Monitoring MetOcean parameters from space - Implications for offshore safety and security

Dr. Sven Jacobsen Maritime Safety and Security Lab Bremen German Aerospace Center (DLR)

Sea Surface Parameters from SAR

Sea Surface Parameters from SAR

1. Basic Research - Functions & Algorithms

- Fundamental research in SAR Imaging Mechanisms
- Finding interdependencies between SAR imaging and geophysical or oceanographic properties
- Develop (empirical) model functions to deduce sea surface properties from SAR

2. Software Development - Prototype & NRT Processor

- Robust implementation of developed algorithms and methods
- Performance optimisation for Near-Real-Time (NRT) capabilities
- Integration in operational data processing chain at antenna ground stations

Sea Surface Parameters from SAR

1. Basic Research - Functions & Algorithms

- Fundamental research in SAR Imaging Mechanisms
- Finding interdependencies between SAR imaging and geophysical or oceanographic properties
- Develop (empirical) model functions to deduce sea surface properties from SAR

2. Software Development - Prototype & NRT Processor

- Robust implementation of developed algorithms and methods
- Performance optimisation for Near-Real-Time (NRT) capabilities
- Integration in operational data processing chain at antenna ground stations

3. Processing, Databases and Scientific Exploitation

- Contribution to improve forecasts, oceanographic and geophysical understanding
- Analysis of extreme events
- Possible applications for institutions and industry

Satellites: X-band SAR (synthetic aperture radar)

Satellites: X-band SAR (synthetic aperture radar)

Satellites: X-band SAR (synthetic aperture radar) TerraSAR-X

SAR-Derived Wind Fields

Synthetic aperture radar is capable of providing wind information over the ocean by measuring the **roughness of the sea surface**.

SAR Wind Algorithms

Geophysical Model Function (GMF):

$$\sigma_0 = B_0(v,\theta)(1 + B_1(v,\theta)\cos\phi + B_2(v,\theta)\cos 2\phi)$$

v: Wind Speed

 θ : Incidence Angle

 φ : Wind Direction

Radar band	GMF	Spaceborne SAR Sensors	
C-band (5.6GHz)	CMOD4,CMOD5/5N	ERS/SAR,ENVISAT/ASAR, RADARSAT-1/2	
L-band (1.3GHz)	LMOD1/2	JERS-1, ALOS PALSAR-1/2	
X-band (9.6GHz)	XMOD/XMOD2	TerraSAR-X/TanDEM-X, Cosmo-SkyMed	

Open Questions:

- How accurate are GMFs designed for and validated with larger footprints to wind variations on 100m-500m scale?
- How accurately can small-scale SAR wind variations be extrapolated to greater heights?

XMOD2 Validation

Colocations	Bias	RMSE	SI
371 (training)	-0.32 m/s	1.47 m/s	16.0%
52 (validation)	-0.17 m/s	1.47 m/s	17.0%

X.-M. Li and S. Lehner, "Algorithm for Sea Surface Wind Retrieval From TerraSAR-X and TanDEM-X Data," IEEE Transactions on Geoscience and Remote Sensing, vol. Early Access Online, 2013.

Approach: Wind Fields From two Independent Methods

Joint Campaign with ForWind French (Oldenburg)

On-Site LIDAR

Results in free flow Comparison of spatial structures

- Offset in average wind measurement 1.1 m/s
- Spatial standard deviation comparable

Results in free flow Comparison of spatial structures

 Spatial structures of lidar measurement well observable in TS-X measurement

Alpha Ventus Offshore Wind Park

TS-X StripMap (20150820); Riffgat Windpark vor Borkum

TS-X StripMap (20150820); Riffgat Windpark vor Borkum

Ship Traffic near Riffgat Wind Park (north of Borkum)

Ship traffic in the German Bight

Sea state important for situation awareness and operation planning!

Wave height can be 10-12m during storms

Sea State important for situation awareness and operation planning!

XWAVE empirical algorithm: GMF principle and structure

waves: swell, windsea, short windsea in costal areas

TerraSAR-X X-band and Sentinel 1 C-Band SAR

Differences: resolution and bands

Sentinel-1 A/B IW 250km 10m pixel res.

TerraSAR-X StripMap 30km 1.2m pixel res.

Sea Surface by different Sensors

The same time and location

SENTINEL S-1 IW VV 10m Pixel, C-band TerraSAR-X StripMap VV 1.25m Pixel, X-band

sea state parameters estimation

Integrated parameters:

Wave height, mean period, etc.

Entropy, Contrast, Dissimilarity, etc.,

Coastal applications: "contamination" impacts spectral analysis

Removing contaminations

- Sand banks
- Wave breaking
- Ships, Buoys, Wind farms
- Current fronts, ship wakes

- 1. Before analysis
- 2. Function term
- 3. Results control

GMF is applicable for "pure" sea state case only: Pre-filtering of images is necessary for raster analysis

Without pre-filtering Integrated energy and *Hs* can > 10 times overestimate real value

Sea State Processor for SENTINEL-1 and TerraSAR-X

$$H_{S} = a_{1} \sqrt{B_{1} E_{IS} \tan(\theta)} + \sum_{i=2,n}^{n} a_{i} B_{i}$$

NRT chain, Ground Station Neustrelitz

Maritime situation awareness

NRT services: waves, wind ships

Raster: 6 km,

Subscenes: 2.5kmx2.5km

Sea State Processor for TerraSAR-X

Example: German Bight

TerraSAR-X acquisition 07.04.2015 05:51 UTC

Accuracy:
RMSE=0.24m
for total wave height *Hs*for coastal waters

best delivery performance - 10min

Sea State Processor for Sentinel-1

Example: German Bight

TerraSAR-X acquisition 29.01.2016 17:16 UTC

Accuracy:
RMSE=0.80
for total wave height *H*s
worldwide

Sea State Processor for Sentinel-1

Example: Arctic Sea, 05.01.2017

Support of a research cruise

Following a storm in the Black Sea

Total Significant Wave Height | Black Sea storm 20-23.04.2017 | SENTINEL -1 SAR C-band IW mode | processing mesh 6km×6km

Conclusions

- SAR-based met-ocean parameters are a reliable source to complement model predictions and buoy data
- Available in Near-Real-Time and for long-term analysis
- Improtant for offshore construction/maintenance operations planning
- Optimize power production estimates for offshore wind farms (including wind shadows and turbulent effects)

