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Passive magnetic sensors measure the magnetic field density in three axes and are often integrated on a single chip. These low-cost
sensors are widely used in car navigation as well as in battery powered navigation equipment such as smartphones as part of an
electronic compass. We focus on a train localization application with multiple, exclusively onboard sensors and a track map. This
approach is considered as a base technology for future railway applications such as collision avoidance systems or autonomous train
driving. In this paper, we address the following question: how beneficial are passive magnetic measurements for train localization?
We present and analyze measurements of two different magnetometers recorded on a regional train at regular passenger service. We
show promising correlations of the measurements with the track positions and the traveled switch way. The processed data reveals
that the railway environment has repeatable, location-dependent magnetic signatures. This is considered as a novel approach to
train localization, as the use of these magnetic signals at first view is not obvious. The proposed methods based on passive magnetic

measurements show a high potential to be integrated in new and existing train localization approaches.

1. Introduction

Train localization with exclusively onboard sensors and a
track map is considered as a base technology for future
railway applications, such as train control without additional
track-side equipment, decentralized collision avoidance sys-
tems between trains, and autonomous train driving.

The train location is defined with a unique identifier
of the current track and a longitudinal 1D position on
that current track (see [1]). Train localization estimates this
location, direction, and the train speed from train-side sensor
measurements and a map of the railway environment. The
technical challenges for onboard train localization are the
requirements for safety-of-life applications with a very high
reliability, track-selective accuracy, and seamless continuity
of the train position. Track-selective localization identifies the
correct track especially after passed switches and in parallel
track scenarios. Global Navigation Satellite System (GNSS)
position measurements are useful for train localization, but
satellite geometry or reception can be poor or not available
parts of the railway environment. A stand-alone GNSS

receiver cannot fulfill the requirements for safety-of-life train
localization, in particular in parallel track scenarios and in
tunnels [2]. Therefore, onboard train localization is often
addressed by multisensor approaches as in [, 3, 4]. The
general idea is to combine complimentary measurements.
This implies that statistical and systematical errors of GNSS
and other measurements are independent and suitable to
compensate each other.

Passive magnetic sensors can measure the magnetic field
as it appears at the sensor. These measurements are consid-
ered passive, as it does not use a self-generated magnetic
field for sensing. Furthermore, there are no additional placed
magnets or other markers in the railway environment. These
sensors are often integrated in automotive and personal
navigation equipment, such as smartphones. There, the usual
purpose is the estimation of the heading angle with an elec-
tronically gimbaled compass technique [5]. Classical compass
approaches typically suffer from the effects of different mag-
netic fields compared to the earth field, which are denoted as
distortions. On the one hand, there might be doubts about the
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feasibility and quality of a railway compass due to distortions
from ferromagnetic materials in the railway environment.
On the other hand, if these distortions are dependent on the
location, they can be beneficial for a localization application.

This paper addresses the following questions: are the
passive magnetic measurements useful for train localization?
Therefore, this paper focuses on a suitability analysis of
localization with passive magnetic signatures. The data set
comprises magnetic data of two different sensor positions,
recorded on a regional train at regular passenger service.
This paper is a follow-up of [6] with an initial study of the
bogie mounted sensor. We present additional measurements
from a train cabin magnetometer and compare it with
the bogie mounted sensor. The general benefit of a cabin
mounted sensor is the easier installation and casing. This
study contains a comprehensive analysis of several scenarios,
such as parallel tracks, two-way tracks, and switches. Of
special interest are differences of signatures at different tracks
and the repeatability on same tracks and position. We also
show and discuss the challenges for train localization with
the passive magnetic measurements. Finally, elements of train
localization based on magnetic signatures are presented with
along-track estimation and switch way detection. The results
are promising for further implementation in multisensor
train localization algorithms.

2. Related Work

Localization with magnetic field measurements is based
on the comparison of signatures or landmarks. Magnetic
fields in special environments can have a location-dependent
signature, as shown in [7] for indoor environments. There, the
distorted terrestrial magnetic field in buildings is measured
with a passive sensor to create a magnetic map for indoor
localization.

Extensive research on a magnetic train-side sensor has
been conducted with the “Eddy Current Sensor (ECS)” in
[8-11]. This sensor is based on inductance measurements
with coils. It uses an active self-generated field and measures
conductive material in the railway environment. The ECS
measures and classifies railway specific track components,
such as clamps of sleepers and elements of a switch. It is
used for train localization in [9, 10] and the system can
estimate speed, position, and the switch way. For an improved
speed measurement, two coil-based sensors were placed with
a defined distance in longitudinal train direction [11]. The
speed is estimated from the transit time of the signature
between the two sensors. The signature is caused by local
conductive material.

The abovementioned approaches are based only on com-
ponents that are exclusively installed on the train with-
out additional infrastructure in the railway environment.
Infrastructure based localization with magnetic markers was
proposed in [12] for road vehicles. This study contains a com-
prehensive analysis of magnetic signatures of highway bridges
with magnetometers. However, the terrestrial magnetic field
and the distortions were considered as interference.
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FIGURE 1: Magnetic railway environment.

3. Magnetic Field Model

3.1. Magnetic Field. The magnetic field in a railway environ-
ment is a complex superposition of different magnetic fields.
An example of a typical railway environment is shown in
Figure 1 with numerous ferromagnetic materials, possible
dipoles, and power lines. Examples of these magnetic fields
are the geomagnetic earth field, dipoles from ferromag-
netic materials, and alternating fields from AC power lines,
engines, and signaling. Two magneto static effects are of
importance: Ferromagnetic materials, such as steel, can either
contain a magnetic dipole or change an external field in the
vicinity of the material. The first effect describes a permanent
magnet and the resulting field is a superposition with the
external magnetic field. The resulting field at the sensor
element can be lower or higher depending on the strength
and the directions between the external and the magnet’s field
vector. The second effect changes an external magnetic field
in the vicinity of the ferromagnetic object. A ferromagnetic
material has a higher permeability than air and concentrates
more field lines inside the material. This causes a distortion
of the directions and density of the external magnetic field
lines in the vicinity. A lower field density is measured near and
outside the object due to the concentration inside. This effect
depends mainly on the distance to the sensor and it depends
on geometry and dimension of the object.

The terrestrial magnetic field is very important as it is
present over all locations and approximately time invariant.
It serves as the mentioned external field, which interacts
with the local ferromagnetic materials. The undisturbed local
terrestrial magnetic field of the main station in Augsburg
(start point of measurements) is given by total field strength,
declination angle to north (§), and inclination angle (1) from
a magnetic model [13]:

8 =235,
A = 64.33°, 1
|B| = 48.254 uT.
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This is considered as the ideal magnetic field without interac-
tions with the railway environment.

3.2. Magnetic Sensor Model. The resulting magnetic field
at the sensor is assumed by a simplified model, based on
superpositions of different magnetic field origins and ferro-
magnetic effects (FE):

Bsensor = Bearth + Z BFE + Z Bcurrents' (2)

For compass applications, Bg and B, . are considered as
distortions and avoided by sensor placing, calibration, and
signal filters. We reformulate this general magnetic model to
a more usable model with significant components for train
localization:

Bsensor = BenVA (1d> 5) + Bearth (W) + Bwheel (V) + Brest .
speed currents, (3)
dependent other

track location

heading
dependent

dependent

This model contains the major effects from the application
analysis of [6] and this study. The first part B, (id, s) depends
on the train location of a specific track id and a position s on
that track. It contains the repeatable effects and signal com-
ponents on a certain train location. The observed frequencies
range from 0 Hz up to 20 Hz according to actual train speed.
The heading-dependent component B, , () was analyzed
in [6] with a railway compass evaluation. Depending on the
vertical mounting position, the compass evaluation showed
better results for higher positions (cabin sensor). For lower
mounting positions (bogie sensor), the location and speed-
dependent parts are stronger, and the compass results were
worse. The train attitude is mainly defined by the heading,
as pitch and roll angles of trains are relatively small. The
changes of the heading-dependent part are approx. 1 Hz and
below, because trains turn slowly. The wheel speed-dependent
component B, (v) is caused by the turning ferromagnetic
wheels. As shown in [6], the signals are periodic and linearly
dependent on the wheel speed. The frequencies of the speed-
dependent wheel turns are in the range from 0 Hz (still-stand)
up to 100 Hz and above, as aliasing effects were visible [6]. The
last part (B,.) contains currents and other effects such as a
passing train. Currents are usually well defined in frequency.
For the localization with signatures, only the first com-
ponent is of interest. Therefore, appropriate signal processing
methods are needed to filter the location-dependent part.

4. Magnetic Field Measurements

4.1. Magnetic Sensors. Magnetic sensors such as Anisotropic
Magneto-Resistance (AMR) sensors measure the magnetic
field strength B [14]. AMR sensors are low-cost sensors and
up to three axes are integrated on a single chip [15]. The
measurement principle is based on a special material, called
Permalloy, which changes the resistance according to the
magnetic field in one direction. The resistance is measured
by the bridge voltage of a bridge circuit with Permalloy
resistors [14]. A setup of three orthogonal sensor elements
allows measurements of the magnetic field vector in three
dimensions.
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FIGURE 2: Magnetic measurement setup on regional train.

4.2. Measurements Setup. The measurements were recorded
on the passenger train “Alstom Coradia Lint41” at regular
passenger service conditions. Two magnetic sensors, a Global
Navigation Satellite System (GNSS) receiver and a data
recorder, were installed on a regional train as shown in
Figure 2. One magnetometer was mounted inside the cabin,
the other magnetometer on top of the bogie (Figure 3). The
Inertial Measurement Unit (IMU) with integrated magne-
tometer can be seen as an orange box in the opened housing.
A data recorder collected the measurements synchronously
to the GNSS time. The magnetic data set was recorded with
200 Hz in the cabin and on the bogie with Xsens MTi sensors.
This sensor system is based on low-cost sensor elements
and contains the magnetic sensor element HMCI1053 from
Honeywell [15]. The bogie sensor was placed 0.8 m above one
rail and the cabin sensor was placed 1.38 m above the opposite
rail near the cabin floor. The data set contains additionally
GNSS measurements with 1 Hz from Ublox LEA 6 T receiver.

4.3. Measurement Model and Frame. A simple measurement

model Z,_,,. for a three-axis sensor is defined by

meas

Z, a, 0 0 B, b, n,
Z, =1 0a 0 B, |+[ b |+|n, | @
Z, 0 0 a, B, b, n,
sensor scales mag. field biases noise

meas. at sensor

The two different sensors have been factory calibrated by
scales and biases to an undisturbed earth field at the factory:

|§N| = 1. For the following measurements, the white noise
showed to be negligible.
We consider the magnetic measurements in the train

frame (Z"™), as shown in Figure 3:
(i) X:longitudinal train axis pointing to train front (red).
(ii) Y: lateral train axis pointing to the right side (green).
(iii) Z: vertical train axis pointing down (blue).

The color definition is given in brackets and is valid for the
following signal plots. The signal magnitude will be colored

in black:
1Z] = \Z2 + 722+ 72 (5)

As the sensor measures in the sensor frame, a rotation of the
S
measurement vector Z is needed:

Ztrain _ Ctrain . Zsensor' (6)

sensor
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FIGURE 3: Magnetic sensor mounting on front bogie [6].

The rotation matrix Cg"ﬁ;‘or is a direction cosine matrix
(DCM) and can be calculated by Euler angles of roll, pitch,

and yaw between sensor and train frame.

5. Signal Processing Methods

5.1. Spatial Transformation. The measurements are recorded
sample by sample in the temporal domain with a constant
frequency of 200 Hz. We are interested in location-dependent
correlations of the measurements in the railway environment.
Within one track, the railway localization problem is one-
dimensional and signals or features can be addressed in the
metric, spatial domain. The spatial transformation removes
the speed dependency of the measured signal and transforms
the signal from seconds to meters. For our transformations
we use the GNSS speed measurement v, of the PVT (position,
velocity, and time) output of a GNSS receiver. The GNSS
speed is used here, as it is part of the experimental data set
and there are no tunnels.

The measurement samples y, are equally spaced in time
at discrete time samples t;, = k - At. In a first step, distance
samples are assigned to each measurement: {y,,d,}. These
distance samples are achieved with an integration of the speed
measurement for each time step:

k
d, (k) = Y v, (k) - At. )

In case of different data rates of speed and magnetic mea-
surements, there is an additional interpolation of the speed
or distance necessary. The distance samples d, have irregular
spacing depending on the speed. For the transformation,
distance samples d; are created with equally spacing of As.
Finally, the spatial signal y, corresponds to the equally spaced
distance samples d, and is computed by a data interpolation
of the temporal measurement signal y, and the corresponding
distance samples d,:

Ys = finterp (dt’ Ye> ds) . (8)

The transformation in the following uses As of 0.1 m.
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5.2. Spatial Spectrogram. The spatial spectrogram is able to
show the spatial frequency (per meter) and enables an insight
to magnetic structures over the traveled distance s. The
spatial processing uses the spatial transformed signal and the
algorithm of a temporal spectrogram. This plot is achieved by
the following steps by well-known signal processing methods
[16]:

(1) First, the measurements are divided into sequences
of N samples. At a fixed sampling rate of the spatial
signal, the sequences have a length of N - As meters.

(2) The second step calculates the Power Spectral Density
(PSD) using a Fast Fourier Transform (FFT) of each
sequence.

(3) The plot displays all PSDs as columns consecutively
and each column refers to a position of the traveled
distance.

5.3. Signature Processing. The signatures are computed from
the magnetic measurements and a speed estimate. At first,
the spatial transformation computes a sequence of magnetic
measurements with synchronized speed estimates with (7)
and (8). After this, a signal filter extracts the location-
dependent part of the magnetic signal of (3) in spatial
domain. There are two signatures used in the context of train
localization: a reference signature is known prior and stored in
a map, while the current signature is computed from the latest
measurements.

5.4. Correlation. Cross-correlation is a common way to mea-
sure similarity and lag of two signals. The cross-correlation is
defined with the signals x and y as

N
Cr):ly = Z Xn* YVnam> )
n=—N

where m is the shift and 7 is the index that selects a sample of
the signal. The signal match ¢ with its maximizing lag m,,,
is the highest value:

&= Xy

¢ = argmax(c,). (10)
For a comparison of different signatures, the autocorrelations

c™ and ¢ at lag m = 0 are used to normalize the cross-
correlation:

xy
Xy _ Cm
m = XX }’}" (11)
G G

6. Magnetic Data Set

Figure 4 shows different scenarios, which are analyzed in the
following. The train runs multiple times between Augsburg
main station and Friedberg station. Towards Friedberg, the
train runs backwards on track P1 followed by a single track
S. Towards Augsburg, the train runs forward on single
track S followed by track P2. Depending on the subsequent
journey, the train runs to platform 101 or platform 2. This
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FIGURE 5: Three-axis magnetic measurements and magnitude over
time of one train run: (a) cabin sensor; (b) bogie sensor [6].

causes different switch ways of different runs on a railway
switch ahead of Augsburg. Same applies for the switch near
Friedberg.

6.1. Temporal Data. Figure 5 shows the magnetometer data
clip of a 10 min train run from Augsburg to Friedberg. The
data is shown in the x-, y-, and z-axes of the train and
the magnitude. The normalized earth field corresponds to
the (unknown) position of factory calibration. The signal
of the magnitude indicates the resulting magnetic fields by
superposition as described in (2). The cabin sensor shows
a significant attenuation compared to the bogie signal. This
can be explained by the sensor position surrounded by steel
which is a ferromagnetic material. The sensor was placed
inside a steel box, which was inside a server rack with steel
elements, within the steel cabin of the train. The bogie sensor
was mounted inside a nonferromagnetic aluminum box.

7. Magnetic Signature Analysis

71 Spatial Analysis. The spatial spectrogram of Figure 6
shows the spatial frequencies over the traveled distance of a
train run from Augsburg to Friedberg. The spatial signal is
sampled with a frequency of fg = 10m™ (As = 0.1 m). The
spectrogram was processed with an FFT of 2048 samples and

spatial frequencies up to 5m™" (wave length: 0.2m) can be
visualized. This spectrogram zooms to the lower part below
0.5m™", as the interesting position-dependent signals are
below the fundamental frequency of the wheel 0.41 m™". This
corresponds to the wheel circumference of 2.42 m and can be
identified as a parallel line. In other words, the magnetic sig-
natures are shown between wave lengths of 2m and 204.8 m
(FFT window). The actual magnetic signatures of interest are
between 2.42m and a defined signature length. The railway
environment of Figure 6(b) shows the passed switches (red),
parallel tracks (blue), platform areas of stations (green), and
a river bridge (yellow) over the traveled distance and aligned
with the spectrogram. In this diagram, the train runs along
the zero-line from left to right and the passed switches are
indicated with the travel direction of the train (switch way).

It is not possible to identify the fastenings of the rails,
which are separated by approximately 0.6 m with the bogie
or the cabin sensor. It is also not possible to identify other
tracks in the vicinity from the sensor positions.

There is a metallic railway bridge (Figure 7) with a
ferromagnetic structure around the railway line, which is
marked in yellow regions in Figure 6. It concentrates the
field lines of the earth field and causes a lower magnetic field
inside the structure. The bridge reduces the mean absolute
field compared to the mean absolute field of other areas. In
case of the cabin, the field is reduced to 83.3% and for the
bogie to 84.6%. This can be seen in Figure 5 between 330s
and 340s.

7.2. Along-Track Analysis: Single Track. For the position anal-
ysis, the signatures of the bogie sensor are used. The cabin
sensor shows similar results. Figure 8 shows a 1 km sequence
of the spatial signature of two runs over the single track S,
as described in the scenarios (Figure 4). The first run (Fig-
ure 8(a)) travels towards Friedberg and the autocorrelation
of the complete single track length is shown. All signals
are normalized to the autocorrelation of run 1. The cross-
correlation of run 1 and a second run towards Friedberg
matches by 979% and shows a lag of —14.7 m. This lag is
caused by the coarse alignment of the two signatures with
a match of the first GNSS position on the single track. The
third run (Figure 8(b)) travels in the opposite direction on
the same single line track. This signature is reversed and
compared to run 1 by a normalized cross-correlation. The
reversed signature matches the first signature by 73.1% at a
lag of -16.4 m.
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It is noticeable that the correlations of the single track
show signature similarities approx. every 30 m. This can be
also seen in Figure 6 for the single track scenario between
5200 m and 7200 m.

7.3. Cross-Track Analysis: Parallel Track. Train positions on
parallel tracks are difficult to resolve to one track with GNSS
position measurements. So, it is of high interest to determine
the correct track. The parallel track scenario is shown in

Figure 9 and comprises a run on track P1 towards Friedberg
and a reversed run on P2 from Friedberg station. The run
on P1 and the reversed run on P2 are compared by a cross-
correlation normalized on run P1 (Figure 9(c)). As analyzed
before, a reversed signal achieves a fair correlation. The other
parallel track P2 shows a low correlation versus P1 with 14.8%
at a far lag. This indicates a separability between parallel
tracks. In comparison, a third run on P1 shows a correlation
to the reference run 1 of 87.7%.

7.4. Along-Track Analysis: Cabin versus Bogie. The bogie
and the cabin signature show slightly different signatures in
Figure 10. It should be noted that the scaling of the cabin
plot (Figure 10(a)) is five times magnified versus bogie plot
scaling. The cross-correlation of the cabin and bogie signal
should match automatically at a lag of 0 m, as both signals
are synchronized. However, the correlation is as low as 18.0%
in this scenario. In the single track scenario with the strong
periodic signal, the correlation can reach over 50%. The cabin
and the bogie sensor measure on different heights above the
rails and on opposite sides.

7.5. Switch Way Analysis. Figures 11 and 12 show magnetic
signatures of both sensors for two different switches. The first
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switch (switch A) is passed with approx. 20 km/h and switch
B is passed with approx. 55km/h in average. Each switch
way is passed three times on the left switch way and three
times on the right switch way. The switches are shown in a
satellite image in the middle and aligned to the x-axis of the
data graphs. The scaling of the cabin plots above the images
is magnified by five compared to the bogie plots. It can be
seen that the signatures of the same switch way are repetitive
and different to the opposite switch way. This property is very
important for the switch way estimation in train localization.

8. Challenges of Magnetic Train Localization

There are some challenges towards a robust use of magnetic
data for train localization. We show effects of inaccurate
speed measurements, passing other trains and long-term
stability of the signature. Figures 13, 14, and 15 show the
signatures of the magnitude from the bogie sensor.

8.1. Inaccurate Speed. The localization application requires
reproducible signatures. These signatures and especially the
spatial sampling method are very dependent on a correct
speed for the transformation. An error in speed will cause
a distorted signature as shown in Figure 13. A single speed
distortion causes a phase shift of the signature. Localization
results based on comparisons of signatures will be ambigu-
ous. In this paper, we use the GNSS speed, which shows
decreased accuracy below bridges for instance. An approach
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for better speed accuracy would be reliable speed estimation,
based on good measurements and/or multiple sensors.

8.2. Passing Trains. Trains and most of their components
are made of steel with ferromagnetic properties. If another
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FIGURE 12: Switch B near Friedberg: signals of different switch way
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train passes, the magnetic field will be influenced and the
signature is distorted. In Figure 14, 8 runs without passing
trains are compared to the passing cargo train and a passenger
train passing at the same place on a different run. One
possible approach could be a monitoring and integrity check
of the signal. A passing train might interrupt the magnetic
localization for some time.

8.3. Long-Term Effects. In the previous chapter, we showed
a good repeatability of the signatures. We discovered an area
just behind a station, where the signature changed completely.
Figure 15 shows 9 runs until 10 January and 31 runs after
the 13 January. A video analysis did not show any visible
changes. There could be many reasons: track maintenance by
a change or grinding of rails, a tamping maintenance, and
underground works or after a use of a magnetic emergency
brake. Due to the position (departing track of the station) and
the pattern of approx. 20 m of the new signature (Figure 15,
magenta line), we assume a change of rails as the most likely
option. Over the measurement period of three weeks, there
were other parts with small changes, but not as much as in
Figure 15. The changes affect stretches with lengths from 10 m
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to 100 m and the majority of the signatures between Augsburg
and Friedberg did not change. After a change event, the new
signature shows the same repeatable characteristic within the
measurement period. The problem of changing signatures
can be approached by a permanent map update with SLAM
techniques (Simultaneous Localization and Mapping) for
railways [17, 18].

9. Train Localization Approach

A train localization algorithm estimates the along-track posi-
tion and identifies the current track, especially at switches.
Localization based on magnetic signatures requires a map
with reference signatures. For each track, the magnetic
signatures are sampled over the track length.

A basic reference approach is presented by along-
track estimation and track detection at switches. Alternate
approaches may include a multisensor fusion with other
sensor measurements such as IMU or GNSS.

9.1. Along-Track Estimation. The along-track localization com-
pares a current signature with a reference signature by a signal
similarity method. A cross-correlation is used in this case.
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FIGURE 15: Changing magnetic signature effect.

At first, the algorithm predicts a position from a traveled
distance estimate and the previous position. Then, the current
signature is generated from the magnetic measurements and
the speed estimates with the length /.. After this, a reference
signature is extracted from the map at the predicted position.
The reference signature includes a tolerance length [, before
and after the candidate reference:

lref = ltol + lc + ltol' (12)

This limits the search area for a correlation with the measured
signature. After that, the current signature is evaluated with
the reference for the lag between the two signatures. This lag
corresponds to a metric shift, as the signatures are sampled
with a constant distance. Finally, the along-track position can
be updated with this shift.

9.2. Track Estimation. At switches, the reference signature
is aligned with the measured signature before the switch.
For the region behind the switch, the measured signature is
compared with the two candidate signatures from the map.
Finally, the switch way is identified with the highest match.
This comparison is evaluated by cross-correlation at the lag,
which was found by the alignment.

10. Results

10.1. Along-Track Position. The position error of the along-
track estimation is evaluated over multiple train runs with
GNSS positions. The along-track estimation used a signature
length of [ ., = 50m and a tolerance of [,; = 10m.
Thus, the maximum error is bounded to a 20 m long search
area. The evaluation contained 1804 signature matches over
45.6 Km. The results are shown in Table 1 with accuracies of
less than 2.9 m and 2.8 m in 95.4% of all matches (20 error).
These accuracies are in the expected GNSS error range. In
case of a signature match at the true position, the evaluation
contains additionally the GNSS position inaccuracy of the
reference map and the actual signature. The match results
showed sporadic outliers for both sensors. Nevertheless, the
magnetic signatures show a significant position dependency
and are suitable for the observation of the 1D track position.
The error effects of 8 have the following impacts on
the along-track position estimation: a speed distortion is
translated into a bias of the 1D position estimation as seen in
Figure 13. The passing train effect is a short-term distortion
with a possible wrong match of the signature. As seen in
Figure 14 this distortion depends on the type of the passing

TaBLE 1: Along track accuracy of the cabin and bogie mounted
SEnsor.

. Along-track accurac
Sensor mounting & Y

20 (95.4%) <4m
Cabin 29m 97.4%
Bogie 2.8m 97.8%

TaBLE 2: Evaluation matrix of the switch way detection.

True switch way

Detected switch way N «
Right Le

Cabin sensor
Right 6 0
Left

Bogie sensor
Right 6 0
Left

train. In case of the changed signature effect (Figure 15), the
along-track position estimation is impossible.

10.2. Cross-Track and Switch Way. The characteristic signa-
ture of the track position is also suitable for the identification
of different tracks, in particular the critical parallel tracks.
The switch analysis showed repeatable signatures for the same
switch way and separable signatures for competing switch
ways. The different switch way signatures and the different
signatures of parallel tracks are considered as a real benefit
for track-selective train localization. An evaluation of six runs
over the two presented switches is shown in Table 2 which
could identify the correct track in all cases for both sensors.
The correlation scores of a test signature between the true
switch way were always larger than the score between the
opposite switch way signature.

The error effects of Section 8 have the following impacts
on the switch way estimation. A speed distortion before the
switch has no influence as the signature is shifted within
the tolerance region. A speed distortion within the switch
lowers the correlation score depending on the distortion
and the signature signal. The switch way measurements of
switch A (Figure 11) show a speed distortion of one right
switch way (blue line) for each sensor with no impact on
the detection. A passing train (Figure 14) may distort the
switch way detection depending on the magnetic influence
of the passing train. Finally, the changing signature effect
(Figure 15) will distort the switch way detection. As seen
from the error effect analysis, the passing cargo train and
the changed signature distortions have different signatures
than the original ones. Furthermore, it seems unlikely that the
distorted signature is similar to the false switch way signature.
In this case, the distorted signature would match to neither
the left nor the right switch way signature.

10.3. Cabin versus Bogie Sensor. The bogie and cabin mounted
sensors show different signatures. They cannot be used for
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a signature match among each other. This means that a
map or reference signature needs to be recorded at the
same sensor position and the maps are not interchangeable.
In general, the cabin signals are weaker compared to the
bogie signals. Nevertheless, the performance of both sensor
positions is very similar, as seen in the results of the along-
track estimation and switch way identification. In [6], the
cabin sensor outperforms the bogie sensor in the estimate of
the compass angle.

11. Conclusions

We analyzed real magnetic measurements of two different
sensor positions from a regional train in terms of relevance
for the train localization application. The main benefits of
magnetic chip sensors are the small size, low power, and low-
cost compared to other navigation sensors.

The railway environment has a very distinctive magnetic
signature dependency of the track position. The analysis of
different tracks and switch ways showed repeatable signatures
for the same switch way and separable signatures for the
competing switch ways. The discrimination of signatures
from parallel tracks or different switch ways is very advan-
tageous for track-selective train localization. The along-
track estimation showed promising results with a simple
correlation method.

The performance for the passive magnetic train localiza-
tion of the cabin and the bogie sensor position is similar. This
is a valuable result, as the installation of a sensor inside the
cabin is easier and less problematic as outside at the bogie
with the rough environmental conditions.

Localization based on magnetic signatures is a suitable
candidate approach for train localization in GNSS denied
environments. Furthermore, it is expected that the proposed
approach may be used to validate GNSS and other sensor
measurements in multisensor train localization. The pro-
posed methods and measurements have a high potential
to increase the accuracy and reliability of multisensor train
localization for future safety-of-life applications.
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