
SPARTAN: A Novel Pseudospectral Algorithm
for Entry, Descent, and Landing Analysis

Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

Abstract In the last decades the theoretical development of more and more re-
fined direct methods, together with a new generation of CPUs, led to a significant
improvement of numerical approaches for solving optimal-control problems. One
of the most promising class of methods is based on Pseudospectral Optimal Con-
trol. These methods not only provide an efficient algorithm to solve optimal-control
problems, but also define a theoretical framework for linking the discrete numerical
solution to the analytical one in virtue of the covector-mapping theorem. However,
several aspects in their implementation can be refined. In this framework SPARTAN,
the first European tool based on flipped Radau pseudospectral methods, has been
developed. The tool, and the method behind it include two novel aspects. First, the
discretized problem is automatically scaled with a novel technique, called Projected-
Rows Jacobian Normalization. This avoids ill-conditioned problems, which could
lead to non-reliable solutions. Second, the structure of the Jacobian matrix is ex-
ploited, and the dual-number theory is used for its computation. This yields faster
and more accurate solutions, since the associated Jacobian matrix computed in this
way is exact. Two concrete examples show the validity of the proposed approach,
and the quality of the results obtained with SPARTAN.

1 Introduction

In the last decades the theoretical development of more refined direct methods, to-
gether with a new generation of CPUs, led to a significant improvement of numer-
ical approaches for solving optimal-control problems. One of the most promising
class of methods is based on Pseudospectral (PS) Optimal Control, originally formu-
lated by Ross et al. [13]. These methods transform the original infinite-dimensional
problem, that is, the continuous Bolza problem, into a finite-dimensional, discrete

Marco Sagliano
German Aerospace Center, Robert Hooke Str. 7, Bremen, Germany e-mail: marco.sagliano@dlr.de

1

2 Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

Nonlinear Programming (NLP) problem, which can be solved with one of the well-
known off-the-shelf solvers, like Snopt [7] and Ipopt [17]. The discrete solution
can be later converted into a continuous form by using Lagrange polynomials. Sev-
eral tools implementing PS methods, have been developed, among others DIDO
[4]. However, even if performing excellent, this tool requires ad-hoc manual scaling
for the problems analyzed, which turns into a large time-consuming process when
done by hand, and to the risk of numerical issues if ignored. Alternatively, Rao et
al. [12] proposed a self-scaling method, based on the so-called Jacobian Rows Nor-
malization (JRN) scheme. However, one can see that this scaling method, although
properly working, is not optimal, as requires multiple computations of the Jaco-
bian matrix associated with the problem, and at the same time does not offer the
largest reduction of the condition number, here taken as measure of the numerical
conditioning of the problem to be solved. In SPARTAN (Shefex-3 Pseudospectral
Algorithm for Reentry Trajectory ANalysis) a second self-scaling method, based on
the so-called Projected-Jacobian Rows Normalization (PJRN) [14] is implemented.

Another important aspect, related with the solution of the finite NLP problem,
is the computation of the Jacobian. In fact, one can see that the exploitation of the
Jacobian structure leads to a sum of three contributions, which can be computed
exactly, and provides computational advantages. The overall result is a state-of-
the-art pseudospectral method, which is a valid choice for performing preliminary
analyses of entry, descent, and landing scenarios, and that can be easily used to
rapidly prototype a solution for complex, nonlinear problems, as it will be shown
in this paper. This work is structured as follows: in Sec. 2 the general optimal-
control problem we deal with is briefly introduced, while pseudspectral methods,
and specifically the flipped-radau PS method, are described in Sec. 3. The proposed
improvements on PS methods are fully described in Secs. 4 and 5. Specifically, in
Sec. 4 the projected jacobian rows normalization (PJRN) is introduced, while the
systematic hybrid Jacobian computation, together with the dual number theory, is
explained in Sec. 5. Numerical results obtained for the Space Shuttle entry guidance
problem, and the JAXA’s Trojan mission-based asteroid descent and landing are
shown in Sec. 6. Finally, in Sec. 7 some conclusions are drawn.

2 Optimal Control Problem

There are several approaches for the generation of reference trajectories. Some
methods exploit the structure of the specific problems we deal with. Often, they
require simplifications to make the problem mathematically tractable, and there-
fore generate solutions valid under given hypotheses. A different approach, which
is gaining popularity, and is helped by the development of the computational capa-
bilities of modern CPUs is the representation of the trajectory generation problem as
an optimal-control problem. This means we are looking for solutions minimizing (or
maximizing) a given criterion, and satisfying at the same time several constraints,
which can be differential (e.g., the equations of motion of a spacecraft) and / or al-

SPARTAN: A Novel Pseudospectral Algorithm for EDL Analysis 3

gebraic (e.g., the maximum heat-flux that a vehicle can tolerate). The standard form
for representing optimal-control problems is the so-called Bolza problem. Given a
state vector x(t) ∈ Rns , a control vector u(t) ∈ Rnc , the scalar functions Φ(t,x,u)
andΨ(x,u), and the vector g(t,x,u)∈Rnp we can formulate the problem as follows.

Minimize (maximize) the cost function J

J = Φ
[
t f ,x

(
t f
)
,u
(
t f
)]

+
∫ t f

t0
Ψ [x(t),u(t)]dt (1)

subject to the differential equations

ẋ = f(t,x,u) (2)

and to the path constraints
gL ≤ g(x,u)≤ gU (3)

The first term in the cost function (1) takes the name of Mayer term, and represents
punctual constraints (e.g., the minimization of a distance according to a given met-
ric), while the argument of the integral is called the Lagrange term and is used to
maximize or minimize variables over the entire mission (e.g., the heat load obtained
by integrating the heat-flux over time). Moreover, since we deal with physical sys-
tems, the problem has usually bounded states and controls, that is, x(t) and u(t) are
compact in Rns and Rnc , respectively.

xL ≤ x(t)≤ xU (4)

uL ≤ u(t)≤ uU (5)

Equations (1)-(5) represent a generic continuous optimal control problem. In the
next section we will see how this type of OCP can be transcribed by using Pseu-
dospectral methods.

3 Pseudospectral Methods

Numerical methods for solving OCPs are divided in two major classes, namely, in-
direct methods and direct methods. Indirect methods are based on the Pontryagin
Maximum Principle, which leads to a multiple-point boundary-value problem. Di-
rect methods, instead, consist in the proper discretization of the OCP, (or transcrip-
tion), having as a result a finite-dimensional, nonlinear programming (NLP) prob-
lem. PS Methods represent a particular area of interest in the frame of the wider
class of direct methods. In detail, SPARTAN, an optimal-control package devel-
oped by the German Aerospace Center[16, 14, 9, 3] uses the global flipped Radau
Pseudospectral Method (fRPM), based on the flipped Legendre-Radau polynomials
[6, 15]. This choice allows for a straightforward definition of the initial conditions
of the problem. Moreover, the following properties are valid:

4 Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

• ”Spectral” (i.e., quasi-exponential) convergence in the case of a smooth problem
• Runge phenomenon is avoided
• Straightforward implementation
• Sparse structure of the associated NLP problem
• Mapping between the discrete costates of the associated NLP and the continu-

ous costates of the Optimal Control Problem (except for LPM) in virtue of the
Pseudospectral Covector Mapping Theorem [8].

In addition, the fRPM shows a smooth convergence of the costates. This is not al-
ways the case when other PS methods are employed [6]. Therefore, it is useful to
have a look at the fRPM and how it can be conveniently employed to solve OCPs,
focusing on the transcription process which defines the corresponding NLP. This
does not only involve the choice of the discrete nodes, but also determines the dis-
crete differential and integral operators needed to solve the differential and integral
parts of the associated OCP. Therefore, the transcription is a more general process
than the discretization. The minimum fundamental steps of a transcription are the
following:

• domain discretization
• discrete to continuous conversion of states and / or controls
• characterization of differential and integral operators

The first step is the domain discretization. In the frame of the fRPM, the time domain
discretization in n nodes uses the roots of the flipped Legendre-Radau polynomial,
defined as the combination of the Legendre polynomial of order n and n− 1 with
coefficient equal to 1 and -1 respectively.

Rn(τ) = Ln(τ)−Ln−1(τ) τ ∈ [−1,1] (6)

An example of roots associated with the Legendre-Radau polynomial of order 10 is
depicted in Fig. 1(a), together with the corresponding polynomial. 1 This discrete
representation of the domain is useful to reconstruct continuous representations of
the functions x(t) as:

x(t)∼=
n
∑

i=0
XiP(t), P(t) =

n
∏

k = 0
k 6= i

t−tk
ti−tk (7)

An example of this approximation is depicted in Fig. 1(b), where the function 1/(1+
25τ2) is reconstructed by using 25 fRPM nodes2.

1 Note that the Rn(−1) is not a root of the underlying polynomial, therefore it is not a collocation
point, although it is required for the evaluation of the polynomial. This choice is motivated by the
fact that over the left-open, right-closed interval (−1,+1] these polynomials are orthogonal.
2 Note that the approximation becomes more accurate when the number of nodes is increased.
This is the opposite behavior observed when uniform distributions of nodes, which suffer from the
aforementioned Runge Phenomenon, are employed.

SPARTAN: A Novel Pseudospectral Algorithm for EDL Analysis 5

-1 -0.5 0 0.5 1
=

-2

-1

0

1

2
roots of R

n
(=)

Legendre-Radau Polynomial

(a) Discrete domain.

-1 -0.5 0 0.5 1
=

0

0.2

0.4

0.6

0.8

1

F
(=

)

truth
interpolated solution
sample points

(b) Continuous approximation of a function.

-1 -0.5 0 0.5 1
=

-10

0

10

20

F
(=

)

True function
sampled points

-1 -0.5 0 0.5 1
=

-100

0

100

d
F

(=
)

/ d
=

True derivative
Pseudospectral Estimation

(c) Differential operator example.

-1 -0.5 0 0.5 1
=

0

1

2

3

F
(=

)

True Function
sampled points

-1 -0.5 0 0.5 1
=

0

2

4

s -11
 F

(=
)

d
=

0

3.3333

(d) Integral operator example.

Fig. 1 Transcription steps: domain discretization (a), continuous reconstruction of functions (b),
definition of differential (c) and integral (d) operators.

Once that the domain has been discretized, and the discrete-to-continuous con-
version of states has been defined, the corresponding differential operator needs to
be derived. This is required for the proper representation of the left-hand side of Eq.
(2). The differential operator will be in the form

Ẋi ∼= D ·Xi, , i = 1, ...n (8)

and the dynamics defined in Eq. (2) will be replaced by

D ·X =
t f − t0

2
f(t,X,U) (9)

where t0 and t f are the initial and final time, and the term t f−t0
2 is a scale factor

related to the transformation between the physical time domain t, and the pseu-
dospectral time domain τ ∈ (−1,1], given by the following affine transformations.

t = t f−t0
2 τ +

t f +t0
2 , τ = 2

t f−t0
t− t f +t0

t f−t0 (10)

In the case of the fRPM the matrix D has dimensions [n× (n+ 1)]. Again, this is
due to the fact that the states are defined for n+1 discrete points, while the controls

6 Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

U and the derivatives of the states f(t,X,U) are defined in the n collocation points.
This means that the initial state X0 is an input and not an output of the optimization,
and it is thus assumed to be known. If we look at Eq. (7), and taking the derivative
w.r.t. time, we get

ẋ(t)∼=
d
dt

n

∑
i=0

XiP(t) =
n

∑
i=0

Xi
d
dt

Pi(t) (11)

as the nodal points are time-independent. The derivatives in Eq.(11) can be effi-
ciently computed with the Barycentric Lagrange Interpolation [10]. An example of
the differential operator is depicted in Fig. 1(c), where D is used to approximate the
derivative of a continuous function F(τ) = Ae−τ sin(ωτ) sampled in 25 collocation
nodes. It can be seen that the polynomial approximation fits the analytical deriva-
tive very well. In addition to the differential operator, we need an integral operator.
This operator is required as the cost function in Eq. (1) may contain the Lagrange
term, which needs a proper discretization. In that case the Gauss quadrature for-
mula is used [1]. This approach consists of replacing the continuous integral with
the discrete sum given by:∫ t f

t0
Ψ [t,x(t),u(t)]dt =

t f − t0
2

n

∑
i=1

wiΨ [Xi,Ui] (12)

It can be shown that Eq. (12) yields exact results for polynomials of order at most
equal to 2n− 1. Once again, the presence of the term t f−t0

2 is a consequence of
the mapping between pseudospectral and physical time domains described in the
relationships (10). For the fRPM the weights wi can be computed as

w = f lip(w̃) (13)

w̃i =

{
1

(1−τ j)2Ṗ2
n−1

, j ∈ [2, ...n]
2
n , j = 1

(14)

where the operator flip simply multiplies the input by a factor equal to−1, and sorts
the results in increasing order. To give a practical example the integral of the test
function F(τ) = 2τ + 2− τ2 has been computed. Results are then compared with
the analytical integral, and with the trapezoidal rule (Fig. 1(d)). Numerically, we get
exactly the analytical result, that is 3.3333, while the application of the trapezoidal
rule by using the same number of nodes gives 3.3298. Once that a good approxima-
tion of the differential and integral operators have been described, we are ready to
formulate the NLP problem which approximates the original OCP as follows:

Minimize (maximize) the cost function J, for n nodes, i = 1, . . . ,n:

J = Φ
[
t f ,X f ,U f

]
+

t f − t0
2

n

∑
i=1

wiΨ [Xi,Ui] (15)

subject to the nonlinear algebraic constraints

SPARTAN: A Novel Pseudospectral Algorithm for EDL Analysis 7

F = D ·X−
t f − t0

2
f(t,X,U) = 0 (16)

and to the path constraints

gL ≤G(Xi,Ui)≤ gU (17)

The discrete states and the controls are bounded, as in the continuous formulation.

xL ≤ Xi ≤ xU (18)

uL ≤ Ui ≤ uU (19)

This is the formal definition of the Nonlinear Programming Problem to solve. How-
ever, even if theoretically the problem could be solved, in practice further issues
arise. In particular, the numerical conditioning of the problem, the exploitation of
the Jacobian Matrix, and its computation play a major role in the quality of the
results and the speed of the computation.

4 Hybridization of Jacobian matrix

Let us now consider the general structure of the Jacobian matrix associated with the
NLP problem deriving from the application of fRPM, defined as follows.

Jac =

 ∇J
∇F
∇G

 (20)

The operator ∇ represents the vector of derivative w.r.t. the discrete state XNLP,
that needs to be defined. An inspection of the NLP problem represented by Eqs.
(15)-(19) suggests that this Jacobian matrix has a structure that can be exploited
by looking at its parts. This is the subject of this section. In the most general case,
considering ns states, nc controls, ng constraints, n collocation points and unknown
final time t f , the Jacobian Jac associated with the transcription of an autonomous
system of equations will be expressed as a matrix having the following dimensions

dim(Jac) = [n · (ns +ng)+1]× [(n+1) ·ns +n ·nc +1] . (21)

To maintain a consistency between the states and the controls associated with each
node, the following discrete state vector XNLP is proposed3.

XNLP =
{

X0 X1 U1 X2 U2 Xn Un t f
}T (22)

3 Remark 3: Note that the final element is represented by t f , in case the problem has finite open
time. If not this variable is removed from the vector XNLP.

8 Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

We can observe how the initial control U0 does not appear in Eq. (22). This is due to
the choice of the fRPM as transcription method instead of the traditional RPM. The
initial control indeed can be extrapolated once the NLP is solved. The Jacobian is by
definition the matrix representing the partial derivatives of a given set of functions
C(XNLP) (i.e., our NLP constraints), which include the cost function J, the dynamics
F = {f1, f2, ..., fn}, and, when defined, the constraints G = {g1,g2, ...,gn}, so we can
write

C(XNLP) =
{

J f1 f2 ... fn g1 g2 ... gn
}T (23)

and the corresponding Jacobian matrix is

J =

[
∂C

∂XNLP

]
=



∂J
∂X0

∂J
∂X1

∂J
∂U1

∂J
∂X2

∂J
∂U2

.. .. ∂J
∂Xn

∂J
∂Un

∂J
∂ t f

∂ f1
∂X0

∂ f1
∂X1

∂ f1
∂U1

∂ f1
∂X2

∂ f1
∂U2

.. .. ∂ f1
∂Xn

∂ f1
∂Un

∂ f1
∂ t f

∂ f2
∂X0

∂ f2
∂X1

∂ f2
∂U1

∂ f2
∂X2

∂ f2
∂U2

.. .. ∂ f2
∂Xn

∂ f2
∂Un

∂ f2
∂ t f

..

∂ fn
∂X0

∂ fn
∂X1

∂ fn
∂U1

∂ fn
∂X2

∂ fn
∂U2

.. .. ∂ fn
∂Xn

∂ fn
∂Un

∂ fn
∂ t f

∂g1
∂X0

∂g1
∂X1

∂g1
∂U1

∂g1
∂X2

∂g1
∂U2

.. .. ∂g1
∂Xn

∂g1
∂Un

∂g1
∂ t f

..

∂gn
∂X0

∂gn
∂X1

∂gn
∂U1

∂gn
∂X2

∂gn
∂U2

.. .. ∂gn
∂Xn

∂gn
∂Un

∂gn
∂ t f



(24)

This matrix can be computed numerically in different ways (e.g., analytically or with
the classical finite-differences schemes). However, these are not the best approaches
since they do not consider the theoretical knowledge contained in the definition
of the discrete operator D, nor do they take full advantage of the intrinsic sparsity
associated with the use of PSMs. Instead, we propose to express the Jacobian matrix
as sum of three different contributions.

Jac = JacPs +JacDu +JacT h (25)

We can now analyze each of these terms and describe how to compute them.

4.1 Pseudospectral Jacobian

This part of the Jacobian matrix is intrinsically related to the use of the fRPM. More
specifically, it can be seen as the contribution to the Jacobian and to the constraints
represented in Eq. (24) given by the use of the discrete differential matrix D. In the
frame of the discretization of the dynamics, it represents the term

D ·X (26)

SPARTAN: A Novel Pseudospectral Algorithm for EDL Analysis 9

From a pure algebraic point of view, the differential operator can be seen as a set
of linear combinations of the nodal values of each of the states. The Pseudospectral
Jacobian is entirely defined once the matrix D is computed and expanded. More
explicitly, it can be defined as follows

JacPs =


O1×[(n+1)·ns+n·nc+1]

D1,0 D1,n
.. O[n·(ns+ng)+1×1]

Dn,0 Dn,n
Ong×[(n+1)·ns+n·nc+1]

 (27)

where
Di, j = Di, j · Ins , i ∈ [1,n], j ∈ [0,n] (28)

and Ins is the identity matrix of dimension ns. The elements Di, j are the time deriva-
tive of the polynomials defined in Eq. (7), evaluated in the collocation nodes. The
Pseudospectral Jacobian can then be entirely computed just once, before the begin-
ning of the real optimization process. Moreover, the accuracy of its computation is a
consequence of how good the estimate of the roots of the Legendre-Radau Polyno-
mials is, and not of the errors given by the approximation due to the use of numerical
differentiation techniques.

4.2 Dual Jacobian

The Dual Jacobian refers to the cost function of Eq. (15), the right-hand side of
the differential equations of Eq. (16), and the path constraints of Eq. (17). This
contribution is computed by using the dual number theory, which will be briefly
described in the next section.

4.2.1 Dual Numbers

In linear algebra, the dual numbers extend the real numbers by adjoining one new
element ε with the property ε2 = 0 (ε is nilpotent). The collection of dual numbers
forms a particular two-dimensional commutative associative algebra over the real
numbers [5] . Every dual number has the form

z = a+bε (29)

with a and b uniquely determined real numbers and, in particular,

a = real(z), Real Part
b = dual(z), Dual Part

10 Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

Dual numbers extend the real numbers in a similar way to the complex numbers. In-
deed, as the dual numbers, the complex numbers adjoin a new element i, for which
i2 =−1, and every complex number has the form z = a+bi where a and b are real
numbers. The definition given in Eq. (29) relies on the idea that ε2 = 0 with ε 6= 0.
To implement the dual numbers, algebraic operations on these numbers should be
properly defined. It is important to underline that the dual number algebra is a non-
division algebra; given two dual numbers, division is possible only if the real part of
the divisor is different from zero. The dual numbers have been implemented in MAT-
LAB as a new class of numbers [3], using operator overloading. The class includes
definitions for standard algebraic operations, logical comparison operations, and
other more general functions such as the exponential or the trigonometric functions.
This class definition file allows a real-valued analysis code to be easily converted to
operate on dual numbers by just changing the variable type declarations, while the
structure of the code remains unchanged. The use of the dual numbers allows us to
compute exact first derivatives, as it will be explained in the next section.

4.2.2 Dual-Step Differentiation Method

The dual-step differentiation method uses the dual numbers to provide exact first
order derivatives. Consider the Taylor series of a function f (x) for x ∈R for a given
perturbation value a.

f (x+a) = f (x)+a f ′(x)+
1
2!

a2 f ′′(x)+
a3 f ′′′(x)

3!
+ (30)

If we assume that the perturbation a is the dual number

a = a1ε with ε
2 = 0 and ε 6= 0 (31)

we can expand in Taylor series around the center x the function f (x) by using a dual
step, so that a2 = 0, a3 = 0, . . . , and the Taylor series in Eq. (30) truncates exactly
at the first-derivative term, yielding the properties of the approximation that we are
seeking:

f (x+a) = f (x)+a1 f ′(x)ε. (32)

So, to get f ′(x) it is necessary to simply read off the ε component and divide by a1,
yielding the dual-step first derivative formula4.

f ′(x) =
Dual[f (x+a)]

a1
. (33)

4 From the inspection of Eq. (32) it is possible to observe that each function extended in the
dual plane hides its derivative in its dual part. Indeed, the dual-number algebra is such that, when
operations are carried out on the real part of the number, derivative information for those operations
is formed and stored in the non-real part of the number. The disadvantage is a larger computational
cost and, in addition, the need of working with analytical functions.

SPARTAN: A Novel Pseudospectral Algorithm for EDL Analysis 11

This formula clearly shows the advantages of the use of the dual-step differentiation
method over the central difference and the complex-step approximations. Indeed,
since the dual-step derivative approximation does not involve a difference operation
and no terms of the Taylor series are ignored, this formula is subject neither to trun-
cation error, nor to round-off error. There is no need to make the step size small
and the simplest choice is a1 = 1, which eliminates the need to divide by the step
size. Therefore, using the dual-step method, the error between numerical and ana-
lytical derivative (η = | f ′− f ′re f |/| f ′re f |) is machine zero regardless of the selected

step size, as illustrated in Fig. 2, where the derivative of the function 2e−t4
sin(t) is

computed by using central difference schemes with 3, 5 and 7 points (CD3, CD5,
CD7), complex-step (CS), and dual-step (DS). It is clear that the dual-step approach
provides exact results, even in presence of highly nonlinear functions. Indeed, con-

Stepsize
10-1510-1010-5100

|f'
(x

) nu
m

-f
'(x

) tr
ue

|

10-20

10-10

100

CD3
CD5
CD7
CS
DS

Fig. 2 Comparison of numerical methods for first-derivative computation of the function
2e−t4

sin(t).

sidering the central difference (CD) and the complex-step approximations, instead,
Fig. 2 shows that, as the stepsize decreases, the error decreases according to the or-
der of the truncation error of the method. However, after a certain value the error for
the central difference approximations tends to grow, while the error for the complex-
step approximation continuously decreases. This shows the effect of the round-off
error, which affects the central differences but not the first derivative complex-step
approximation. While central differences and complex-step provide approximated
derivatives for these terms, the use of Dual Number Theory permits permits the
computation of zero-epsilon derivatives. The only limit for the use of this technique
is the same associated with the use of the complex-step, that is, the need to have
analytical functions, i.e., no look-up tables are allowed.

12 Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

4.2.3 Dual-number based Jacobian

In case we are dealing with analytical functions, it is possible to compute their con-
tribution to the Jacobian matrix (i.e., considering the matrix D equal to 0), excluding
the last column,

JacDu =

[
∂C

∂XNLP

]
D=0

=−kt



∂J
∂X1

∂J
∂U1

∂J
∂X2

∂J
∂U2

.. .. ∂J
∂Xn

∂J
∂Un

∂ f1
∂X1

∂ f1
∂U1

∂ f1
∂X2

∂ f1
∂U2

.. ..
∂ f1
∂Xn

∂ f1
∂Un

∂ f2
∂X1

∂ f2
∂U1

∂ f2
∂X2

∂ f2
∂U2

.. ..
∂ f2
∂Xn

∂ f2
∂Un

O[n·(ns+ng)+1×ns] O[n·(ns+ng)+1×1]

∂ fn
∂X1

∂ fn
∂U1

∂ fn
∂X2

∂ fn
∂U2

.. .. ∂ fn
∂Xn

∂ fn
∂Un

∂g1
∂X1

∂g1
∂U1

∂g1
∂X2

∂g1
∂U2

.. ..
∂g1
∂Xn

∂g1
∂Un

..

∂gn
∂X1

∂gn
∂U1

∂gn
∂X2

∂gn
∂U2

.. ..
∂gn
∂Xn

∂gn
∂Un



(34)

where kt is equal to the time scale factor defined as t f−t0
2 for the elements related to

the functions f, and equal to 1 for all the other terms of JacDu. Each of the elements
of JacDu can be rewritten in dual form. We can therefore write

JacDu =−ktDual [C(XNLP + ε)]D=0 (35)

The differentiation operation becomes then an evaluation of the single elements of
C(XNLP) in dual sense, and the extraction of the dual part.

4.3 Theoretical Jacobian

Finally, a third contribution, the Theoretical Jacobian, arises in case we deal with
problems having an open final time. In this case the NLP state vector XNLP will
have a further variable, that is t f . The Jacobian associated with this term is simply
proportional to the output of the continuous functions by a factor t f−t0

2 introduced
in virtue of the mapping between physical and pseudospectral time of Eq. (10), the
Jacobian associated with this term is proportional to the output of the continuous
functions in virtue of the time factor t f−t0

2 .

JacT h =−
1
2


0
f1
f2

O[n·(ns+ng)+1]×[(n+1)·ns+n·nc] ..

fn
On·ng×1

 (36)

SPARTAN: A Novel Pseudospectral Algorithm for EDL Analysis 13

The hybridization of the Jacobian matrix makes the computation of the NLP prob-
lems solution more accurate, as no approximations are taken, except those asso-
ciated with the transcription process. Hence, significant CPU time is saved when
solving the NLP problem, as we will see.

5 Automatic scaling: Projected Jacobian Rows Normalization

Let us reformulate the NLP of Eqs. (15)-(19). If we group the differential constraints
fi, and the algebraic constraints gi, i = 1, . . . ,n as

F =
{

f1 f2 ... fn
}T

, G =
{

g1 g2 ... gn
}T (37)

the core of the NLP can be rewritten in the following compact form as function of
the vector X5.

min J(X),
s.t. F(X) = 0

gL ≤G(X)≤ gU
XL ≤ X≤ XU

(38)

A measure of the quality of a scaling method is the condition number (C.N.) of the
Jacobian of the NLP (38), which in the general case is a rectangular matrix given
by Eq.(20). Since the Jacobian matrix is involved in the KKT conditions required
to solve the NLP, a well-conditioned Jacobian is essential for solving the problem
defined in Eq. (38) without excessive rounding errors. This implies that the scaling
is not a secondary aspect in the transcription of the optimal control problems. Note
that the effective scaling involves two steps: the scaling of the states X, which will
be transformed into scaled states X̃, and the scaling of the constraints F, transformed
into the corresponding F̃. Their combination will result in the scaling of the Jacobian
matrix.

5.1 Scaling of NLP States

The states X of the NLP problem are scaled using the standard linear transformation
given in [2], regardless of the NLP scaling method that we use. Specifically, the
scaled state X̃ is given by

X̃ = Kx ·X+bx (39)

where Kx is a diagonal matrix, and bx is a vector having the same dimensions as X.
Since we always deal with bounded states and control, the diagonal elements of the
matrices Kx and bx are defined as:

5 here X is meant to be the one defined in Eq. (22), with the subscript dropped to avoid heavy
notation.

14 Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

Kxi,i =
1

XUi−XLi
, bxi =− XLi

XUi−XLi
(40)

Note that the transformation (40) yields scaled states X̃ which always lie in the
interval [0,1]. In case of unbounded states, artificial upper and lower boundaries are
usually introduced [2].

5.2 Constraints scaling - state of the art

Linear scaling techniques use a scaling of the form (41).

F̃ = Kf ·F, G̃ = Kg ·G (41)

Kf and Kg are diagonal matrices. The isoscaling (IS) method is one such technique
whereby the constraints F are scaled exactly like the states, that is,

Kf = Kx,

where Kx is given by Eq. (40), see [2]-[11]. Note that isoscaling does not help in
scaling the constraints G. A possible refinement of this approach has been suggested
by Rao [12], who uses randomly sampled points around the vector X, and computes
the mean of the norms of the Jacobian rows of F and G instead of the norm of
the Jacobian rows. Unfortunately, this technique significantly increases the CPU
time needed to compute the scaling coefficients, since the Jacobian matrix must be
evaluated many more times. Next, we introduce a simple linear scaling technique
which does not require additional Jacobian matrix evaluations, and hence is less
computationally expensive.

5.3 Projected Jacobian Rows Normalization

Isoscaling bases the scaling of the constraints solely on the scaling of the states.
In other words, it does not take into account the relationship between the states and
the constraints, which is represented in linearized form by the Jacobian matrix. Con-
versely, Jacobian rows normalization (JRN) only considers this relationship, without
involving the states’ normalization in the process. Specifically, in the JRN technique,
the diagonal elements of Kf and Kg are given by

Kfi,i = mean
k

1
|∇F|i

, Kgi,i = mean
k

1
|∇G|i (42)

where k represents the number of random samples generated to compute the scaling
factors. The projected Jacobian rows normalization (PJRN) technique which we

SPARTAN: A Novel Pseudospectral Algorithm for EDL Analysis 15

propose considers both the states and the constraints’ magnitude. Specifically, in
the PJRN, the diagonal elements of Kf and Kg are given by

Kfi,i =
1∣∣∇F ·K−1

x
∣∣
i

, Kgi,i =
1∣∣∇G ·K−1

x
∣∣
i

(43)

and this scaling generally leads to a better-conditioned Jacobian matrix, and to more
uniformly distributed singular values. The Jacobian of the PJRN-scaled NLP can be
therefore computed as

˜Jac =


∇̃J̃
∇̃F̃
∇̃G̃

=


KJ ·∇J ·K−1

x
KF ·∇F ·K−1

x
KG ·∇G ·K−1

x

 (44)

where KJ is a parameter which normalizes the cost function J. Kx is given by using
Eq. (40), while Kf and Kg are computed by using Eq. (42). Note that KJ can be
either manually selected, or automatically computed by means of the PJRN, which
is the choice adopted in this work. This completes the self-scaling procedure. We can
observe the effects of the hybridization of the Jacobian matrix, and the self-scaling
procedure in two significant examples, illustrated in the next section.

6 Numerical Examples

Two examples are proposed to show the application of the proposed improved pseu-
dospectral method for EDL applications, specifically. In the first example the op-
timal Space Shuttle entry guidance problem is solved. In the second example the
asteroid descent and landing problem for a soft touchdown on an asteroid is shown6.

6.1 Entry: Space Shuttle Guidance

This problem deals with the maximization of the crossrange (corresponding in this
case to the latitude) of the Space Shuttle during the atmospheric entry phase, while
satisfying the maximum heat-rate limit, and final conditions on altitude, velocity
and flight-path angle. A full description of the problem can be found in [2]. Results
are depicted in Figs. 3(a)-3(c).

It can be observed that the results are fully consistent with the ones generated
by Betts. The combined use of the hybrid jacobian and scaling techniques leads to
accurate and faster results with respect to the standard methods. Indeed, the solution

6 The tests are repeated three times for a better characterization of the obtained CPU times.

16 Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

Time (s)
0 1000 2000

h
(f

t)

#105

0.5

1

1.5

2

2.5

3

Time (s)
0 1000 2000

3
 (

de
g)

0

20

40

60

80

100

Time (s)
0 1000 2000

?
 (

de
g)

0

10

20

30

40

Time (s)
0 1000 2000

V
 (

ft/
s)

#104

0

1

2

3

Time (s)
0 1000 2000

.
 (

de
g)

-6

-4

-2

0

2

Time (s)
0 1000 2000

A
 (

de
g)

0

20

40

60

80

100

(a) States.

Time (s)
0 500 1000 1500 2000

,
 (

de
g)

15

20

25

30

Time (s)
0 500 1000 1500 2000

<
 (

de
g)

-100

-50

0

(b) Controls.
Time (s)

0 500 1000 1500 2000

q
(B

T
U

/(
ft

2
 s

))

0

10

20

30

40

50

60

70

80

(c) Heat flux.

Fig. 3 Space Shuttle entry guidance example.

is generated in 8.81 s and 9.72 s when JRN and PJRN techniques are used in com-
parison to 51 s and 54 s respectively, when the non-hybrid Jacobian is employed.

The differences becomes larger when IPOPT is used (73 s and 155 s when the
JRN and PJRN with the hybrid jacobian are used, respectively), versus 817 s and
570 s when no knowledge of the Jacobian matrix is exploited. The use of scaling
techniques improves the initial conditioning of the problem by several orders of
magnitude (the C.N. goes from 7.468 ·109 to 418 for the PJRN and 24813 when the
JRN is adopted).

SPARTAN: A Novel Pseudospectral Algorithm for EDL Analysis 17

6.2 Descent and Landing: JAXA-DLR Trojan Mission

This problem deals with the descent and landing of a small lander, in the frame
of a JAXA-DLR joint-study for the design of a mission targeting Jupiter’s Trojan
asteroids. The objective is the maximization of the final mass, while having a syn-
chronized, soft touchdown of the lander on the asteroid surface’s nadir point at the
beginning of the descent phase. To guarantee the synchronization, together with ra-
dial position r, radial and tangential components of velocity Vr and Vt , the motion is
described by using the relative angle θast w.r.t. the landing point, fixed on the surface
of the asteroid. The in-plane dynamics is therefore described as

ṙ =Vr

θ̇ast =
Vt

r
−ωast

V̇r =
V 2

t

r
− µast

r2 +
Tr

m

V̇t =−
VrVt

r
+

Tt

m

ṁ =
‖Tr‖+‖Tt‖

Ispg0

(45)

with the asteroid having a gravitational parameter µast equal to 3.774 106 m3/2, and
a radius of 15 km. The initial altitude w.r.t. the surface is 1 km. The final desired al-
titude is 5 m, without side-velocity w.r.t. the landing point. The lander initial mass is
100 kg with a specific impulse of 68 s. Limits equal to 3 N for the radial component
of the thrust and 1.5 for the tangential one are also taken into account.

|Tr| ≤ 3 N
|Tt | ≤ 1.5 N

(46)

Results are depicted in Figs. 4(a)-4(c), where states, controls, and the trajectory
are shown.

One can see that the solution follows a bang-bang structure, as expected. At the
end of the mission the relative angle θast is equal to 0, and the tangential velocity
Vt becomes exactly equal to the one of the landing point on the asteroid surface.
Radially, the gravity is initially exploited to accelerate the lander towards the aster-
oid. The thrusters are only used to decelerate the lander during the second-half of
the descent, to guarantee a soft touchdown. This solution maximizes the remaining
propellant at the cost of larger time, equal to 521 s. The trajectory confirms that the
lander smoothly reaches the prescribed final point. In terms of numerical perfor-
mance, if we look at the solution having 50 nodes the use of the PJRN permits to
reduce the condition number to 170.5 (while the unscaled condition number is equal
to 19400.1 and the JRN generates a condition number equal to 2564.1. Therefore,
the condition number is improved by more than one order of magnitude with respect

18 Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

Time (s)
0 500

r
(m

)

#104

1.5

1.55

1.6

Time (s)
0 500

"
3
 (

de
g)

-1

-0.5

0

Time (s)
0 500

V
r (

m
/s

)

-4

-3

-2

-1

0

Time (s)
0 500

V
t (

m
/s

)

0

1

2

3

4

Time (s)
0 500

[k
g]

98

98.5

99

99.5

100

(a) States.

Time (s)
0 100 200 300 400 500 600

T
r (

N
)

0

2

4

Time (s)
0 100 200 300 400 500 600

T
t (

N
)

-2

0

2

(b) Controls.
y (m) #104

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

x
(m

)

-500

0

500

1000

1500

2000

2500

Trajectory
Asteroid Surface

(c) Trajectory.

Fig. 4 Trojan asteroid descent and landing example.

to standard literature methods. The CPU time required to compute a valid solution
by using the hybrid Jacobian structure is equal to 43.3 s (PJRN) and 34.7 s (JRN).
If we do not exploit the Jacobian structure the required time to compute an optimal
solution is equal to 331.4 s (PJRN) and 179.1 s (JRN), respectively. In this case the
PJRN does not make so much difference with respect to the JRN, while the hybrid
Jacobian computation is highly effective in reducing the required CPU time. Note
that when the Jacobian structure is exploited the time is dramatically reduced even
if the dual-number class, involving more operations, is invoked.

SPARTAN: A Novel Pseudospectral Algorithm for EDL Analysis 19

7 Conclusions

In this paper we have given an overview on pseudospectral methods, together with
some key-improvements with respect to the standard transcription described in lit-
erature, which include an exploitation of the Jacobian matrix, exactly computed by
using the dual-number theory, and a self-scaling approach, which ensures a bet-
ter numerical conditioning of the problem we want to solve. The proposed tech-
niques have been implemented in SPARTAN, the first European tool implementing
the flipped-Radau pseudospectral method. The method, and the tool can be used for
preliminary analysis of complex, nonlinear problems involving entry, descent, and
landing applications. As examples an entry mission, based on the Space Shuttle en-
try guidance, and a descent and landing mission for a soft-touchdown on a Trojan
asteroid, have been implemented.

Results show the validity of SPARTAN as state-of-the-art tool for entry, descent,
and landing guidance analysis, leading to reduced CPU time with respect to standard
methods, and a significant improvement of the numerical conditioning of the prob-
lems, here measured by the condition number. Its generic structure encourages the
use for further scenarios and problems involving complex dynamics and multiple
constraints, where no analytical solutions are available, e.g., lunar landing missions
or mars descent phases. Future work will include the extension of the method to deal
with uncertainties to compute stochastic optimal trajectories, and the implementa-
tion of new cases (e.g., low-thrust interplanetary maneuvers) to explore the use of
the tool in different scenarios.

References

[1] M. Abramovitz and I. A. Stegun. Handbook of Mathematical Functions. Dover
Publications, 1695.

[2] J. T. Betts. Practical Methods for Optimal Control and Estimation Using Non-
linear Programming, 2nd ed. SIAM, Philadelphia, 2010.

[3] V. D’Onofrio. Implementation of advanced differentiation methods for opti-
mal trajectory computation. Master’s thesis, University of Naples Federico II,
Naples, 2015.

[4] Elissar. Description of dido optimal control software, June 2015. URL
http://www.elissarglobal.com/.

[5] J. Fike and J.Alonso. The development of hyper-dual numbes for exact second-
derivative calculations. In 49th AIAA Aerospace Sciences meeting including
the New Horizons Forum and Aerospace Exposition , Orlando, USA, 2011,
number AIAA paper 2011-886.

[6] D. Garg. Advances in Global Pseudospectral Methods for Optimal Control.
PhD thesis, University of Florida, Gainesville, 2011.

20 Marco Sagliano, Stephan Theil, Vincenzo D’Onofrio, Michiel Bergsma

[7] P. E. Gill, W. Murray, and M. A. Saunders. User’s Guide for SNOPT Version 7:
Software for Large-Scale Nonlinear Programming. University of California,
San Diego, USA, 2008.

[8] Q. Gong, I. M. Ross, W. Kang, and F. Fahroo. Connections between the covec-
tor mapping theorem and convergence of pseudospectral methods for optimal
control. Comput Optim Appl, 2008, 2008. doi: 10.1007/s10589-007-9102-4.

[9] L. Huneker, M. Sagliano, and Y.E. Arslantas. Spartan: An improved global
pseudospectral algorithm for high-fidelity entry-descent-landing guidance
analysis. In 30th International Symposium on Space Technology and Science,
Kobe, Japan, 2015, 2015.

[10] J. R. R. Martins, P. Sturdza, and J. J. Alonso. The complex-step derivative
approximation. ACM Transactions on Mathematical Software, Vol. 29, No. 3,
September 2003, Pages 245262, 2003. doi: 10.1145/838250.838251.

[11] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New
York, 1999.

[12] A. V. Rao. A survey of numerical methods for optimal control. In AAS/AIAA
Astrodynamics Specialist Conference, AAS Paper 09-334, Pittsburgh, PA, Au-
gust 10 - 13, 2009.

[13] I. M. Ross, P. Sekhavat, A. Fleming, and Q. Gong. Pseudospectral feed-
back control: Foundations, examples and experimental results. In AIAA
Guidance, Navigation, and Control Conference, Keystone, USA,, 2006. doi:
10.2514/6.2006-6354.

[14] M. Sagliano. Performance analysis of linear and nonlinear techniques for au-
tomatic scaling of discretized control problems. Operations Research Letters,
Vol.42 Issue 3, May 2014, pp. 213-216, 2014. doi: 10.1016/j.orl.2014.03.003.

[15] M. Sagliano. Development of a Novel Algorithm for High Perfor-
mance Reentry Guidance. phdthesis, 2016. URL http://elib.suub.uni-
bremen.de/edocs/00105082-1.pdf.

[16] M. Sagliano and S. Theil. Hybrid jacobian computation for fast optimal tra-
jectories generation. In AIAA Guidance, Navigation, and Control Conference,
Boston, USA,, 2013. doi: 10.2514/6.2013-4554.

[17] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter
linesearch algorithm for large-scale nonlinear programming. Math. Program.
106(1) , Springer-Verlag, New York, 2006, 2006.

