 2, the effects of subjectivity
in labeling image content is highlighted. D3 and D6 share a
quite high semantic content intersection; however, their exact
label match is null. This could be attributed to the dataset
generation method: D3 followed an image-based method,
whereas D6 followed a label-based method.

Datasets created with an image-based method (D1-D4) are
likely to have a wider diversity of labels to describe the full
image content. Therefore, it is probable that a higher degree of
intersection exists between their semantic content. Considering
datasets created with a label-based method (D6-D8), the oppo-
site effect is evident. A reduced semantic content intersection
between the datasets is a consequence of categories having
been selected to tailor the dataset for a specific purpose.

In Fig. 2 (b), it is possible to note that overall, D1-
D4 have a high percentage of exact label matches. These
datasets were labeled by the same annotator, indicating that a
consistent personal idea of semantics is applied across images.
This consistency demonstrates the personal subjectivity in the
semantic understanding of image content.

It is also possible to note that D5’s semantic content,
and particularly the percentage of exact label matches, are
overall quite similar to datasets D1-D4. This result is not
surprising, considering that D5 was created based on elements
of datasets D1-D4, as mentioned in Section II. Additionally,
D1-D5 were created by the same research team, reflecting not
only individual subjectivity, but also the influence of existing
semantic structures in the research team, since colleagues build
on each others’ work. These results indicate that the dataset
generation method has an influence on the categories selected
and the semantic labels assigned to them.

III. DATASET DISCRIMINABILITY

In this section, we analyze the degree of shared features be-
tween datasets to visualize how datasets can be discriminated
from each other, regardless of their categories. This allows us
to assess each dataset in terms of how the model trained on
one of them could be generalized to the other datasets.

A. Experimental Procedure

We represent the image patches within each dataset with
3 different feature descriptors: Bag-of-Words (BoW), Weber
Local Descriptors (WLD), and Gabor.

BoW provides a compact representation of images through
the extraction of local image features by vectorizing a sliding
window of 3× 3 pixels [21]. A dictionary of visual words is
generated by applying a clustering method (e.g., k-means) to
a sample set of the local feature vectors (1% of all the feature
vectors), where the cluster centers represent the visual words.
Using this dictionary, each image patch is represented with a
histogram of the visual words, by assigning its local feature
vectors to the nearest cluster center. In our experiments, the
dictionary is created for each dataset separately.

WLD feature descriptors are constructed by a two-
dimensional histogram of: 1) Differential Excitation, the
brightness difference ratio between a pixel x and its neighbors;
and 2) Orientation, which is the gradient orientation of a
pixel x [22]. The two-dimensional histogram is quantized to
M excitations and T orientations, and then built into a one-
dimensional histogram, resulting in the final feature vector.
In our experiments, feature descriptors are globally computed,
and we set M and T equal to 6 and 8, respectively (based
on [22]), which results in a feature vector of 144 elements.

Gabor feature descriptors are acquired by filtering the image
with Gabor filters [23], which are linear band-pass filters that
are generated through the scaling and rotation of a mother
wavelet filter whose impulse responses are 2D modulated
Gaussian functions. The Gabor feature vectors are then con-
structed through the computation of means (µsr) and standard
deviations (σsr) of the response for S scales and R rotations,
FGabor = [µ11 σ11 µ12 σ12 ... µSR σSR]. In our experiments,
image patch features are globally extracted. The selection of
S = 3 and R = 6 results in feature vectors of 36 elements.

For each dataset, we randomly sample a maximum of 100
image patches from each category. If a category includes less
than 100 image patches, we take the entire category. We
conduct various experiments by taking different numbers of
training samples (16, 32, 64, 128) from the sample images.
These samples are used to train an 8-way k-nearest neighbors
(k-NN) classifier [24]. The classifier is tested on 400 random
image patches, taken from the sampled image patches of each
dataset. The classification is repeated 10 times with different
randomly sampled image patches for training and testing.

B. Results and Discussion

We classify the different image patches, as an indicator
of how distinct the datasets they belong to are. Fig. 3 (a)
shows the classification accuracy of the datasets when varying
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Fig. 3. (a) Classification accuracy of the datasets when varying the number of training samples. (b) Classification accuracy of the datasets using BoW features
for different dictionary sizes. (c) Confusion Matrix of the datasets for BoW features with a dictionary size of 64. (d) Confusion Matrix of the datasets for
WLD features. (e) Confusion Matrix of the datasets for Gabor features. For (c)-(e), the labels on the axes correspond to the different datasets as listed in
Table I. The numbers inside the matrices refer to percentages.

the number of training samples for BoW, WLD, and Gabor
feature descriptors. For BoW, the dictionary size was picked
experimentally, by performing a classification for different
dictionary sizes (16, 32, 64), as represented in Fig. 3 (b). Since
the results are about the same for all dictionary sizes, we take
64 for our experiments. As the results show in Fig. 3 (a),
BoW discriminates the datasets surprisingly well, even with
a small number of training samples. WLD and Gabor also
perform rather well (with classification accuracies higher than
80%) across the different number of training samples. From
a feature perspective, the datasets are very discriminable; in
other words, they have only a small feature overlap.

This is further demonstrated in the confusion matrices
showing the feature overlap between the different datasets for
the three feature descriptors as depicted in Fig. 3 (c)-(e). All
three matrices display a pronounced diagonal, meaning that
each dataset is unique to some degree. Fig. 3 (c) shows that
the features obtained by BoW for each dataset are significantly
different from the others. Fig. 3 (d) and (e) show that features
obtained by both WLD and Gabor discriminate the datasets
across sensors: the SAR datasets (D1-D6) are distinct from
the optical ones (D7-D8). Within each sensor group there is
also a certain degree of shared features. This pattern is more
pronounced for Gabor feature descriptors.

As shown in Fig. 2 (a), D6 has a semantic content inter-
section with the other datasets, particularly with data from
the same sensor. However, it is almost not sharing features
with other datasets, as displayed in Fig. 3 (c)-(e). Within
datasets D1-D4, there is a greater semantic content intersec-
tion, compared with their shared features. Although, according
to Fig. 2, these different datasets have intersecting semantics,
each similar label is associated with different features, which
is evidence of the sensory and semantic biases in the datasets.

The dataset generation methodologies cause these biases. In
the case of D6, a label-based approach was used, resulting
in visually homogeneous image patches within each class
(Fig. 1 (f)), which are distinct from the other SAR datasets
(Fig. 1 (a)-(e)). For D1-D4, an image-based approach was
used. Although the datasets were created by the same annota-
tor, similar labels refer to patches with different features. This
can be seen in Fig. 1 (a)-(d), where all image patches refer
to the label “Urban/Residential areas,” however, the objects
within the patches look very different.

Referring to Fig. 3 (d)-(e), D1 and D2 are less discriminable
than the other SAR datasets for both WLD and Gabor feature
descriptors. This demonstrates that their features are more
generalizable over the other SAR datasets. Altogether, this
shows that the datasets are distinct to some degree, and
therefore the model trained on one of the datasets could not
be easily generalized to the others.

IV. CROSS-DATASET GENERALIZABILITY

Datasets are widely used for the training and validation of
content-based image retrieval methods; therefore, their built-in
sensory and semantic biases can affect the resulting models.
In this section, we assess the generalizability of the different
remote sensing image datasets as training data, addressing the
question of whether a model trained on one dataset is easily
generalizable to another.

A. Experimental Procedure

In order to analyze the cross-dataset generalizability of the
eight datasets for a particular object category, we trained
an object detector on each dataset. The object detector is
performing one versus all classification for a particular object
category, using the k-NN algorithm.
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BoW features
D1 D2 D3 D4 D5 D6 D7 D8 Drop SS Drop DS

D1 50.2 17.9 0.0 28.8 27.6 0.0 6.2 0.0 70.1% 93.8%
D2 1.5 57.1 39.7 46.2 23.0 46.4 13.6 12.7 45.1% 76.9%
D3 0.0 31.1 66.2 59.2 38.2 45.7 18.3 10.0 47.4% 78.6%
D4 8.5 29.9 44.6 85.6 39.5 31.8 16.6 5.4 63.9% 87.1%
D5 7.1 31.1 30.1 38.7 94.8 24.2 18.8 11.3 72.3% 84.1%
D6 9.5 30.4 5.6 57.8 21.7 96.8 20.6 6.4 74.2% 86.1%
D7 0.0 3.5 0.0 0.0 0.0 0.0 64.3 0.0 100.0% 98.9%
D8 0.0 0.0 0.0 0.0 0.0 0.0 7.5 55.0 86.4% 100.0%

WLD features
D1 D2 D3 D4 D5 D6 D7 D8 Drop SS Drop DS

D1 40.1 14.7 8.8 2.7 17.4 42.7 1.3 0.0 56.9% 98.4%
D2 14.1 56.4 46.6 62.7 25.5 36.5 1.2 0.0 34.2% 98.9%
D3 9.8 38.5 66.7 73.4 48.6 32.2 0.0 0.0 39.2% 100.0%
D4 7.9 36.7 17.6 81.9 25.8 31.8 0.0 0.0 70.7% 100.0%
D5 13.2 40.9 65.8 42.4 93.1 0.0 0.0 0.0 65.1% 100.0%
D6 0.0 0.0 0.0 0.0 0.0 96.8 0.0 0.0 100.0% 100.0%
D7 0.0 0.0 0.0 0.0 0.0 0.0 67.7 28.1 58.4% 100.0%
D8 0.0 0.0 0.0 0.0 0.0 0.0 29.3 64.8 54.8% 100.0%

Gabor features
D1 D2 D3 D4 D5 D6 D7 D8 Drop SS Drop DS

D1 40.5 16.1 18.1 13.7 13.9 28.6 0.0 0.0 56.3% 100.0%
D2 12.0 55.5 45.7 46.7 35.0 41.6 0.0 9.1 34.7% 91.8%
D3 16.7 39.8 64.4 40.4 46.4 27.0 0.0 0.0 47.1% 100.0%
D4 12.9 40.0 43.8 77.1 42.3 53.6 0.0 0.0 50.0% 100.0%
D5 10.4 36.9 51.3 45.1 79.8 17.9 0.0 0.0 59.5% 100.0%
D6 9.6 16.6 38.1 46.7 36.9 96.1 0.0 0.0 69.2% 100.0%
D7 0.5 0.1 0.0 0.0 3.3 0.0 60.1 0.0 100.0% 98.9%
D8 12.5 1.9 0.0 14.5 25.8 4.1 30.2 42.2 28.3% 76.8%

TABLE II
CROSS-DATASET DETECTION OF THE CATEGORY “URBAN/RESIDENTIAL
AREAS.” THE VERTICAL AXIS REFERS TO THE TRAINING DATASETS, AND

THE HORIZONTAL AXIS REFERS TO THE TRAINING DATASETS.

We then use the resulting model to detect that object
category in all datasets. For each category, 30% of the image
patches are used for training, and the rest are used for testing.
The image patches are represented by BoW, WLD and Gabor
feature descriptors.

B. Results and Discussion

Tables II and III refer to the cross-dataset generaliz-
ability assessment for two commonly used categories: “Ur-
ban/Residential areas” and “Agricultural fields.” These cat-
egories were selected because their image patch content is
visually different. Image patches corresponding to the “Ur-
ban/Residential areas” category are highly structured, whereas
the “Agricultural fields” category is more visually homoge-
neous. Tables II and III are made up of three sub-tables,
one for each feature descriptor (BoW, WLD, Gabor). In each
sub-table, the vertical axis refers to the training datasets, and
the horizontal axis refers to the dataset the model was tested
on. Each sub-table has two additional columns: Drop SS and
Drop DS. Both these values show the percentage decrease
(Drop) when training on one dataset and testing on the others,
compared with training and testing on the same dataset. For
computing Drop SS, we average over the detection perfor-
mance on the datasets from the same type of sensor (SS) as the
training dataset (SAR or Optical). For Drop DS, we average
over the detection performance on the datasets with different
sensor types (DS; SAR vs. Optical) as the training dataset.

BoW features
D1 D2 D3 D4 D5 D6 D7 D8 Drop SS Drop DS

D1 76.3 0.0 0.0 0.0 0.0 – 11.5 11.3 100.0% 85.0%
D2 0.0 68.6 0.0 0.0 0.0 – 6.9 0.0 100.0% 94.9%
D3 0.0 0.0 73.3 0.0 0.0 – 2.0 0.0 100.0% 98.6%
D4 0.0 0.0 0.0 74.2 0.0 – 9.1 11.9 100.0% 85.8%
D5 0.0 0.0 0.0 0.0 94.3 – 20.7 3.1 100.0% 87.4%
D6 – – – – – – – – – –
D7 0.0 21.1 0.0 29.5 0.0 – 66.1 11.0 83.3% 84.7%
D8 0.0 0.0 0.0 0.0 0.0 – 0.0 65.6 100.0% 100.0%

WLD features
D1 D2 D3 D4 D5 D6 D7 D8 Drop SS Drop DS

D1 65.7 54.8 13.3 0.0 44.6 – 4.4 11.9 57.1% 87.6%
D2 41.8 70.5 12.5 0.0 47.6 – 5.4 11.1 63.8% 88.2%
D3 27.2 37.6 73.4 11.0 52.8 – 4.6 10.9 56.2% 89.4%
D4 10.2 24.1 29.9 70.9 49.2 – 5.2 10.1 60.0% 89.2%
D5 21.5 48.4 36.8 45.2 85.5 – 4.8 10.4 55.6% 91.1%
D6 – – – – – – – – – –
D7 0.0 0.0 0.0 0.0 0.0 – 86.3 6.1 92.9% 100.0%
D8 0.0 0.0 0.0 0.0 0.0 – 6.4 54.1 82.6% 100.0%

Gabor features
D1 D2 D3 D4 D5 D6 D7 D8 Drop SS Drop DS

D1 57.8 17.5 13.3 12.8 16.9 – 12.6 0.0 73.8% 89.1%
D2 31.3 60.6 19.3 14.5 56.9 – 0.5 0.0 49.6% 99.6%
D3 24.2 11.2 61.2 37.1 18.1 – 9.3 8.5 62.9% 85.4%
D4 17.1 27.2 36.3 71.3 54.1 – 1.5 0.0 52.7% 98.9%
D5 22.3 45.1 22.8 34.8 77.2 – 1.1 0.0 59.5% 99.2%
D6 – – – – – – – – – –
D7 0.8 0.0 0.0 0.0 0.0 – 95.6 19.6 79.5% 99.8%
D8 3.8 0.0 0.0 0.0 0.0 – 42.7 72.7 41.3% 98.7%

TABLE III
CROSS-DATASET DETECTION OF THE CATEGORY “AGRICULTURAL

FIELDS.” THE VERTICAL AXIS REFERS TO THE TRAINING DATASETS, AND
THE HORIZONTAL AXIS REFERS TO THE TRAINING DATASETS.

The detection performance is measured using the F-
measure:

F = 2 · Precision · Recall
Precision+Recall , (1)

where Precision = TP
TP+FP and Recall = TP

TP+FN .
TP (True Positive) and FP (False Positive) correspond to
the number of correctly and incorrectly labeled objects, re-
spectively. FN (False Negative) corresponds to the unlabeled
objects.

As we can see in Tables II and III, when we train on one
dataset and test on others, there is a significant decrease in
detection performance. This decrease is largest when we train
on data from one sensor type and test it on data from another
sensor type (Drop DS). Referring to the tables for BoW
for both categories, with either homogeneous patch content
such as “Agricultural fields,” or with structured patch content
such as “Urban/Residential areas,” the performance decrease
is larger than for WLD and Gabor. This is consistent with
the discriminability shown in Fig. 3 (c)-(e). In the case of
SAR dataset categories with fully developed speckle (e.g.,
“Agricultural fields”), the cross-dataset detection performance
decreases by 100%. This can be explained by the fact that
BoW features are highly localized (using local windows), and
therefore the classes with fully developed speckle [17] result
in a more unique signature. Consequently, for categories with
these characteristics, the model trained on BoW features of one
SAR dataset can not be further applied to other SAR datasets.

Considering only the optical datasets, the models trained
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on WLD and Gabor are more generalizable for categories
with structured patch content; whereas for categories with
homogeneous patch content, models trained on Gabor are more
generalizable.

Based on the findings from the current and previous section,
due to the intrinsic biases, these datasets are distinct from each
other. Therefore, training or validation of content-based image
retrieval methods on one dataset does not necessarily mean that
they will generally perform well.

V. CREATING LESS BIASED DATASETS

Consistent with previous research [1], the results above
indicate that each dataset comes with its own bias. This raises
the question: How to create datasets which are less biased
and more representative of the real world?

Torralba and Efros [1] recommend image sampling from
multiple sources in a random manner, as opposed to hand-
picking images. The latter approach results in datasets which
perform worse in terms of cross-dataset generalizability. This
is consistent with our findings regarding datasets created with
a label-based approach (D6-D8). These datasets have less
semantic content intersection as shown in Fig. 2, as well as
fewer shared features, depicted in Fig. 3 (c)-(e).

Furthermore, the authors [1] also recommend crowdsourc-
ing, an approach that is used extensively in various research
fields since a number of years [25], [26], [27], including
computer vision, where it is considered to be a promising
procedure for creating datasets [8].

Crowdsourcing’s strength comes from consensus, which
is directly related to the number of contributions. However,
large scale public crowdsourcing is not always possible. For
example, with certain high-resolution remote sensing images,
usually annotations by experts are relied on as a reference. This
method of dataset creation is limited by the relatively small
number of experts available, and the large amount of effort
necessary for creating large scale datasets. Furthermore, expert
annotators can bias a reference dataset through errors [13],
and subjective understandings [6]. Consequently, not many
large scale remote sensing image datasets exist, and the
existing ones suffer from intrinsic biases, as discussed in the
previous sections. Therefore, we study the effects of different
image annotation task structures (collaborative vs. individual
annotation) on user annotation performance, behavior, and
image understanding. This will lead us to design annotation
task structures which produce more reliable image annotations,
which are more likely to be accepted by other users. This in
turn has implications for the creation of less biased image
datasets.

According to [7], the specific characteristics of remote
sensing images makes their annotation a more challenging
task for users, which in turn magnifies the effects of the
annotation task structure on the results. First of all, the sensors
used to capture the images vary greatly (e.g., SAR, optical),
therefore their features do as well. Particular objects can be
better detected with certain types of sensors, while resolution
and scale affect the semantic level at which the user can
identify objects in an image. Additionally, the human eye is

not accustomed to the perspective view from above contained
in satellite images, making object identification harder. This
view from above also creates an image where there is no
clear foreground object distinguished from the background.
Depending on the incidence angle and pass direction, objects
can appear differently [28]. Due to seasonal changes, even
the time of year has an impact on the image interpretation
of remote sensing images. Winter scenes present different
information compared with summer scenes.

Additionally, there is the issue of semantics, remote sens-
ing scenes can be labeled at multiple semantic levels (e.g.,
“House,” “Neighborhood,” “Urban area”). The amount of
context available to the user is determined by the size of
the image presented to the user (e.g., an entire image or just
a small part of it). Previous research with remote sensing
images [2] found that when presenting users a full remote
sensing scene to annotate, they tended to assign only higher
level semantic labels, such as “Urban” or “Industrial area,”
as opposed to lower level semantics, such as “House” or
“Factory.” On the other hand, when users were given small
parts of the scene, the labels assigned corresponded to lower
level semantics.

In our experiments, we vary the annotation task structure by
having non-expert users work either individually or collabora-
tively (pairwise) on an image annotation task. See et al. [14]
compared the annotation quality of crowdsourced data between
experts and non-experts on a discrimination and an identifi-
cation task using the Geo-Wiki platform. The discrimination
task had annotators assess the degree of human impact, and the
identification task had them identify the type of land cover in
different locations across the world. The authors found that
in discrimination tasks, there was no significant difference
in the performance of experts compared with non-experts.
For the identification tasks, the experts initially performed
better than the non-experts; however, over time non-experts’
performance equaled and in some cases even outperformed the
experts. These results indicate that non-experts can be used for
annotation tasks without a decrease in data quality. Although
the number of non-experts available to annotate remote sensing
datasets is greater than the number of experts, it is also
somewhat limited due to the constraint of not being able to use
large-scale online crowdsourcing for certain types of remote
sensing data (e.g., non-public high resolution multispectral and
SAR images). Therefore, the annotation task structure must be
optimized to ensure that non-experts can efficiently produce
accurate and thorough annotations, with a limited number of
annotators.

A. Experimental Procedure

The process chain followed for these experiments is sum-
marized in Fig. 4. First, a multispectral Scene of the north of
Munich (Germany) was selected. The scene was acquired on
July 12th, 2010 (10:30 am UT) by the WorldView-2 satellite,
and trimmed to 2000×1800 pixels. The image has a resolution
of 1.84 m, and 3 bands (RGB) were selected and displayed.
This scene was cut into patches, each comprising 200 × 200
pixels, with 50% overlap, producing 323 image patches.
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In the Initial user annotation, three different users were
each given an average of 108 image patches to annotate,
meaning they had to identify the objects in the image patches,
and assign them labels. The users performed a free text
annotation (without a dictionary or reference) [29]. After
removing duplicates and synonyms in the Label collection &
refinement step, a dictionary of 18 Content labels was created
(please refer to Table IV). This dictionary was then used in
a manual annotation of the scene, using Google Earth3 as a
ground truth to produce a Reference annotation (REF). The
REF is used for further analysis of the user annotations.

Thirty users were then recruited to participate in a set of
user experiments, which we refer to as UX B. To explore
the effects of collaboration on the image annotation task,
users were placed in either a collaborative or in an individual
condition. Each individual, or each pair of users were given
53 image patches to label using the content label dictionary
(please refer to Table IV). Twelve users were placed in the
collaborative condition (UX BC), performing the annotation
task with a partner. These six pairs each annotated the same
53 image patches. The remaining 18 users were assigned to the
individual condition. Of these 18 users, six of them annotated
the same image patches as UX BC, we refer to this group
as UX BMI. This was done so that the image patches were
held constant, and we could compare the labels assigned by
the individuals and the collaborators. The other 12 users in
the individual condition are referred to as the UX BIR group.
Each user in this group annotated different sets of 53 randomly
selected image patches. This group allows us to compare the
performance of individuals when we vary the image patches
given. Information on the different experimental conditions
can be found in Table V.

After users were assigned to the different conditions, they
were given a short demo of the annotation tool. Please refer
to Fig. 5 for a screenshot of the tool. The tool has zoom and
panning functions, as well as 8 drop-down menus displaying
the labels from Table IV. Users were asked to look at each
image patch, and assign labels from the drop-down menus to
describe the objects they could see, in whatever order they
saw them. Users were additionally told to take their own
interpretation of the label meanings. Users were given as much
time as they required to finish the annotation of the given
image patches. The quantitative data collected were the labels
assigned to the image patches.

In addition to this, qualitative data was collected in the form
of semi-structured individual interviews with the users, which
took place after the annotation task was completed. The 11
interview questions sought to explore the users’ experience
with the task, including why the user would, or would not,
want to continue with the annotation task, what aspects of the
annotation task were easy or difficult, why this was the case,
and asked users to rate their confidence in their annotations
on a scale, among others. These questions were used to
launch into a dialog with the user, providing insights into
his/her subjective perceptions of the annotation task, such as
which objects were more difficult to label, why this was the

3https://www.google.com/earth/

Initial user annotation 

UX_A & UX_B 

Patches Scene 

Manual 

annotation 

Reference 

annotation 

Content labels 

Label collection & refinement 

User Experience & 

Performance Measures 

Google Earth 

UX_A  

UX_BC 

UX_BMI

UX_BIR 

Fig. 4. Process chain of our user experiments

1 Agricultural field 7 Greenhouse 13 Railway
2 Building 8 Highway 14 Road
3 Crop 9 House 15 Soccer field
4 Factory 10 Isolated trees 16 Solar panels
5 Forest 11 Lake 17 Street
6 Grass 12 Parking lot 18 Tennis court

TABLE IV
CONTENT LABELS

case, problems they ran into while annotating, and how they
approached the annotation task.

B. Results and Discussion

In the following subsections we analyze the quantitative
and qualitative data collected, to further understand how the
different scenarios and conditions affected different aspects of
user annotation performance.

1) User Overall Performance: We calculated average per-
formance measures across different experimental conditions,
which is presented in Table VI. Overall, UX BC have the
highest average Precision, Recall, and F-measure. The overall
variance measures show that UX BC’s results are less dis-
tributed. This is also demonstrated in Fig. 6 (b), where the
points representing the performance of UX BC are closely
grouped together, as opposed to the points representing the
performance of UX BMI and UX BIR, which are distributed
over a larger range. This figure additionally shows that the
individuals’ variance is larger for Recall, therefore the main
difference between the different individuals’ performance is
the number of objects they could identify, and not the precision
of the assigned labels. In the case of UX BC, not only is
the user performance closer together, but so are the labels
assigned, which is reflected in the user agreement. According
to the results, the user agreement among UX BC is 79.6%,
while among UX BMI is 65.2% (only these 2 groups were
considered because they labeled the same image patches). As
indicated in Table VI, UX BC’s higher performance does not
require additional time, as compared to UX BMI and UX BIR.

2) User Confidence Ratings: Fig. 6 (b) shows Precision
versus User Confidence ratings. As we can see, the users in the
individual condition (UX BMI, UX BIR) give a conservative
estimate of their precision. The users in the collaborative
condition (UX BC) are overall better at estimating their pre-
cision, and show less variance in their ratings. The interviews
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User Groups Sample Size Image Patches Quantitative Data Qualitative Data Condition
(# users) Labeled Collected Collected

UX BC 12 (6 pairs) 53 Object labels Interview Collaborative: working in partners
UX BMI 6 53 Object labels Interview Matched individuals: individuals labeled same image patches as UX BC

UX BIR 12 53 Object labels Interview Rest of the individuals: labeled different image patches

TABLE V
OVERVIEW OF THE DIFFERENT CONDITIONS IN THE USER EXPERIMENTS.

Fig. 5. Screenshot of the annotation tool used for the user experiments

UX BC UX BMI UX BIR Users in individual condition
(UX BMI + UX BIR)

Avg. Precision (%) 88.05 82.58 82.55 82.67
Avg. Recall (%) 66.28 56.48 53.27 54.34

Avg. F-measure (%) 75.42 65.51 63.26 64.01
Variance Precision 21.30 42.90 3.98 16.98

Variance Recall 17.76 244.58 233.91 239.75
Variance F-measure 3.83 189.11 199.12 196.91

Avg. Time/Patch (sec.) 44 53 42 47.5

TABLE VI
AVERAGE PERFORMANCE MEASURES

reveal that when giving confidence ratings, users consider the
correctness of their assigned labels (they are not considering
the objects they may have missed).

3) Class-wise User Performance Analyses: Fig. 7 presents
Precision, Recall, and F-measure for different experimental
conditions, across the 18 labels shown in Table IV. The
blue, red, green, and yellow bars represent UX BC, UX BMI,
UX BIR, and the average over all of UX B conditions, respec-
tively. Fig. 7 (c) shows that the biggest difference in perfor-
mance between the UX BC and the individuals (UX BMI and
UX BIR) is for the classes that were considered as hard to
identify based on the user interviews. Taking the example of
“Railway” and “Parking lot,” user interviews describe these
classes as difficult to identify due to image product properties,
namely resolution and scale. This is reflected in Fig. 7 (b),
where the low Recall shows that users had trouble recognizing
these objects. Other ones, such as “Street,” were also hard
to identify due to semantic confusion with classes such as
“Road.” Based on a calculation of the confusion between
classes, UX BC tend to confuse “Street” with “Road” in 14%
of the cases; whereas for individuals this is true for 28% of
the cases.
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Fig. 6. (a) Precision vs. Recall. (b) Precision vs. Users’ stated confidence.
The red points in the graphs refer to UX BMI and UX BIR, whereas the blue
dots refer to UX BC.

4) Object Visibility for Users: Users were told to assign
up to eight labels to each image patch following the order
in which they identified them, allowing us to measure the
visibility as the average number of times the label was assigned
to each of the eight possible positions. Fig. 8 shows the
visibility of each label, comparing UX BC and UX BMI.
Here we can see that “Agricultural field” and “Lake” are
the most visible object classes for all users, with this label
being assigned in first place more than 50% of the time.
Since these object categories were mostly co-occurring, it is
possible to see how the labeling order between them varied
for UX BC compared to UX BMI. For UX BMI there is a
larger probability that “Agricultural field” was labeled first,
whereas for UX BC there is a larger probability that “Lake”
was labeled first. “Crop,” “Forest,” and “Highway” also co-
occur with the two previously mentioned categories, and here
we can also see differences between UX BC and UX BMI. For
UX BC, the categories “Lake,” “Forest,” and “Highway” are
usually labeled prior to the categories “Agricultural field” and
“Crop.” This pattern may reflect that users in the collaborative
(UX BC) condition first labeled the categories both users were
sure of and agreed upon, leaving the ones they had to discuss
to reach an agreement till the end.

User interviews indicate that of these categories, confusion
exists between the two categories “Agricultural field” and
“Crop,” as well as between “Road” and “Street.” In an average
of 4.5% of the cases, all users misassign the label “Crop” to
agricultural fields; whereas confusion in the other direction
occurs in 55% of the cases. Among the other two labels, the
label “Road” is miassigned to streets in an average of 21%,
whereas confusion in the other direction occurs in 25% of the
cases. This can justify the difference between the visibility
distribution of these two pairs of labels. “Agricultural field”
and “Crop” display a visibility distribution with a strong pref-
erence for the first positions. “Road” and “Street,” on the other
hand, present a more even distribution across positions. This
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Fig. 7. Class-wise performance for the 18 labels shown in Table IV. The blue, red, green and yellow bars represent UX BC, UX BMI, UX BIR, and the
average over all UX B conditions, respectively.

can be further explained by the differences in confusion. In the
majority of the cases “Crop” is confused with “Agricultural
field”, whereas confusion is bi-directional between “Road”
and “Street”. Considering that the co-occurences of both pairs
of object categories are similar (39% for “Agricultural field”
and “Crop,” and 33% for “Road” and “Street”), their visibility
distribution is not due to co-occurence, but rather to sensory
and semantic confusions between object categories.

5) User Performance Measures Throughout the Task: User
performance measures are plotted against Patch ID which
reflects the order that users saw the 53 patches, giving us
some insight into how users acquire experience and skills,
while progressing with the annotation task. In Fig. 9 (a),
F-measure is higher for UX BC, showing that their overall
performance is better. Comparing Fig. 9 (b) and (c), it is visible
that Precision is closer together than Recall for UX BC and
UX BMI, indicating that the differences in overall performance
are mostly attributed to the number of unidentified objects.
The lower average Recall of UX BMI shows that individuals
are more likely to miss objects, either because they did not
detect the object, or they were insufficiently confident of their
object identification and therefore decided to leave it unlabeled
instead.

These figures also show that after approximately 10 image
patches, the user performance appears to stabilize in all
conditions. This is confirmed in the interviews, where users
express doubts regarding the accuracy of their first 10 image
patch annotations. Users utilize these first patches to become
familiar with the appearances of different objects, and create
their own working definitions of the labels. Fig. 9 (d) plots
elapsed annotation time over Patch ID, showing that all users
are improving their performance as they get exposed to more
patches. Additionally, users are also becoming quicker at doing
the annotation, with UX BC becoming slightly quicker than
UX BMI by the end of the annotation, and showing a slightly
increasing trend.

To better understand how experience with the task affects
user performance, eight classes were chosen to represent
a variety of features: highly structured objects (“Building,”
“House”), homogeneous objects (“Agricultural Field,” “Crop,”
and “Grass”), objects with a small coverage which are hard to
identify (“Parking lot,”), and objects with distinguishing fea-
tures (“Road,” “Street”). For each selected label, we calculated
the Recall, and the False Discovery Rate (FDR = FP

FP+TP )
as an error measure, where FP (False Positive) represents the
incorrect assignment of the label to another object, and TP
(True Positive) represents the correct assignment of the label.

These measures are plotted over Patch ID in Fig. 10. Since user
performance could additionally be affected by the coverage,
we measured user’s Recall over the class coverage for the same
eight classes. The results of these experiments are described
below:

• The correct identification of the object category “Agricul-
tural field” is highly dependent on label coverage of up
to 20%, as we can see in Fig. 10 (a). Both UX BC and
UX BMI have a very similar Recall which is overall high.
This measure of performance stabilizes after the user has
seen approximately ten images. In Fig. 10 (a), we can see
that this label is seldomly incorrectly assigned to other
categories, therefore it is very identifiable. This is also
consistent with the visibility of this category, shown in
Fig. 8 (a).

• The object category “Building” requires at least 5% label
coverage before the performance stabilizes, as shown
in Fig. 10 (b). For UX BMI the Recall at this point is
lower than that of UX BC, meaning that the users did
not correctly identify this label in more cases. Recall
stabilizes after the users have seen approximately ten
image patches, which is consistent with the interviews.
Additionally, users expressed that they had some semantic
confusion with the label “House.” Based on our analysis
of the annotations, in 19% of the cases, both groups of
users assigned the label “House” to buildings.

• The correct identification of the object category “Crop” is
not very dependent on coverage, as shown in Fig. 10 (c).
Both user groups’ Recall is stable across Patch ID, even
though the coverage of this object class changes through-
out, as depicted in Fig. 9 (e). Overall Recall for both user
groups’ is low, due to the sensory and semantic confusion
with the object class “Agricultural field.” However, it
is higher for UX BMI, which can be explained by the
lower misassignment of the label “Agricultural field” to
crops (47% for UX BMI vs. 62% for UX BC). Although
UX BMI’s Recall is higher than UX BC’s, UX BMI’s error
is higher, indicating that this group of users misassigned
the label “Crop” to other categories more frequently.

• Although the object category “Grass” is homogeneous,
unlike the categories “Agricultural field” and “Crop” it
is not as visible (as shown in Fig. 8 (f)). Its identifi-
cation is also not dependent on coverage (as shown in
Fig. 10 (d), probably because its coverage is usually
distributed throughout the entire patch in small blocks, as
opposed to large continuous areas. This object category is
often seen as a background object, which is also reflected
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Fig. 8. The visibility of each object categories, reflected in the order in which users identified and assigned the labels. The red bars refer to UX BMI, while
the blue bars refer to UX BC.

in its error rate. It is either correctly identified, or missed,
but not incorrectly assigned as a label to other object
categories.

• The correct identification of object category “House” is
dependent on coverage up to about 15%, as shown in
Fig. 10 (e). Fig. 9 (e) shows that between image patches
10 and 30, this object class’ coverage is below 20%. At
this point there is a slight decrease in Recall. After image
patch 30 there is an increase in coverage, therefore after
this point there is also a stabilization in performance. This
label is seldomly incorrectly assigned to other categories,
however in 21% of the cases, the label “Building” was
assigned to houses.

• The coverage of the object category “Parking lot” is
small, as it is always below 2% on average, as shown in
Fig. 9 (f). Therefore, as Fig. 10 (f) shows, users’ Recall is
not dependent on it. User interviews indicated that it was
perceived as one of the harder category to identify, which
is also evident in Fig. 8 (l), where users tend to assign
this label toward the end. Additionally, UX BMI wrongly
assigned this label to other objects more than UX BC.

• Although coverage of the object category “Road” is
low (as shown in Fig. 9 (e)) , Recall for all users is
relatively high, indicating the correct identification of this
object category is not dependent on coverage, which is
also evident in Fig. 10 (g). This is probably due to its
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Fig. 9. Performance plotted against Patch ID. (a) F-measure, (b) Precision, (c) Recall, (d) Elapsed time. The red points refer to UX BMI, whereas the blue
points refer to UX BC. The lines are a polynomial curve fitted to the point, and indicate the trend. (e) and (f) display the labels with average coverages over
and under 4%, respectively. The area covered by each label is plotted against Patch ID for all 18 classes. The numbers in the legend refer to the labels in
Table IV.

salient features which become apparent even at low label
coverages. Additionally, roads tend to cross homogeneous
surroundings, making them easier to identify.

• Although roads and streets share some features, streets
are harder to identify because they are usually surrounded
by many objects. Therefore, the correct identification
of the object category “Street” is more dependent on
label coverage, as shown in Fig. 10 (h). Based on
the interviews, “Street” and “Road” created some se-
mantic confusion for all users; however, according to
Fig. 10 (h), UX BC had on average a 20% higher Recall
than UX BMI. This could be due to UX BC’s lower
degree of confusion between these two labels. While
UX BC misassigned the label “Road” to streets in 14%
of the cases, for UX BMI it was in 28% of the cases.

The results above demonstrate that in general, homoge-
neous object categories require higher coverage compared to
structured categories in order to be consistently recognized by
the users. The average performance measures from Table VI
indicate that collaborators (users working in pairs) perform
better than individuals, and with a lower variance among their
measures, which makes their performance more predictable.
This also means that any given label assigned by the collabo-
rators is more likely to be generally accepted by other users,
compared to any given label from the individuals.

Furthermore, when we analyze performance by object cate-
gory, we can see that this increased performance is due to the
collaborators increased ability to identify the more difficult
object categories. For more visible ones, like “Agricultural
field,” collaborators and individuals have overlapping perfor-
mance. However, for the harder classes such as “Parking lot”
or “Street,” collaborators performance is much better than the
individuals, implying that they are able to overcome some of
the difficulties presented by semantic confusion (e.g., between
“Road” and “Street”), and by certain product properties (e.g.,
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scale). Additionally, in user interviews collaborators recog-
nized the value of working with a partner and its positive
impact on their results of the annotation task. Users in the
individual condition were also asked to imagine what the task
would be like if they had done it with a partner, with most of
these users predicting that their results would be better, and
additionally the task would be more enjoyable.
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VI. CONCLUSION

Correctly annotated image datasets are important for devel-
oping image mining methods. However, there is still some
doubt on the generalizability of the available datasets as
training data, raising the question of whether a model trained
on one dataset is easily generalizable to another dataset. In
this article we experimentally demonstrate the existing dataset
biases on eight different remote sensing datasets. We first
assess the degree of shared features between datasets, finding
that there is little feature overlap between datasets. We then
assess the degree of generalizability of an image dataset as
training data for a model. To this end, a model was trained
and tested on one dataset, and then applied to another one, with
results indicating a large performance decreases, therefore the
generated models were not generalizable.

Crowdsourcing has been suggested as a methodology to
overcome these issues and create less biased datasets. How-
ever, in some cases, such as remote sensing images, large
scale online crowdsourcing is not always an available option
in terms of structuring an image annotation task, due to
the restrictions on making certain images publicly available.
Therefore, we explored a collaborative image annotation task
structure using a limited number of non-experts, and assessed
how it influenced user behavior, performance and image
understanding relative to the annotation task.

Our results indicate that collaborators outperform individ-
uals on correctly identifying objects in images, and their
results have a lower variance, making their performance more
predictable. Therefore, any given label assigned by the col-
laborators is more likely to be generally accepted by other
users, compared to any given label from the individuals.
Additionally, their higher performance is mostly due to an
increased ability to identify more difficult object categories.
Through user interviews, we identified that collaborators were
aware of the value of working with a partner. Moreover, most
of the users in the individual condition reported that they
would find the task more enjoyable if they could do it with a
partner, and that the results would be better.

Therefore, due to the positive impact of a collaborative task
structure on user performance, a collaborative task structure
could be considered for designing efficient image annotation
methodologies using small groups of non-experts, which pro-
duce more reliable image annotations.

Further studies are needed to assess the effects of collab-
orative image annotation to create annotated image datasets,
and to test the generalizability of these datasets.
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(a) Agricultural field
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(f) Parking lot

Patch ID
0 20 40

R
ec

al
l (

%
)

20

40

60

80

100

Patch ID
0 20 40

F
D

R
 (

%
)

20

40

60

80

100

Label coverage (%)
0 2 4 6 8

R
ec

al
l (

%
)

20

40

60

80

100

(g) Road

Patch ID
0 20 40

R
ec

al
l (

%
)

20

40

60

80

100

Patch ID
0 20 40

F
D

R
 (

%
)

20

40

60

80

100

Label coverage (%)
0 5 10 15

R
ec

al
l (

%
)

20

40

60

80

100
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Fig. 10. User performance vs. the Patches in order of appearance, and label coverage for various labels. The red points in the graphs refer to UX BMI,
whereas the blue points refer to UX BC.


