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Thermodynamics of two-dimensional Yukawa (screened Coulomb or Debye-Hückel) systems is
studied systematically using molecular dynamics (MD) simulations. Simulations cover very broad
parameter range spanning from weakly coupled gaseous states to strongly coupled fluid and crys-
talline states. Important thermodynamic quantities, such as internal energy and pressure, are obtained
and accurate physically motivated fits are proposed. This allows us to put forward simple prac-
tical expressions to describe thermodynamic properties of two-dimensional Yukawa systems. For
crystals, in addition to numerical simulations, the recently developed shortest-graph interpolation
method is applied to describe pair correlations and hence thermodynamic properties. It is shown
that the finite-temperature effects can be accounted for by using simple correction of peaks in the
pair correlation function. The corresponding correction coefficients are evaluated using MD simu-
lation. The relevance of the obtained results in the context of colloidal systems, complex (dusty)
plasmas, and ions absorbed to interfaces in electrolytes is pointed out. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4979325]

I. INTRODUCTION

Systems of particles interacting via Yukawa (screening
Coulomb, or Debye-Hückel) potential are widely found in
nature. In the physics of soft matter, the Yukawa potential
plays a particularly important role because it is traditionally
used to describe interactions between ions in screening media
(for instance, in aqueous solutions of electrolytes), charged
colloidal micro- and nano-particles in various solvents, and at
interfaces of fluid media, as well as between charged particles
in complex (dusty) plasmas.1–4 In addition, Yukawa systems
represent a useful model of classical interacting particles with
the softness of interaction variable in a very wide range,
from extremely soft Coulomb interaction (one-component-
plasma limit5 in the absence of screening) to the extremely
hard interaction (hard spheres6 in the limit of very strong
screening).

Various aspects of structural, dynamical, and ther-
modynamical properties of Yukawa systems were studied
numerically; some representative examples can be found in
Refs. 7–16. Results of these studies found wide applications,
for instance, to explain phase transitions in complex (dusty)
plasmas17–21 and in colloidal systems.3,22–26 In particular,
in colloidal suspensions, screened Coulomb repulsion deter-
mines various crystalline structures and their properties (see,
e.g., Refs. 3, 22, and 27–31). The screened Coulomb repul-
sion is the basic interaction for ions and microparticles in
electrolytes.26,32–36

a)Electronic mail: st.yurchenko@mail.ru

Both three-dimensional (3D) and two-dimensional (2D)
Yukawa systems can be of interest in the context of colloids,
complex plasmas, and electrolytes. In the 2D situation, the
particles are normally confined to a thin layer or are located
at an interface. For instance, 2D Yukawa systems of ions
can arise in electrolytes at the interfaces due to the ion spe-
cific effects. In drops of aqua solutions of electrolytes, the
ionic redistribution near the surface and surface trapping of
anions change the surface tension (see, e.g., Refs. 37–40).
In bulk aqua solutions of electrolytes, similar ion-specific
effects lead to the formation of bubbles stabilized by ions,
the so-called bubstons,41–44 in which the ions are adsorbed
in a thin layer inside the bubble surface to compensate the
pressure by surface tension. Two-dimensional plasma crystals
and fluids represent one of the major topics of experimental
research on complex plasmas in laboratory conditions.45–53

Thus, 2D systems of Yukawa particles occur in a rather broad
range of applications and related problems are of fundamental
importance.

Thermodynamic properties of 2D Yukawa systems have
been of considerable continuous interest in the last couple of
decades, largely in the context of complex plasmas.12,13,54–58

However, to the best of our knowledge, no comprehensive
results across coupling regimes along with simple and reli-
able approximations convenient for practical use have been
proposed. In the present paper, we study systematically ther-
modynamics of 2D Yukawa systems in a very broad param-
eter regime, from very weakly interacting gaseous states to
strongly interacting fluid and solid states. Using MD simula-
tions, we systematically calculate the excess energy and pres-
sure. For gases and fluids, simple practical expressions for the
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thermodynamic properties are then proposed. For crystals, the
shortest-graph interpolation method59–62 is applied to calcu-
late the pair correlations and thermodynamic properties. The
advantages of this method as well as its excellent accuracy are
demonstrated. Overall, this paper describes simple and reliable
tools to calculate the thermodynamic properties of 2D Yukawa
systems across coupling regimes with required accuracy.

II. METHODS
A. System description

We investigate a classical system of point-like particles in
the 2D geometry interacting via the pairwise repulsive Yukawa
potential of the form

ϕ(r) =
ελ

r
exp

(
−

r
λ

)
,

where ε and λ are the energy and (screening) length scales of
the interaction, respectively. For charged particles immersed
in a plasma-like screening environment, the energy scale is
ε = Q2/4πε0λ (in SI units), where Q is the charge and ε0 is
the permittivity of free space. The properties of Yukawa sys-
tems are determined by the two dimensionless parameters. The
first is the coupling parameter, Γ = (Q2/4πε0akBT ), where kB

is the Boltzmann constant, T is the temperature, a = (πn)−1/2

is the 2D Wigner-Seitz radius, and n = N /V is the areal density
of N particles occupying the 2D volume V. The second is the
screening parameter, κ = a/λ. Note that the coupling param-
eter is roughly the ratio of the potential energy of interaction
between two neighbouring particles to their kinetic energy.
The system is usually said to be in the strongly coupled state
when this ratio is large, that is, Γ & 1.

When coupling increases, the system forms a strongly
coupled fluid phase, which can crystallize upon further
increase in Γ. This fluid-solid transition can be characterized
by the temperature and/or coupling parameter, Tm and Γm,
where the subscript “m” refers to melting. Both Tm and Γm are
the functions of the screening parameter κ. The dependence
Γm(κ) has been approximated in Ref. 12 by the following fit:

Γm(κ) '
131

1 − 0.388κ2 + 0.138κ3 − 0.0138κ4
. (1)

This fit describes relatively well the melting points found from
the bond angular correlation analysis (see Fig. 6 of Ref. 12) up
to κ = 3.0 and it should not be applied for larger κ. In the limit
κ = 0, the system reduces to the 2D one-component-plasma
(OCP) with the Coulomb interaction. In this case Γm ' 131 lies
in the range predicted in earlier numerical simulations63 and
obtained in experiments with a classical 2D sheet of electrons64

(see also Ref. 65 for a recent overview of OCP thermodynamics
in 2D and 3D).

Finally, it is worth commenting on the nature of the fluid-
solid phase transition in 2D Yukawa systems. Recently, it
has been demonstrated that the potential softness is a very
important factor, which determines the melting scenario.66 For
sufficiently steep repulsive interactions, the hard-disk melting
scenario holds—a first-order liquid-hexatic and a continu-
ous hexatic-solid transition can be identified.67,68 For softer
interactions, the liquid-hexatic transition is continuous, with

correlations consistent with the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) scenario. (For example, in 2D col-
loidal systems, hexatic phase was observed in the experiment
by Zahn et al.69) For the Yukawa potential, the transition
between these two scenarios occurs at about κ ' 6.66 Below
we consider systems with κ in the range from 0.5 to 3.0 (this
range is particularly relevant to 2D plasma70,71 and colloidal72

crystals and fluids in laboratory experiments), thus belonging
to the soft interaction class. In this range of κ, the hexatic phase
occupies a rather narrow region on the phase diagram,66 and
the study of its properties is beyond the scope of the present
paper.

B. Computational details

To obtain the thermodynamic properties of the 2D Yukawa
systems across coupling regimes, extensive MD simulations
have been performed. The MD simulations have been done in
the NVT ensemble at different temperatures using N = 64 000
particles and the Langevin thermostat. The numerical time step
was chosen ∆tc = 5 × 10−4

√
mλ2/ε for the crystalline phase

and ∆tc
√
Γ/Γm for the fluid phase. The cutoff radius of the

Yukawa potential was set equal to 15n�1/2. The simulations
were run for 1.5× 106 time steps to equilibrate the system and
obtain the equilibrium properties. In the simulation run with
κ = 0.5, Ewald summation was implemented.

The simulations have been performed for a number of
screening parameters κ ranging from 0.5 to 3.0. This corre-
sponds to sufficiently soft interactions as discussed above.
For each value of the screening parameter κ, twelve simu-
lation runs correspond to the fluid phase and nine runs to the
crystalline phase. In the fluid phase, the coupling parameter
ranges from Γ = 0.5 to '0.95Γm. In the solid phase, the values
corresponding to Γm/Γ = 0.9, 0.8, . . . , 0.1 are taken.

The main simulation results are summarized in Tables
II–V of the Appendix.

C. Thermodynamic definitions and relations

The main thermodynamic quantities which will be
required below are the internal energy U, Helmholtz free
energy F, and pressure P of the system. The following
thermodynamic definitions exist:73

U = −T2
(
∂

∂T
F
T

)
V

, (2)

P = −

(
∂F
∂V

)
T

. (3)

In addition, U and P can be calculated using the integral
equations of state,74,75

U = N

(
kBT + n

∫
dr ϕ(r)g(r)

)
,

PV = N

(
kBT −

n
4

∫
dr rϕ′(r)g(r)

)
,

(4)

where g(r) denotes the radial distribution function, which
is isotropic in gas and fluid phases and anisotropic in the
crystalline phase.

We will use conventional reduced units: u = U/NkBT,
f = F/NkBT, and p = PV /NkBT and divide the thermodynamic
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quantities into the kinetic (ideal gas) and potential (excess)
components, so that u = 1 + uex (in 2D), f = f id + f ex, and
p = 1 + pex. Finally, it is useful to operate with the Yukawa
system state variables Γ and κ. In these variables, the thermo-
dynamic identities for 2D Yukawa fluids are56,76

p = 1 +
Γ

2
∂fex

∂Γ
−
κ

2
∂fex

∂κ
, fex =

∫ Γ
0

dΓ′
uex(κ, Γ′)
Γ′

. (5)

D. The shortest-graph method

To describe the thermodynamics of 2D Yukawa crystals
analytically, we employ the shortest-graph method, proposed
and developed in Refs. 59, 61, and 62. According to these
papers, thermodynamical properties of classical crystals can
be obtained very accurately from the following consideration.
The anisotropic pair-correlation function g(r) of a crystal is
written in the form

g(r) =
1
n

∑
α

pα(r − rα), (6)

where the summation is over all the nodes α, and each
individual peak has the shape

pα(r) ∝ exp

[
−
ϕ(r + rα)

kBT
− bα(eα · r)

−
(eα · r)2

2a2
‖α

−
r2 − (eα · r)2

2a2
⊥α


. (7)

The normalization constant and the parameters a2
‖,⊥α, bα are

defined by the following conditions:62∫
dr pα(r) = 1,

∫
dr rpα(r) = 0,∫

dr (eα · r)2pα(r) = σ2
‖α,∫

dr [r2 − (eα · r)2]pα(r) = (D − 1)σ2
⊥α,

(8)

where D = 2 is the spatial dimensionality and eα = rα/rα is the
unit vector in the direction of rα,σ2

‖,⊥ is the mean squared dis-
placement for longitudinal and transversal directions, respec-
tively, calculated using the finite-temperature phonon spectra,
taking into account the anharmonic effects.62 By using the
pair correlation function g(r), the excess energy and pres-
sure can then be obtained. However, calculation of the finite-
temperature phonon spectra is a difficult problem, which is
beyond the scope of the present paper. Therefore, we propose
here a simpler approach, which yields very accurate results
and can be used for practical calculations.

Due to the anharmonicity of phonon spectra at finite tem-
peratures, the second-order term becomes more significant in
the temperature expansion of the mean-squared displacements
σ2. To account for this effect, we propose the anharmonic
correction of the mean-squared displacements

σ2
‖,⊥α = σ̃

2
‖,⊥α

[
1 + β(κ)N σ̃2

1/V
]

, (9)

where the tildes denote the mean-squared displacement calcu-
lated using zero-temperature phonon spectra (see Ref. 61),
σ̃2

1 is the total mean-squared displacement for the nearest

neighbours, and we have introduced the anharmonic correction
coefficient β(κ), which does not depend on the temperature and
should be found using MD simulations for different screening
parameters. The correction given by Eq. (9) conserves the ratio
σ2
‖
/σ2
⊥ between the mean-squared displacements in the lon-

gitudinal and transversal directions. A posteriori comparison
with MD results proves that this assumption allows us to obtain
excellent accuracy.

III. RESULTS
A. Weakly coupled fluids

A simple and physically transparent approach to the ther-
modynamics of weakly coupled Yukawa systems for small
deviations from the ideal gas behavior is to calculate the sec-
ond virial coefficient. This has recently been shown to work
well in 3D Yukawa systems.77 In the 2D geometry, the excess
free energy is expressed in this approximation as

fex ' πn
∫ [

1 − e−ϕ(r)/kBT
]

rdr. (10)

The excess energy and pressure can be readily obtained from
the excess free energy. We compare the values uex at the
fixed coupling parameter Γ= 0.5 obtained from Eq. (10) and
computed using MD simulations in Fig. 1. The agreement
is satisfactory: in the range of κ investigated the deviations
are within several percents. The agreement naturally improves
with increasing κ because at a fixed Γ the actual interaction
strength weakens as κ increases.

B. Strongly coupled fluids

The excess energy and pressure of the 2D Yukawa fluids
have been determined using MD simulations in a wide range
of coupling and screening parameters. The results are summa-
rized in Table II of the Appendix. Here we describe simple
analytical approximations, which can be used to evaluate the
energy and pressure for practical purposes.

In the strongly coupled fluid regime, it is helpful to divide
the thermodynamic quantities, such as energy and pressure,
into static and thermal contributions. The static contribution

FIG. 1. The excess energy uex of 2D Yukawa weakly coupled fluids versus
the screening parameter κ at a fixed coupling parameter Γ = 0.5. The symbols
correspond to the results of MD simulations and the solid curve is plotted
using the analytical expression of Eq. (10).
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corresponds to the value of internal energy when the particles
are frozen in some regular configuration and the thermal cor-
rections arise due to the deviations of the particles from these
fixed positions (due to thermal motion). Of course, such a divi-
sion is only meaningful when the regular structure is specified.
For crystals, the obvious choice is a corresponding lattice sum
(Madelung energy). For fluids this choice is also meaningful
and we use it here. (Note that in 3D Yukawa systems a slightly
different definition of the static fluid energy is traditionally
employed.77,78)

The excess internal energy is thus a sum of the static and
thermal contributions,

uex = ust + uth, (11)

where ust = MΓ and M is the Madelung constant. The values
of the Madelung constant for 2D Yukawa systems in the regime
of relatively weak screening, 0.5 ≤ κ ≤ 3.0, are tabulated in
Table I. The dependence M(κ) can be fitted using a functional
form similar to that proposed by Totsuji et al.,54

M = −1.1061 + 0.5038κ − 0.11053κ2 + 0.00968κ3 + 1/κ.

(12)

The last term in (12) accounts for the absence of neutralizing
background in our case (but present in Ref. 54), the energy of
this background being simply−Γ/κ. The fit is chosen in such a
way that when κ → 0 and the neutralizing background is intro-
duced, the Madelung constant is reduced to the well known
value of the triangular lattice sum of the 2D one-component-
plasma (OCP) with Coulomb interactions, MOCP ' −1.1061.
This fit is accurate to within a tiny fraction of percent for
κ . 1.0 and to within ∼1% when screening becomes stronger
(κ ∼ 3).

The thermal part of the excess energy is expected to exhibit
a quasi-universal scaling with respect to the reduced coupling
parameter Γ/Γm. This is a general property of classical parti-
cle systems with sufficiently soft interactions, which was first
pointed out by Rosenfeld and Tarazona (RT scaling) for 3D
systems.79,80 In the context of 3D Yukawa systems, the RT
scaling has been proven to be very useful in Refs. 60, 77, 81,
and 82. The emergence of RT scaling analog for 2D systems
has been discussed in the context of OCP with Coulomb and
logarithmic interactions, Yukawa systems near the OCP limit,
and inverse-power-law interactions.56,65 The dependence of
uth on Γ/Γm in the strongly coupled regime is displayed in
Fig. 2. The quasi-universality is well pronounced, although
there is clearly some systematic tendency of decreasing the
value of uth with κ at the same value of Γ/Γm. This tendency

TABLE I. Madelung constants of the 2D Yukawa crystals (triangular lattice)
for various screening parameters in the range 0.5 ≤ κ ≤ 3.0.

κ M κ M

0.5 1.119 14 1.8 0.054 49
0.6 0.825 03 2.0 0.036 60
0.8 0.481 27 2.2 0.024 70
1.0 0.297 09 2.4 0.016 72
1.2 0.189 60 2.6 0.011 35
1.4 0.123 57 2.8 0.007 72
1.6 0.081 67 3.0 0.005 25

FIG. 2. Thermal component of the reduced excess energy, uth, of 2D Yukawa
fluids near the fluid-solid phase transition versus the reduced coupling param-
eter Γ/Γm. Symbols correspond to MD simulations for different values of the
screening parameter κ. The curves are the analytical fits to these data using
Eq. (13): The upper (lower) curve corresponds to fitting the MD results for
κ = 0.5 (κ = 3.0) and the intermediate (red) curve is obtained by fitting the
entire massive of the data points.

is expected when the potential steepness increases (see, e.g.,
Fig. 4 from Ref. 56). Overall, the data points corresponding
to the dependence uth(Γ/Γm) are confined to a relatively nar-
row range. The important point is that towards the side of soft
interactions (sufficiently small κ in our case), the static com-
ponent of the internal energy is dominant over the thermal
one. For example, at κ = 1 the thermal component contributes
only to about 2% of the total excess energy near the fluid-solid
phase transition. Therefore, even moderately accurate fits for
uth allow us to obtain high accuracy with respect to the total
excess energy uex.

Three fits are shown in Fig. 2. The upper (lower) curve
corresponds to the data portion for κ = 0.5 (κ = 3.0). The inter-
mediate curve has been obtained using the entire massive of the
data points (corresponding to the parameter regime shown). It
can be considered as the representative for strongly coupled
2D Yukawa fluids in the vicinity of the freezing transition. The
functional form of the fit is the same as that used previously,56

uth = A ln(1 + BΓ/Γm). (13)

The use of the coefficients A = 0.257 and B = 195.4 determined
here would somewhat improve previous approximations.

The excess free energy can be routinely calculated using
the model for the excess energy formulated above and the
second of Eqs. (5). The resulting expression is rather simple,

fex = M(κ)Γ − ALi2(−BΓ/Γm), (14)

where Li2(z) = ∫
0

z dt ln(1 − t)/t is dilogarithm. Note that in
deriving Eq. (14), the thermodynamic integration over the
coupling parameter from 0 to Γ has been performed, while
Eq. (13) is, strictly speaking, not applicable at Γ � 1. The
correct procedure would be to start thermodynamic integra-
tion from some small, but finite, value Γ0 and then add the
constant fex(Γ0) evaluated using Eq. (10). However, since the
actual contribution from the weakly coupling regime is small,
Eq. (14) remains rather accurate at strong coupling and we use
it here.
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The calculation of pressure from the excess free energy
is straightforward but rather cumbersome in the considered
case. This is because the differentiation with respect to κ is
involved, and the two fits for M(κ) and Γm(κ) are present.
For this reason, the explicit expression for p is not displayed.
We verified that near freezing (at Γ/Γm ' 0.95) the derived
expression yields the pressures which deviate from the exact
MD results by ∼0.001% at κ = 0.5, ∼0.1% at κ = 1.0, and
∼1% at κ = 2.0− 2.8. The accuracy drops at the highest value
κ = 3.0. This is not surprising, since the fits for M(κ) and Γm(κ)
are only applicable for κ . 3.0 and, therefore, derivatives from
these fits at κ = 3.0 can produce significant errors.

We also found out that if better accuracy is required, the
data for the excess thermal energy can be fitted by the following
slightly modified expression:

uex = A(κ) ln
[
1 + B(κ)Γs(κ)

]
, (15)

where A and B are now assumed κ-dependent and a
κ-dependent exponent s is introduced. Based on all the
data points obtained in MD simulations, the following
relations are identified: A(κ)= 0.357 + 0.094κ, B(κ)= 1.655
exp(−0.769κ), s(κ) = 0.688 − 0.052κ. Some representative
examples are shown in Fig. 3. The fit of Eq. (15) is clearly
more accurate and can be used in the regime of weaker cou-
pling, compared to the simple form (13). However, it is also
less practical in evaluating thermodynamic parameters other
than the excess internal energy.

C. Relation between excess pressure and energy

It is sometimes advantageous to operate with an equation
of state written in the form of relation between the pressure
and internal energy of the system. For soft purely repulsive
potentials, the simplest formulation of this kind can be written
as

pex = γexuex, (16)

FIG. 3. Dependence of the excess thermal energy uth on the reduced coupling
parameter Γ/Γm. All the data points from numerical simulations are plotted.
Solid curves correspond to three representative fits using Eq. (15).

where the parameter γex generally depends both on the tem-
perature and density, that is, both on Γ and κ for Yukawa
systems. Note that the parameter γex introduced in this
way is not directly related to the conventional definitions
of either the density scaling exponent or the Grüneisen
parameter.83 Nevertheless, it may be helpful in characteriz-
ing the softness of the repulsive potential. We remind that for
inverse-power-law (IPL) repulsive potentials of the form ϕ(r)
∝ r−α the relation between the excess pressure and energy
is particularly simple, pex =

α
2 uex in 2D. Thus, an “effec-

tive IPL exponent” may be associated with the quantity
2γex.

Having approximations for both pex and uex for 2D
Yukawa fluids, we can easily estimate the value of γex. The
corresponding plot of γex as a function of Yukawa system state
variables κ and Γ/Γm is shown in Fig. 4. To produce this plot,
Eq. (13) for the thermal component of the excess energy has
been used. Figure 4 shows that in the strongly coupled regime
γex is very weakly dependent on the coupling strength (tem-
perature) but exhibits considerable dependence on κ (density).
Using the exact MD results for pex/uex in the vicinity of the
fluid-solid phase transition (Γ/Γm ' 0.95), we have obtained
a representative dependence γex(κ) in the strongly coupled
regime,

γex(κ) = 1 + 0.526κ + 0.13κ2 − 0.02κ3. (17)

Importantly, γex → 1 as κ → 0. This seems counter-intuitive
at first because one would naturally expect γex =

1
2 in the

OCP Coulomb interaction limit in 2D. The difference is
attributed to the presence of the neutralizing background in the
OCP model. In the limit of very soft interaction, the energy
and pressure are dominated by their static contributions. As
κ → 0, the dominant contribution is the Madelung energy, so
that fex ∼ uex ∼MΓ∼ Γ/κ (without background). This implies
pex =

Γ
2 (∂fex/∂Γ)− κ2 (∂fex/∂κ) ∼ Γ/κ ∼ uex. In the presence of

the neutralizing background, the term Γ/κ disappears and we
have fex ∼ uex ∼ MOCPΓ. This yields pex ∼

1
2 MOCPΓ ∼

1
2 uex.

This consideration demonstrates that the Yukawa systems in
the limit κ → 0 are not fully equivalent to the Coulomb systems
with the neutralizing background.

FIG. 4. Ratio of the excess pressure to the excess energy, γex = pex/uex on
the plane (κ, Γ/Γm).
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D. Crystals

In a series of MD simulations for 2D Yukawa crystals,
in addition to evaluate the excess energy and pressure (which
are summarized in Tables IV and V of the Appendix), the
mean squared displacements were calculated to find the anhar-
monic correction coefficient β. The resulting dependence β(κ)
is shown in Figure 5 (the corresponding values are also tab-
ulated in Table III of the Appendix for completeness). The
inset in Fig. 5 presents the radial (isotropic) pair correlation
function, g(r) ∝ ∫ dϕ g(r), and demonstrates an excellent rep-
resentation of the short- and long-distance correlations. The
obtained anharmonic correction coefficient β(κ) allows us to
calculate analytically pair correlation function and then the
excess energy, pressure, and other thermodynamic parame-
ters by the thermodynamic integration with the help of the
expressions given in Sec. II C.

It is worth pointing out the following observation: In the
limit κ → 0, the Yukawa interaction tends to the unscreened
Coulomb interaction ϕ ∝ r−1. According to our previous
MD simulations,61 the finite-temperature phononic spectra dif-
fer weakly from zero-temperature ones for IPL potentials,
ϕ ∝ r−α. Therefore, in the OCP limit (κ = 0 and α = 1)
we should obtain the smallest values of β(κ). This is indeed
observed in Fig. 5.

In Figure 6 we plot the reduced pressure versus the
reduced excess energy of 2D Yukawa fluids and solids. Sym-
bols are the MD results, and the solid and dashed curves
correspond to the shortest-graph method [with found anhar-
monic correction coefficient β(κ)] for the crystalline phase and
the proposed fit by Eq. (15) for the fluid phase, respectively.
Excellent agreement is observed.

E. Accuracy

The relative difference between the excess energies cal-
culated using the shortest-graph method and those evaluated

FIG. 5. Dependence of the anharmonic correction coefficient β on the screen-
ing parameter κ. The inset demonstrates a typical comparison between the
radial distribution functions obtained in a direct MD simulation and computed
using the shortest-graph method. For details see the text.

FIG. 6. Dependence of the reduced pressure on the reduced excess energy.
Open (solid) symbols are the results of MD simulations for fluids and solids,
respectively. The solid and dashed curves correspond to the shortest-graph
method for solids and to the fit of Eq. (15) for fluids.

using direct MD simulations in the solid phase amounts to
' 5 × 10−5, which is comparable to the values reported ear-
lier.62 The accurate fit of Eq. (15) yields the relative error in the
excess energy smaller than 5× 10−4 and 2× 10−3 for 72% and
95% of the examined fluids data points, respectively. Maximal
relative deviation, 5 × 10−3, is observed near the melting line
at large values of the screening parameter κ. A simpler fit of
Eq. (13) is applicable when the relative deviations within .1%
are acceptable.

In addition, we can compare our results with those recently
reported in Refs. 57 and 58, where fits for the pressure of 2D
Yukawa fluids in the (κ, Γ) parameter space have been pro-
posed. The case κ = 0.5 received special attention and a simple
two-term fit has been proposed based on the results of a MD
simulation,57 p= 1.53Γ + 1.33. We plot our MD results along
with the fit of Eq. (13) and the fit from Ref. 57 in Fig. 7. One
can see that the fit from Ref. 57 overestimates the pressure
systematically at high values of Γ. At the strongest coupling

FIG. 7. Reduced pressure, p, as a function of the coupling parameter Γ for
a Yukawa 2D fluid with the screening parameter κ = 0.5. The symbols are
exact MD results, the solid (red) line corresponds to the fit of Eq. (13), and
the dashed (blue) line is the fit from Ref. 57.
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TABLE II. Reduced excess energy uex and pressure p of two-dimensional Yukawa fluids evaluated using MD simulations for various coupling (Γ) and screening
(κ) parameters.

κ = 0.5

Γ 135.420 86.7254 52.7787 32.1811 19.6073 11.9310 7.27175 4.43126 2.69848 1.64302 1.00136 0.5
uex 152.944 98.3115 60.1901 37.0087 22.8180 14.1176 8.79838 5.51964 3.48587 2.21772 1.42021 0.76495
p 199.434 128.303 78.6946 48.5651 30.1485 18.8835 12.0216 7.81631 5.22964 3.63556 2.64961 1.85883

κ = 0.6

Γ 140.131 89.5076 54.3171 32.9737 20.0017 12.1359 7.36665 4.47442 2.71053 1.64677 1.00106 0.5
uex 116.984 75.1128 45.9415 28.2016 17.3768 10.7727 6.73045 4.24422 2.69421 1.72956 1.11776 0.61083
p 160.369 103.050 63.1652 38.9451 24.1971 15.2284 9.76528 6.42899 4.37128 3.11015 2.32663 1.69701

κ = 0.8

Γ 152.277 96.5736 58.0604 34.9737 21.0334 12.6675 7.61503 4.58845 2.75830 1.66410 0.99914 0.5
uex 74.6424 47.7340 29.0608 17.8181 10.9844 6.84185 4.30139 2.74217 1.76665 1.15293 0.75437 0.42469
p 112.709 72.1411 44.0441 27.1658 16.9406 10.7731 7.01845 4.73986 3.33679 2.47393 1.92983 1.49910

κ = 1.0

Γ 169.071 105.975 63.1038 37.6027 22.4047 13.3361 7.94729 4.73129 2.81940 1.68034 0.99956 0.5
uex 51.5786 32.7335 19.8556 12.1451 7.50279 4.68984 2.97702 1.91799 1.25426 0.82932 0.55059 0.31770
p 85.4036 54.2492 33.0215 20.3527 12.7618 8.19406 5.44279 3.76791 2.74103 2.10336 1.70075 1.38135

κ = 1.2

Γ 191.126 118.398 69.6429 40.9597 24.1083 14.1893 8.34919 4.90490 2.88868 1.70019 0.99984 0.5
uex 37.5852 23.6918 14.3026 8.72609 5.39936 3.39637 2.17547 1.41736 0.93933 0.62908 0.42281 0.24960
p 67.9344 42.8619 25.9838 16.0024 10.0874 6.56025 4.44041 3.15023 2.36021 1.86635 1.55301 1.30594

κ = 1.4

Γ 220.172 134.441 77.9949 45.2452 26.2578 15.2219 8.83634 5.12702 2.97137 1.72440 1.00140 0.5
uex 28.5555 17.8503 10.7244 6.53392 4.05300 2.56405 1.65932 1.09552 0.73364 0.49726 0.33718 0.20253
p 56.0915 35.0963 21.1892 13.0574 8.28303 5.45288 3.76392 2.73780 2.10241 1.70540 1.45171 1.25396

κ = 1.6

Γ 258.433 155.296 88.6297 50.6106 28.9099 16.4928 9.41249 5.37870 3.07317 1.75217 0.99889 0.5
uex 22.4535 13.9136 8.31218 5.05719 3.14728 2.00498 1.30903 0.87473 0.59391 0.40446 0.27520 0.16486
p 47.7294 29.6021 17.7849 10.9674 7.00739 4.67522 3.28559 2.44432 1.92230 1.58965 1.37647 1.15781

κ = 1.8

Γ 308.935 182.395 102.261 57.3435 32.1483 18.0355 10.1029 5.67241 3.17978 1.78359 0.99997 0.5
uex 18.1745 11.1626 6.63304 4.02868 2.51560 1.61389 1.06328 0.71747 0.49051 0.33739 0.23058 0.14359
p 41.6428 25.5932 15.3055 9.44338 6.07675 4.10949 2.93845 2.22906 1.78546 1.50402 1.32125 1.18748

κ = 2.0

Γ 375.818 217.422 119.600 65.7745 36.1611 19.8980 10.9232 6.01199 3.30681 1.81767 1.00051 0.5
uex 15.0964 9.17319 5.42177 3.29200 2.06139 1.33276 0.88426 0.60261 0.41513 0.28650 0.19651 0.12379
p 37.1333 22.5775 13.4413 8.30684 5.38337 3.68921 2.67835 2.06727 1.68347 1.43752 1.27850 1.16494

κ = 2.2

Γ 463.975 262.948 141.568 76.2338 41.0173 22.0958 11.9035 6.41082 3.45056 1.85303 1.00113 0.5
uex 12.7875 7.69994 4.52708 2.74830 1.72461 1.12217 0.75368 0.51642 0.35777 0.24734 0.17009 0.10850
p 33.6575 20.2710 12.0118 7.43585 4.85060 3.36425 2.48426 1.94445 1.60450 1.38520 1.24473 1.14408

κ = 2.4

Γ 578.968 320.871 168.949 89.0382 46.8778 24.7092 12.9953 6.85634 3.60307 1.89919 0.99952 0.5
uex 10.9709 6.56430 3.83850 2.33031 1.47100 0.96365 0.65089 0.44974 0.31141 0.21697 0.14862 0.09589
p 30.8215 18.4175 10.8648 6.74135 4.43655 3.11369 2.32748 1.84722 1.53931 1.34446 1.21673 1.12942
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TABLE II. (Continued.)

κ = 2.6

Γ 723.656 392.384 202.051 104.080 53.5742 27.6270 14.2191 7.32182 3.76653 1.93971 1.00200 0.5
uex 9.50055 5.63818 3.28596 1.99866 1.26783 0.83500 0.56905 0.39442 0.27600 0.19145 0.13130 0.08576
p 28.3633 16.8096 9.89231 6.16190 4.09049 2.90245 2.19936 1.76426 1.48858 1.30961 1.19408 1.11954

κ = 2.8

Γ 893.746 474.549 239.143 120.685 60.8483 30.6642 15.4796 7.80951 3.93161 1.98042 1.00296 0.5
uex 8.19448 4.82859 2.81518 1.71951 1.09985 0.73051 0.50093 0.35038 0.24489 0.17117 0.11700 0.07671
p 25.9004 15.2521 8.98792 5.63831 3.78782 2.72194 2.08856 1.69631 1.44344 1.28133 1.17497 1.10201

κ = 3.0

Γ 1071.02 558.495 276.444 136.953 67.7922 33.5897 16.6383 8.22716 4.07874 2.02013 0.99949 0.5
uex 6.93189 4.07091 2.38838 1.47193 0.95056 0.64023 0.44340 0.31146 0.21994 0.15395 0.10494 0.06958
p 23.1181 13.5906 8.07317 5.12679 3.49444 2.55590 1.98879 1.63334 1.40554 1.25677 1.15868 1.09682

in the fluid phase studied in this work, Γ = 135.42, the present
MD simulation yields p = 199.434, fit by Eq. (13) yields
p = 199.432, while the fit from Ref. 57 yields p = 208.523. On
the other hand, the previous model for 2D Yukawa systems in
the OCP (weakly screening) limit discussed in Refs. 56 and 57
yields p = 199.445, providing confidence in the accuracy of the
present results. The reasons for deviations in Ref. 57 have to be
identified.

IV. CONCLUSION

We studied the thermodynamics of 2D classical Yukawa
systems across coupling regimes, from the weakly non-ideal
gas to the strongly coupled fluid and crystalline phases. Care-
ful analysis of the extensive MD simulation results allowed
us to propose simple and physically suitable expressions
for the internal energy and pressure of the studied systems.
These expressions can be used to estimate other thermo-
dynamic properties using the conventional thermodynamic
relations.

For weakly non-ideal gases, virial expansion with the two
first terms retained was shown to provide reasonably good
estimate of the excess energy at sufficiently weak coupling,
Γ . 1.

For the strongly coupled fluid phase, we made use of
the 2D analog of the 3D Rosenfeld-Tarazona quasi-universal
scaling of the thermal component of the excess energy. This
quasi-universal scaling was shown to be particularly useful
on approaching the fluid-solid phase transition. Deviations
from the quasi-universal behaviour have been discussed and
quantified.

To calculate thermodynamic properties of the crystalline
phase, we employed the shortest-graph method for pair
correlation functions. To account for the effects of finite-
temperature phonon spectra, we proposed a simple way to

correct the mean squared displacements of correlation peaks
for different nodes. The coefficient of anharmonic correction
was evaluated in MD simulations and then used in analytical
estimates. The efficiency and accuracy of the approach was
documented.

The results of this paper can be useful for thermodynamic
calculations related to various phenomena in 2D and quasi-
2D Yukawa fluids and solids in a broad range of parameters.
In particular, this includes colloidal systems, complex (dusty)
plasmas, and liquid electrolytes.

ACKNOWLEDGMENTS

The numerical simulations are supported by the Rus-
sian Science Foundation, Project No. 14-29-00277. Post-
processing is supported by the Russian Foundation for Basic
Researches (Projects No. 16-38-00952). The theoretical study
by the shortest-graph method is supported by the Russian
Science Foundation, Project No. 14-43-00053. The present
position of S.A.K. at Aix Marseille University is supported by
the A*MIDEX Project (No. ANR-11-IDEX-0001-02) funded
by the French Government “Investissements d’Avenir” pro-
gram managed by the French National Research Agency
(ANR).

APPENDIX: MD RESULTS

In this appendix, we summarize the main results from
MD simulations performed in this study. Table II reports the
reduced excess energies and pressures at different state points
in the fluid phase. Table III summarizes the values of the
anharmonic correction coefficient β evaluated using MD simu-
lations of the crystalline phase. Finally, Tables IV and V report
the excess energies and pressures in the crystalline phase.

TABLE III. Values of the anharmonic correction coefficient β for different screening parameters κ.

κ 0.0 0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

β(κ) 3.01 9.23 12.38 14.30 10.53 9.71 9.35 9.28 9.14 9.08 8.97 8.855 8.68 8.71 8.46 8.47 8.51
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TABLE IV. Reduced excess energy uex of the 2D Yukawa crystal obtained in MD simulations for various screening parameters κ and reduced coupling
parameters Γm/Γ.

Γm/Γ

κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5 1595.62 798.828 532.689 399.681 319.981 266.796 228.880 200.332 178.283
0.6 1217.36 609.282 406.628 305.117 244.469 203.938 174.914 153.188 136.267
0.8 773.025 387.104 258.328 194.074 155.484 129.733 111.343 97.5607 86.8364
1.0 529.643 265.306 177.235 133.215 106.726 89.1490 76.5169 67.1314 59.7831
1.2 382.522 191.740 128.152 96.3972 77.2970 64.6022 55.5318 48.7317 43.4438
1.4 287.408 144.232 96.4804 72.5942 58.2862 48.7586 41.9386 36.8484 32.8838
1.6 223.185 112.096 75.0671 56.5515 45.4466 38.0606 32.7681 28.8120 25.7391
1.8 178.133 89.6228 60.0889 45.3116 36.4631 30.5563 26.3521 23.1896 20.7451
2.0 145.774 73.3800 49.2712 37.2003 29.9641 25.1447 21.7011 19.1314 17.1275
2.2 121.609 61.3067 41.2021 31.1620 25.1352 21.1177 18.2517 16.1113 14.4385
2.4 102.908 51.9465 34.9672 26.4819 21.3920 17.9999 15.5706 13.7650 12.3602
2.6 87.4157 44.2324 29.8212 22.6181 18.2990 15.4212 13.3710 11.8300 10.6351
2.8 73.5771 37.3025 25.2028 19.1490 15.5271 13.1108 11.3865 10.0997 9.10597
3.0 60.2002 30.6118 20.7457 15.8118 12.8497 10.8840 9.47465 8.43053 7.65187

TABLE V. Reduced pressure (compressibility) p of the 2D Yukawa crystal obtained in MD simulations for various screening parameters κ and reduced coupling
parameters Γm/Γ.

Γm/Γ

κ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5 2080.63 1041.70 694.789 521.370 417.454 348.100 298.669 261.442 232.679
0.6 1669.06 835.485 557.680 418.523 335.380 279.814 240.022 210.233 187.022
0.8 1168.03 585.024 390.480 293.406 235.104 196.197 168.410 147.583 131.370
1.0 878.208 440.005 294.000 221.023 177.106 147.964 127.016 111.450 99.2542
1.2 693.046 347.470 232.288 174.765 140.162 117.162 100.726 88.4011 78.8053
1.4 566.555 284.386 190.275 143.196 114.994 96.2113 82.7636 72.7234 64.8975
1.6 476.692 239.477 160.406 120.865 97.1465 81.3696 70.0608 61.6053 55.0288
1.8 410.580 206.621 138.561 104.505 84.1086 70.4915 60.7970 53.5005 47.8555
2.0 361.191 181.859 122.134 92.2267 74.2973 62.3524 53.8144 47.4405 42.4641
2.2 322.729 162.732 109.386 82.7430 66.7485 56.0825 48.4703 42.7821 38.3327
2.4 291.498 147.173 99.0847 75.0489 60.6307 51.0175 44.1300 39.0087 35.0158
2.6 263.437 133.325 89.9002 68.1935 55.1747 46.4976 40.3128 35.6615 32.0486
2.8 235.188 119.260 80.5872 61.2342 49.6540 41.9257 36.4074 32.2829 29.0897
3.0 203.533 103.516 70.1601 53.4777 43.4588 36.8063 32.0351 28.4887 25.8081
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