
Deduced Software Design Principles from Experiences with
the Technical Debt in Reused Software

Olaf Maibaum1, Thomas Terzibaschian2, Christian Raschke3, Andreas Gerndt1

1 German Aerospace Center (DLR), Simulation and Software Technology

Lilienthalplatz 7, 38108 Braunschweig, Germany
Phone: +49 531 295 2974, Mail: olaf.maibaum@dlr.de

2 German Aerospace Center (DLR), Institute of Optical Sensor Systems
Rutherford-Str. 2, 12489 Berlin, Germany

Phone: +49 30 67055 586, Mail: thomas.terzibaschian@dlr.de

3 Astro- und Feinwerktechnik Adlershof GmbH
Albert-Einstein-Straße 12, 12489 Berlin, Germany

Phone: +49 30 6392 1053, Mail: c.raschke@astrofein.com

Abstract: Software reuse conserves software design decisions for the future, but technology evolves over
time. Previous design decisions thereby become technical debt in designs for future projects in the case of
software reuse. This may result in risk and cost increases for future projects. The small satellite BIROS is
an example for such a project and is reflected in this paper. The software reuse prohibits the utilization of
state-of-the-art test techniques without significant modification to its software architecture, which is not a
software reuse. The necessary changes in the software architecture are presented in this paper and how it
protects against faults that arose during the system test and commissioning phases.

1. INTRODUCTION

The AOC subsystem of the BIROS satellite [1] has a long history. The first lines of
C++-code in the software were written in the year 2000 for the BIRD ACS. In 2008, the
BIRD ACS was reused in the TET-1 satellite. For TET-1, the setup process of the soft-
ware was restructured, the hardware related drivers on the IO level of the software were
replaced, and new control modes were introduced. These modifications were necessary
due to changes in the sensor and actuator hardware as well as lessons learned from
BIRD. The BIROS AOCS software, reused from TET-1 [2], has been extended for sev-
eral experiments such as the qualification of a thruster system, fast slew maneuvers with
high torque wheels, the AVANTI experiment for the autonomous formation flight with
the BEESAT-4 as well as an optical downlink.

In the year 2000, the development team’s knowledge and the state of test techniques led
to design decisions in the software architecture which are not up to par with state-of-the-
art techniques used by software development today. Due to software reuse and an un-
changed software architecture, the design decisions from the BIRD software have been
conserved. This complicates adding new functionality and the discovery of software
faults in the space-proven application software. Testing with a continuous integration
test approach is not possible. This disadvantage is a technical debt that originates from
the original BIRD software.

Unit tests are an essential part of the continuous integration test process. In the year
2000 such software development processes were not state-of-the-art, e.g., the develop-
ment of the CppUnit framework as a unit test framework for C++ started in the year
2000 [6]. The accepted test approach was based on functional tests, which were done for

mailto:olaf.maibaum@dlr.de
mailto:thomas.terzibaschian@dlr.de
mailto:c.raschke@astrofein.com

BIRD with the controller modes. Therefore, the chosen software architecture for BIRD
did not support unit tests with current unit test frameworks. One positive aspect in the
software architecture is the coupling of software components through a component
manager, which allows the replacement of software components. Unfortunately, the
interface design did not allow any replacement of the software components with test
stubs. The serial bus interfaces were designed to be replaceable by stubs, but all these
interfaces are fixed members of the software components. These software design deci-
sions make unit testing impossible because the software components cannot be tested in
isolation from one another.

At first, we present the software changes made in BIROS, followed by a selection of
arising issues due to the software changes during the system test and commissioning
phases. The paper continues with the presentation of the software architectures used in
the TET satellite line and the new one used for currently active projects at the depart-
ment such as autonomous optical navigation (ATON) [8], cold gas experiments
(MAIUS, QUANTUS) [9] and DLR’s compact satellite (Eu:CROPIS) [10, 11]. The
paper closes with a comparison of the test processes applied in both software architec-
tures.

2. SOFTWARE CHANGES IN BIROS

Besides minor software changes in order to increase software robustness in case of mal-
functions, major software changes were made due to the requirements of additional ex-
periments on the BIROS satellite. The minor software changes will also be applied to
TET-1 after they have been successful proven in space on the BIROS satellite.

The major software changes are:

- a control interface to the nitrogen thruster system for orbit maneuvers
- a 4-quadrant-sensor interface to orient an optical communication system to the

laser buoy of the optical ground station (PrOSIRIS) [3],
- extension of the wheel system with three high torque wheels for high agility atti-

tude control [4],
- high speed image reading from star tracker hardware for the optical tracking of a

remote target and read out of further information from the star tracker,
- interface for AVANTI [5] to request star tracker data, to access and control the

thruster system, and command attitude modes in the AOCS,
- and extending the attitude control state machine with additional control modes.

These consist of the target pointing mode for the optical downlink, fast slew ma-
neuver mode for high agility attitude control, thruster firing to perform orbit ma-
neuvers, and client observation for optical observation of the remote target with
the star tracker system.

The main challenge for the software changes is that the behavior of TET-1 has to re-
main unchanged. In case of new control modes, the work is straight forward because
each mode is designed as its own class and only the mode transitions have to be added
to the existing modes. In this case, only a test of the mode transitions is necessary to
verify the software changes. Similarly, the new control interface to the nitrogen thruster
only adds new classes to the software in addition to integrating the data into the state

vector of the AOCS. This has no influence on the existing software except on the com-
putational load of the bus computer.

The 4-quadrant-sensor is an analog sensor system which shares the interface to the ana-
log digital conversion with the sun sensors. For this, a redesign of the interface was nec-
essary to fulfil different timing requirements of the analog digital conversion scan for
the both sensor types.

The new high torque wheels share the communication bus with the four control wheels
in the TET-1 design. So, the communication with the high torque wheels should inte-
grate into the same interface to the communication bus without negatively affecting the
four wheel behavior. These changes affect the communication process and computation
of the wheel subsystem’s control torque. Furthermore, a new control strategy for a sev-
en wheel configuration is necessary.

The image reading for the AVANTI experiment had a significant impact on the existing
processing of the star tracker. The existing image read process to read out an image
from the star tracker was too slow to fulfill AVANTI’s requirements. Increasing the size
of the communication buffer to read a large data chunk in one read request was not an
option due to memory issues. Therefore, the period of the main star tracker control loop
had to be increased without changing the timing of the star tracker control state ma-
chine. The resolution was to split the main processing cycles into ten sub-cycles and
perform the normal processing of the state machine in two of the sub-cycles. The read
out of the image data was performed in the remaining eight cycles outside the state ma-
chine as a parallel process.

3. ARISING ISSUES

The software changes from TET-1 to BIROS uncovered several software issues hidden
within the space proven software.

One issue was a resulting controlled spin when the AOCS lost information on the iner-
tial orientation in one of the inertial modes and fell back into the auto acquisition mode
to acquire a sun orientation until it have a valid inertial vector. This fallback behavior
was introduced for BIROS and is overtaken to TET-1. The issue was tracked down to be
a side-effect of a modification in the tele-command handler for the inertial mode of
TET-1 which serializes unused parameter data as a target for the mode control. This did
not have an effect on TET-1’s operation, but in BIROS, changed its fallback behavior in
that it would start to spin according to the serialized invalid parameter data. This behav-
ior was first observed in the commissioning phase when the fallback was activated. Dur-
ing system testing, this behavior was not observed, possibly due to command sequences
with zero data in the corresponding serialized data area. Another reason could be the
differences between the ground support equipment in the laboratory and the processing
of tele-commands in the ground control center, e.g., null initialization of unused param-
eters in the fix sized tele-commands.

Using a star tracker as an optical device is a complicated and error prone undertaking.
Timing issues arise in the interface when image reads are performed in parallel during
normal operation. Several times, a loss of messages was observed during system tests,
which seldom also occur during normal image read operation of TET-1. Due to this, the

state machine of the star tracker interface was occasionally stuck in a mode. Unfortu-
nately, the behavior of the star tracker hardware differs from the engineering model in
the laboratory environment to that of the flight model in the space environment. There-
fore, most of the critical issues only appeared in the space environment and could not be
reproduced in a laboratory environment. An example of this was the fixes for the poten-
tial source of messages losses in BIRD’s software, where they would work in the engi-
neering model but not in the flight model located in a space environment. During the
commissioning phase, a software update, successfully tested in the laboratory environ-
ment, broke the communication with the star tracker in the flight model in space.

The AOCS records important events such as mode changes in the control mode state
machine. The AVANTI experiment adjusts the target of the control mode every 30 sec-
onds which causes a reentry into the control mode. Since the interface between
AVANTI and the AOCS use the same mechanism as tele-commands, the log was flood-
ed by control mode events and it becomes difficult to find important events in the log.
This needed a new software requirement that such activities were not logged anymore.
Thus, a filter was introduced into the event recording mechanism, based on the source
of the mode commands, which distinguishes between tele-command, AOCS FDIR ac-
tivity and the AVANTI experiment as possible sources of commands.

4. COMPARISION OF SOFTWARE ARCHITECTURES

The software architecture has a big impact on the testability and maintainability of
software systems. The design decisions of the AOCS software architecture of the TET
line are based on the reused software from the BIRD project. BIRD’s architecture deci-
sions were significantly influenced by predefined systems such as its operating system
and the application framework. Besides this, a major factor was the reusability of the
software for future space missions. Testability was not recognized as a valid driver for
software quality. Therefore, software verification is limited to manually testing the con-
troller functions while driver interfaces have to be tested in a HIL environment. In cur-
rent projects, the lessons learned from BIRD as well as test automation requirements
influence software design decisions. The following two subsections show the different
concepts of software architectures and close with a comparison of both software archi-
tectures.

4.1 Reused Architecture in TET Satellite Line

The TET satellite line uses a component based design. Interactions between the soft-
ware components are handled by a component manager. It uses a key-value map to re-
turn a pointer to the requested software component. Figure 1 shows the basic design of
the component-oriented architecture and the process required to setup and access other
components. This enables the software components to be replaced with stubs when the
stub is registered with the component manager with the key of the stubbed software
component. What was not done in the TET line was to define the interface routines of
software components as virtual methods in order to allow them to be stubbed.

The organization of software components in the TET satellite line uses a tree structure.
The implemented interface owns the bus interface. For example, the wheel system owns
the wheels and the bus interface to the serial bus. This architecture type is shown in fig-
ure 2.

Components in the TET line use threads with endless loops in the thread body. The tim-
ing of threads is controlled by calling time control methods in the endless loops.

Figure 1 Component design in TET satellite line

Figure 2 Architecture of an application

4.2 New Architecture in Current and Future Projects

In current projects, a data and event flow oriented view on the system is used. For ex-
ample, a thermal application has to capture, in a defined time frame, the thermal state
from thermal sensors and provide this information as the thermal state. In case of a
thermal deviation, this deviation is reported which triggers the process of bringing the
system back into an acceptable thermal state, e.g., by request a matching attitude mode
on the attitude target channel. This channel is also used to control the target attitude
when a tele-command is received on the ACS tele-command channel by the uplink dis-
tribution which is activated by a tele-command package on the uplink channel. Figure 3
show the system tasks and data channels for the example above.

For the software architecture, there exists the restriction that computation tasks are
stateless. Data in the system is only held in channels. The purpose of this requirement is
that all data is accessible as a housekeeping data item and to simplify a reconfiguration
in a distributed reliable onboard system, e.g, the OBC-NG (On-board Computer – Next
Generation) system developed at DLR [7].

The term “software component” is used in the software architecture only to group the
tasks and related channels to a purpose, e.g., an interface component with all computa-

 object Access

ComponentA ComponentB

ComponentManager

«register»

«request»

«use»

 class Architecture

Application Lev elA

Lev elN

ComponentA

ComponentN

Dev iceInterface SerialInterface

tional tasks according to a hardware device. This will simplify the setup of the software
system. Interfaces to devices are no longer the child of the device driver implementa-
tion. They are provided by overloading a pure abstract class and handed over as a refer-
ence to the implementation of a device driver.

The execution of the computational tasks inside a software system is managed by the
Tasking framework developed from the lessons learned in BIRD. It connects the com-
putational tasks with the data channels. The execution of a computational task is sched-
uled by the availability of data at the incoming channels. Timing is provided through the
connection of an event channel which can be configured as a periodical timer event or
triggered with a timing delay from another task. Tasks have the restriction that they are
non-blocking and terminate after a specified time. Endless loops inside a task are for-
bidden.

Figure 3 Example of tasks on data flow

4.3 Test Processes for both Architectures

The software tests for both architectures differ. All software tests in the TET line are
restricted to manual system tests with real hardware. The only automatization during
tests is the replay of tele-command sequences at the EGSE, for example to set up the
system under test. Newer projects follow the test first strategy. Here, a unit test is de-
veloped before the software functionality is implemented. The precondition for a check-

 act Data Flow

«task»
Capture thermal state

«task»
Check thermal state

«task»
Dev iation Handling

Periodic
event

«task»
Uplink distribution

«task»
ACS command serv ice

«task»
Attitude mode control

«channel»
Attitude mode request

«channel»
Thermal state

«channel»
Thermal dev iation

«channel»
Uplink data

«channel»
ACS tele-command

in of changes to the software repository is the successful execution of all unit tests. Be-
sides the manual start of the unit tests, a Jenkins server performs the unit tests as a
nightly build or triggered by a check-in in the SVN repository or in Gitlab. E-Mail re-
ports or wall displays inform on the current state of the software under development.

As mentioned before, the software test on the TET line is currently restricted to manual
tests due to the technical debt incurred from the reuse of BIRD’s software. For some
software parts, functional tests are performed which can also be adapted to state-of-the-
art unit test frameworks like Gtest or CppUnit. Compared to these, the manual tests with
the HIL environment are time consuming. Debugging is only possible with output
statements in the software. Such an approach is messy when the faults are caused by a
logical failure which can be detected with unit tests and debugging tools. In the end,
e.g., the first tests on the communication with hardware devices take several weeks in
the laboratory until everything works as expected.

With the test first strategy development starts with an empty interface for the new func-
tionality followed by the unit test to check the correct implementation of the functionali-
ty. In the next step, the implementation of the new functionality is developed until all
unit tests can be executed without any failure. This causes the time required to complete
the implementation is increased. To simplify the development of unit tests, several test
support libraries are developed, e.g., a helper class for the used Tasking Framework
with methods to control the scheduling of tasks and the tear up and down for test cases.

The unit tests contain three steps, testing operations on data items, testing functionality
of tasks and at least testing functionality of a group of interacting tasks. The restriction
to design interfaces only as channels simplifies the development of tests. For each test,
only instances of the necessary input and output channels are needed, which are con-
nected to the task(s) under test. If a task needs other instances, such as serial interfaces,
a reference to the test stub is handed to the constructor instead of the real serial interface
instance as is the case in the final implementation of system.

At mentioned earlier, the test first approach increases the development time, but most
logical errors are discovered by the unit tests. The opportunity to debug the software
and test it in the development environment eases the bug fixing of these errors. In the
end, the first communication with the hardware devices in the laboratory is significantly
sped up. As an example, for the ACS sensors of the Eu:Cropis satellite this step was
accomplished within two days instead of several weeks as in TET or BIROS. The ob-
served bugs in this step are related to integration issues and missing documentation of
the byte ordering of a hardware device. All these errors could be fixed during the two
days of test. Only one timing issue was still open after these tests, which was detected in
the next days as a running condition during the startup of the software and a wrong
clock configuration in the board supply package. During further development steps the
automatic execution of unit tests by a Jenkins server will protect the existing software
functionality against side-effects of bug fixes or changes from newly implemented func-
tionality.

5. CONCLUSIONS

The paper shows that the investment of development time for unit tests decrease the
time needed for tests in the HIL test environment. The software will be in a near bug

free state and eliminates the work pressure for the development team when the software
is tested in the real hardware environment. For maintenance or extension of functionali-
ty, the automated unit tests avoid new bugs being seeded into the tested software. Not
all causes of issues will be discovered by unit tests. The resulting spin of the wrong
command modification will only be detected when a unit tests is formulated with the
full command pipeline, which is typical not handled by unit tests. In the case of modifi-
cations to the star tracker interface, unit tests can detect side-effects of modifications
that affect existing functionality. To check a possible source of message loss, a special
test case can be formulated to examine it. Given that the formulated test case detects an
error, the test case should verify that the fix alleviates the error. If the unexpected be-
havior remains, the star tracker hardware, not covered by unit tests, can be determine as
the source of the error. The fault of the log being flooded was due to missing require-
ments, not software errors. Nonetheless, test cases are useful when implementing a filter
inside the existing mechanism.

In the end, the BIROS AOCS worked as expect after all remaining issues where fixed.
The AVANTI experiment was successfully performed and we expect that the next ex-
periments and the operation of the FIREBIRD mission will also be successful. In the
long term, it is necessary to bring the space proven software from the BIRD and TET-1
satellites, step by step, into a more maintainable and adaptable state by increasing their
testability. During normal operation, the software and hardware perform without issues.
Nonetheless, there will be always this one code line in the 30.000 which will not work
as expected in the next software reuse. Only a good test approach is able to minimize
the chance that this code has no negative effect.

6. REFERENCES

[1] H. Reile, E. Lorenz, and T. Terzibaschian. The FireBird Mission - A Scientific Mission for Earth
Observation and Hot SpotDetection. Digest of the 9th International Symposium of the International Acad-
emy of Astronautics, pp. 17-20 (2013)
[2] O. Maibaum, T. Terzibaschian, C. Raschke, and A. Gerndt. Software Reuse of the BIRD ACS for the
TET Satellite Bus. In: Digest of the 8th International Symposium of the International Academy of Astro-
nautics. pp. 409-412. Wissenschaft und Technik Verlag, Berlin (2011)
[3] C. Schmidt, M. Brechtelsbauer, F. Rein, C Fuchs OSIRIS Payload for DLR’s BiROS Satellite. Inter-
national Conference on Space Optical Systems and Applications, Kobe (2014)
[4] C. Raschke, T. Terzibaschian, W. Halle High Agility Demonstration with a New Actuator System by
Small Satellite BIROS. 9th Airtec 2014, Frankfurt/Main (2014)
[5] G. Gaias, J.-S. Ardaens Design challenges and safety concept for the AVANTI experiment. Acta As-
tronautica, vol. 123, pp. 409-419 (2016)
[6] CppUnit – C++ port of JUnit. https://sourceforge.net/projects/cppunit/files/cppunit/ (04.2017)
[7] A Component-Based Middleware for a Reliable Distributed and Reconfigurable Spacecraft Onboard
Computer. Peng Ting et.al. In Proceedings of the IEEE Symposium on Reliable Distributed System, pp.
337-342. Budapest (2016)
[8] Lidar-Aided Camera Feature Tracking and Visual SLAM for Spacecraft Low-Orbit Navigation and
Planetary Landing. F. Andert, N. Amman, B. Maass. In Advances in Aerospace Guidance, Navigation
and Control. Springer International Publishing. pp. 605-623 (2015).
[9] A compact and robust diode laser system for atom interferometry on a sounding rocket. V. Schkolnik
et.al. In Applied Physics B (2016) 122:217. Springer-Verlag.
[10] Food Production in Space – Operating a Greenhouse in Low Earth Orbit. D. Schulz, C. Philpot, G.
Morfil, B. Klein, and T. Beck. Space Ops 2016. Daejeon (2016)
[11] Attitude Control System of the Eu:CROPIS Mission. A. Heidecker, K. Takahiro, O. Maibaum, and
M. Hölzel. 65th International Astronautical Congress, Toronto 29.09-03.10.2014. International Astronau-
tical Federation (2014)

https://sourceforge.net/projects/cppunit/files/cppunit/

