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1 Introduction

Increasingly sophisticated algorithms implemented ommamous agents/robots
with massive computational capabilities have enabledsgleomplex tasks in un-
certain environments, such as mapping of disasters andhsaad-rescue opera-
tions. For agents to explore and interact with the enviramrieis important that
they have a coherent view of this environment and their prstwithin it (see,
for example, [1, 2] and references therein). Such situatiamareness is typically
achieved through simultaneous localisation and mappih@g¥§ [3] and locali-
sation using heterogeneous sensor fusion [4]. While rebear situational aware-
ness has traditionally focused on improving the localisaticcuracy, the focus has
now shifted to localisation methods that have knowledg®ofputational complex-
ity limitations of the agents, energy and communicationstints as well as the
agent’s higher-level task [5, 6]; for instance, a higheeldask may be the naviga-
tion of the robot in the environmentfrom its current positio its final position. This
chapter considers the problem of how position uncertamtyilti-agent systems
affects control and communication, and how positioning barimproved taking
into account the underlying limitations of such systems.

To support positioning, a robot is typically equipped witplarality of sensors
providing position information. Since the usage of thesesses consumes energy,
selection of which sensor(s) to use when is important. $hissor selectioprob-
lem refers to the agent choosing a subset out of all availsdahsors, in order to
optimise an objective (e.g., trace or determinant of theestatimation error co-
variance [7, 8], an expected utility defined by Bayes risk f#]a measure of in-
formation such as conditional entropy [10]). The objecthan be optimized (i)
over a single timestep [7-9, 11] or (ii) over a prediction window [10, 12—-14j. |
the first class of approaches, the problems made tempoegigrable, leading to
efficient solutions [7-9, 11]. In the more general second<laf approaches, the
problems are temporally inherently inseparable, leadingxponential complex-
ity in the prediction horizon. This complexity is reduceddhgh appropriate tech-
niques [10, 12-14]. These techniques generally focus oimrigimg a function of
the state error covariance, which is not always relevanb&ttery-constrained de-
vices. For such devices, minimising energy consumptiondeermeaningful, while
ensuring a certain positioning quality.

While sensor selection can be performed on a per-agent, lzagats can also
cooperateo solve tasks by combining agents with heterogeneous sgrsah as
formation control [15]. Accomplishing such tasks reliesameurate and fresh loca-
tion information. Existing approaches [16—20] assumegmtiiosition information,
which may not be available in reality. The limited range of inchor signals can
be countered by cooperation among agents, in order to dieiethe position of all
agents. Cooperative positioning based on belief propagaind message passing
algorithms was presented in [21]. This was extended by [@&punting for the
overhead and cost related to accessing the radio channefitmg-alivision multi-
ple access protocol using an orthogonal-frequency dwisioltiplexing (OFDM)
signal. The Cramér-Rao bound (CRB) for cooperative parsitig accuracy intro-
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duced in [23] provides the fundamental limit of this apprtoatherefore, formation
control should account for localization errors [24], whi@m be improved through
active information seeking [25, 26].

Finally, when performing a task, agents need to know thein alwsolute loca-
tion, both for control and to maintain connectivity with eaather over the wireless
channel. Connectivity can be improved throygediction of channel gainf27].
The channel comprises three components: deterministiclpas, shadowing, and
small-scale fading [28]. The latter two components are gdlyemodeled as ran-
dom variables. For typical wave-lengths, small-scalerfgdiecorrelates over a few
centimetres, whereas shadowing decorrelates over 50—t@duoors [28] and 1-5
m indoors [29, 30], based on standard shadowing correlatimtiels [31, 32]. For a
multi-agent system, [33] modeled shadowing through a aplatss field. Channel
prediction was studied in [5], which proposed a Gaussiandd®(GP) framework,
and [34], which considered the impact of the channel parars@in the prediction
variance. An assumption in [5, 33, 34] was the availabilityperfect location in-
formation. This was partially addressed in [35], which exted [34] to determine
the impact of localisation errors on channel predictioncatmon uncertainty at the
receiver but not the transmitter side was explicitly acdedrfor in [36].

This chapter covers recent progress in the above-mentianmsed: sensor selec-
tion, cooperation, and channel prediction. In particullae, rest of the chapter is
organised as follows. We first describe several fundameatatepts in the areas
on communication, control, and localisation in Section 2 then consider the in-
teraction between control and localisation in Section 3panticular, Section 3.1
considers the sensor selection problem, where the aim isd@fpath to a goal with
minimum sensing cost, while maintaining a certain locailisaquality. Section 3.2
focuses on a cooperative scenario, where again a goal mashieved, but agents
cooperate to maintain a certain localisation quality,eathan relying on a variety
of sensors. In Section 4, the problem of channel predictiwsteun location uncer-
tainty will be tackled. These problems highlight the neech&tintain good position
quality in Multi-Agent Systems (MAS).

Link to MULTI-POS

The work described in this chapter was carried out during32@015 in the context
of the FP7 project MULTI-PQOS, a Marie Curie Internationadifiing Network on
multi-technology positioning. In particular, the work dteaith so-called cognitive
methods for positioning and communication, where cognitefers to the property
of the positioning and communication sub-systems to notinsidered as separate,
but rather as closely interacting entities. Part of thiskweas performed in collab-
oration with the German Aerospace Center, and is based gouthiesshed research
papers [37-39].
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2 Localisation for Communication and Control

This section briefly highlights the use of localisation femmunication and con-
trol of MAS. We first describe a standard communication madebection 2.1,
followed by a generic optimal control problem in Section,22d a metric to assess
localisation algorithms in Section 2.3.

2.1 Inter-agent Communication

In MAS, the communication between agents occurs over thelegs medium. The
channel power between a transmitter (TX) and a receiver (R locationgx €
RP andprx € RP, respectively, wher® is the dimensionality of the space, can
be modelled as a spatially correlated random process. Asguoommunication
averages out small-scale fading, either in time (over a tivimelow) or frequency
(average power over a large frequency band), the receigedigbower in dBm can
be expressed as [28]

lPTx — Prx||

d +W(ptx,Prx), (1)
b

Prx(PTx,PRrRx) = Prx +Lo—10n logo
where the transmitted power Bx, Lo comprises antenna and propagation gains,
do is a reference distance (here 1 m)js the path-loss exponent. Shadowing (in
the dB domain) is modelled as a zero-mean Gaussian randaregzaith a given
spatial correlation [31, 40] and exhibiting channel recgity (i.e., ¥(prx,Prx)
=W(prx,pTx)). Provided there are no significant changes in the enviromntiee
received power is thus largely predictable and dependetii@mabsolute positions
of the TX and RX. Hence, in order to predict the power, the fioce of the TX and
RX should be known.

2.2 Multi-agent Control

Control of MAS usually involves the design of optimal constrategies that should
be distributed, relying on local information only. Thesdioyl control strategies
emerge from having the interconnected agents to optimisebgactive function
f: 2 x%—R,ie.,

minimize f(x,u)
uew (2)
subject tox = h(xg, u,t),

wherex € 2" comprises the state of the agents (e.g., position and veloiomulti-
ple agents over a certain time windowy,represents the initial state,denotes the
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control input (e.g., an acceleration), belonging to somedfizetZ/, andh(-) repre-
sents the dynamics. From the above formulation, it is cleargolving the problem
in a decentralised fashion, where agents find the optimaitisal without a cen-
tral coordinator, information exchange between the imtenected agents regarding
their state (including the position) is necessary.

2.3 Bounding Uncertainty of Estimators: The Craar-Rao Bound

The Cramér-Rao Bound (CRB) is a lower bound on the estimatioor variance
of any unbiased estimator [23]. Due to its computationapdicity, the CRB is an
attractive tool for system verification [22] and adaptivgalthm design [41]. The
CRB is expressed as

E[8% —x¥|?] = CREXY] = tr((FX!) ™), 3)

wherex® is the estimate of®) andF{ is the so-called Fisher information matrix
(FIM) with respect tax at time-stefk. The FIM is defined as

P = By 0 | X Dxlogp(y® )| @

wherey® is the measurement associated with skéte

3 Impact of Location Uncertainty on Mission Goals

In this section, we will focus on the connection between lisation and control
of agents towards a goal. Two different problems will be désed: the first one
deals with selecting paths that minimize a long-term costilerthe second one
deals with progressively moving towards a goal, while algtimizing positioning

quality. Both of these problems will rely on the conceptsvesly introduced:

optimization for the control actions, and FIM for the pawiting quality.

3.1 Limiting Location Uncertainty

3.1.1 Problem Formulation

Exemplified in Fig. 1, a mobile agent with an estimated stasitpn py aims to
reach a goal positiopgeal € RR? in discrete time steps. The agent is equipped with
M sensors providing location information, with the use ofssem having a cost
(e.g., power consumptio), > 0. The agent can usk> 1 different paths towards
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Fig. 1 A scenario with two paths A and B from a start positipn= [7,6]" to a goal position

Pgoal = [43,45. The objective of the agent is to determine which path hasotivest cost, while
ensuring a certain positioning quality.

the goal position, two of which are shown in Fig. 1. At eacheiiand along each
possible path, the agent can use at most one sensor. Eadiggatitertain inherent
cost associated with its length (agent movement cost). Baé @f the agent is to
find the least expensive path to the goal, while providingtagequality of position
information.

We will consider the agent’s position as its state, with thigal statex(?) mod-
eled as a Gaussian random variabfe ~ .4 (u© P(©). The goal positiomgoal is
known exactly, as is the floor plan of the environment and thedity of each sen-
sor within the environment. We will focus on one of th@aths, which comprises
Nj+1 positionspgo),pgl), . .,pEN"), wherepgo) =po andpENj) = Pgoar When the
agent moves along the path, its state statistics can be swwdéth a process model

(K

Al-Dy (k1) | gk-D)yk-1) 4 (k1) 5)

whereu(¥ is the control signal at timle, A(<~1) andB~1) are known matrices, and

id. _ _ _ _ _ _
n(k=1 18 4(0,Q) is Gaussian process noise with error covariance m@triand
a measurement model of sensar

Ym = Hm x +Vm’, (6)
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WhereH#]() is a known matrix and/#? d. (0, Rﬁ,‘f)) is the measurement nofse
associated with sensorwhen used in locatior¥). This linear measurement model
can be motivated from a loose coupling view, where the measent corresponds
to a position estimate, as opposed to range estimates. Adwr Iprocess and mea-
surement models enable us to use the Kalman filter [43].

The agent now performs the following two steps, before pedewg to the goal.

1. For each path, the agent predicts a required control sequéN-1), based on
(k)-
p+s
2. For a given path and a given sequence of selected sensiteysy the agent can
compute (i) the expected accuracy of its predicted positging a Kalman filter
and (ii) the associated cost.

The expected accuracy is determined by the FIM, introduc&gction 2.3. In par-
ticular, when the agent had a FIFI"V at timek — 1 and activates senson, the
FIM at timek will be

T -1
F(k) — Hl('ri’f) (RI(T"T)) Hr(‘l"f) + Qfl_ QflA(kfl) (7)
T -1 T
% (F(k1)+(A(k1)) QlA(kl)) (A(kfl)) o1,

Based on this information, the agent can determine the ¢sg@ost of any of the
J paths, and then select the least expensive path.

3.1.2 Optimisation Formulation

We can now cast the sensor selection problem in a standard for

minignize c'D1 (8a)
subject to D'1=1 (8b)
D e {0,1}M*N (8c)

tr((F<k>)1) <42 ke {1,2,...N}, (8d)

wherec = [c1,Cy,...,0m]T, 1is a column vector containing all ondg is the FIM
from Section 2.3 an® denotes the optimisation variable:

d ... dV
diy ... dY

1 Note that not using any sensor can be modeled by having av&tmsor with very large covari-
ance.
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wheredr(r‘f) = 1 means that the+th sensor system is used in tk¢h time step; (8b)
ensures that only one out & measurement systems is used at any time; (8d) en-
sures the trace of the inverse of the posterior FIM to stagvbel specific threshold
(A2, in m?). This makes sure that that the expeétembt mean square position error
(RMSE) does not exceefi. From (7), it is readily verified tha&® in (8d) can be
expressed as a linear functionof

The problem (8) is combinatorial in nature, rendering itsison intractable as
the time horizonN increases. Rather than solving (8) directly, lower and uppe
bounds on the cost per path can be obtained through semitdafiogramming
(SDP), which involves relaxing the integer constraintdand dynamic program-
ming (DP), respectively. In the DP approach, we discretieepositioning quality
and build up a hidden Markov model with the selected measemn¢systems as in-
put. This allows us to run the Viterbi algorithm and efficigrdompute the cost of
any combination of measurement system selections. Addititetails can be found
in [38].

3.1.3 Performance Evaluation

We consider a scenario, detailed in [38]. In brief, the sderiain the environment
of Fig. 1, and uses a geometric path planner to generate 1B§.psle considered

M = 4 sensor: Sensor 1 corresponds to no sensing, Rﬁﬁh: 10° I; Sensor 2
corresponds to a GPS-like sensor which is better near theowis, but poor inside
the environment; Sensor 3 is an RFID-like sensor with tagsea near the corners.
Sensor 4 is an ultra-wideband-like (UWB) sensor with foderence nodes in the
corners. Such a system would exhibit high sensor measutemality in the middle
of the environment, but not near the corners. We assign esstellows:c; =1
comprising the cost of movemen, = 3, ¢4 = 2, ¢4 = 4. The DP implementation
had 10 states, while the SDP implementation used the s&tpackage CVX [44].
As benchmarks, we have also implemented a greedy approeleltisg at each
time step the cheapest sensor that can ensure (8d) is shtisfie

The path cost with the three different methods is evaluatedlifferent pro-
cess noise Ievela(% € {0.01,0.1,0.2}, shown in Fig. 2, wher@ = o(% I. Paths are

sorted by length. We note that wheé is low (top and middle plot of Fig. 2), there
is a large gap between the solution using the greedy methogaeed to using the
DP method. Hence, for Iowré there is a clear benefit in using DP considering a
long horizon. For large values mfé the sensors must be used more frequently to
maintain acceptable positioning quality. Hence, the gyest DP method exhibit
similar performance. Furthermore, the SDP method leadestsclose to the triv-

ial lower bound (where the cheapest sensor is used all thes.tifhis is because
the SDP method can allow for fractional sensor usage, alergstly meeting the
RMSE constraint.

2 Note that we only determine a path with lowestpecteccost, under the assumption that the
agent measures in the positiqns
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Fig. 2 Path costs for the different paths sorted by path length.t@dmwttom plot correspond to
different values of the process noise variarax%ee {0.01,0.1,0.2}. The minimum and the max-
imum path costs are obtained by using the sensor with loweshahest cost along the whole
path. The lower bound (SDP) and upper bound (DP) are compatbe greedy solution.

3.2 Location-Aware Formation Control

The ideas from the previous section were mainly limited by high complexity.

Here, we will not consider control over a time horizon, buhea a greedy frame-
work. This allows us to address a richer set of problems. Asrbewe will have a

goal, but now consider multiple cooperating agents that ath other in localising
as they move to the goal .
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3.2.1 Problem Formulation

We consider a swarm dfl agents that want to move towards a goal with location
q € R?, supported by anchors / base stations. We thus aim to findgtleontrol
actionsu® at timek moving the agents according to

p®) = pleD 404 g0 (10)

wheree™ ~ _#(0,Q) is the global transition noise with diagonal covariancerirat
Q. Under perfect location information this can be done byisgjthe optimization
problem

Problem#,: mini<{(1)1ize||p<k> — 1 @49 (11)
u

a

subject touf,k) € Uy.

where?,, is a set representing all valid control signals. We will ddes?%y = {u €
RM| |ju|| = pq}. A goal approaching command can thus be by moving along the
gradient of the objective:

0=y P lwa®d
[PV — Iy @ql|

(12)

In case the position is not known, we can replpte? by an estimat@k-1).

The problem with the above approach is that in gengfalwill deviate more
and more fronp® as timek progresses. To ensure that all agents stay localised, we
solve the following problem

ProblemZ7g: mini(rk1)1izeE {Hﬁ(k) - p<k>|\} (13)
u
5

subject twgk) € U,

where?7p = {u € R?M| ||u|| = Mg} and the expectation should be interpreted as
being ovep®.

Our goalis thus to design a swarm formation controller foxtjgoal-approaching
and location information seeking. An example of the desttibwarm system is il-
lustrated in Fig. 3, where a swarm of three agents moves fegionA to region
B. Three base stations are located at each region. The whiddises in the figure
illustrate the radio connections between nodes for comaatioins and ranging.
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Fig. 3 A swarm navigation system on Mars (not in real scale): thggaes move from regioA to
regionB. Three base stations are located at each region. The wiliiddises illustrate the radio
connections between nodes for communications and ranging.

3.2.2 Optimisation Formulation

We will consider an alternating optimisation approach, kehlthe swarm alternately
solves the problems”, and #g. Since we already provided an expression to solve
Pa, we will focus onZg and drop the time index. The problem can be expressed
in terms of the Fisher Information Matrix (FIM):

minimize tr(F-1). 14
iz (%) o

The specific form of the FIM depends on the scenario at haedythe of measure-
ments, whether a priori information is available, etc. Gdasng a non-Bayesian
setting,Fp depends on the unknown valpewhich should be interpreted as the po-
sition after implementing the control (i.@ in (10)). The gradient € R?" of the
objective function is

c=[cl,.ncl,esch] T = Optr (D), (15)

wherec, € R? is the gradient component of AG39]. The steepest descent gradient
controller solving%g with a step sizgig can be expressed as

c
ug ——HBH. (16)

Since the true positions of the agents are unknown, thegmealis evaluated in the
position estimatep and then utilised to generate the control commagd
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As a specific instance of this problem, and to exemplify thieepidal for closed-
form expressions, we will consider a common measurementined defined in
Section 2.3. We let the measurements correspond to disestiogates with neigh-
boring agents and anchors. The statistical model for thamiie estimation error
between nodes andv with positionsp, andp, is a zero-mean Gaussian random
variable with variance?,. The ranging variance&v is, in general, distance depen-
dent by the radio propagation model [22]. In this work, thalgtical ranging vari-
ance model proposed in [45] is applied to capture the maiufes of radio-based
ranging. For short distances, the ranging variance is @tiadily proportional to
the distance. After a certain distance, the ranging vaeaapidly increases to the
maximum ranging variance due to the low signal-to-noise (ENR).

3.2.3 Performance Evaluation

Simulations are conduced to illustrate the performancénefdonsidered forma-
tion control algorithm. As initialisation, 25 agents areifurmly deployed in an
area of 10 mx 10 m at regionA. Agents need to move to regidh 600 meters
away, based on their position estimates. In each regioe thase stations are de-
ployed. Each node is equipped with a radio transceiver witreage range of 90
meters. There is a blind region of over 400 meters along ttieyehere none of the
base stations can be directly connected due to low SNR. Hpesizes are set to
Ha = 0.15 m andug = 0.1 m. Agents’ transition noise variance at each dimension
is set to 001 n?. Two snapshots at time step 30,000 and 31,200 are shown.i#.Fig
Agents are shown as red dots and base stations as red teahgtemagenta curves
show the radio coverage border of base stations. The greledhaackground is

the averaged swarm localisation CRB, i\étr(Fgl)/M, when the agent of interest

(marked with a green circle) moves to that position. The agéimterest can move
inside the connected dark area without jeopardising thbajlposition accuracy.
The two snapshots demonstrate a procedure of establishintyal bridge in order
to propagate high localisation accuracy into the blindeagiThe swarm automati-
cally stretches to a double-row formation alondimension to extend the locatable
area. At step 30,000 the agents in the middle, e.g. the onleechavith green, can
only move within a limited area since they are crucial vexito maintain rigidity
of the whole network. Whereas the agents clustered in frbthtsoswarm are more
flexible to move due to the redundant links. As a consequehee&rucial agents in
the middle mainly perform location information seeking a@hed ones in front are
dominantly controlled with goal-approaching. At step 30 2the front agents have
already moved inside the coverage of the base stations ianrBgand can prop-
agate precise position information acquired from baseéostatas well. Therefore,
the agents behind are released from their role of crucigicesrand can apply goal-
approaching again. From the figure it can be seen that theectathdark area in
which the agent of interest can move is significantly inoeela¥Vith this numerical
result, it can be concluded that the swarm location inforomaseeking and goal
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Fig. 4 Formation at time steps 30,000 (upper) and 31,200 (lowggnis are shown as red dots
and base stations as red triangles. Two magenta curves Bleoradio coverage borders of base
stations. The grey shaded background is the averaged swaatishtion CRB when the agent of
interest (marked with a green circle) moves to that position

approaching can be achieved with the considered formatiatra algorithm. The
location information seeking framework can be adapted tierdint applications,
e.g. swarm return-to-base application, where both swarirbase positions are to
be estimated [47].
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4 Impact of Location Uncertainty on Channel Gain Prediction

In this section, we step away from the control aspect anceratbal with channel
modelling and prediction in the presence of location uradety. We will again rely
on ideas introduced in Section 2.

4.1 Problem Formulation

A database oN power measurements is available between different TX and RX
locations. Each measurement is of the foymPrx(x)+n, wheren ~ _#;(0, 0?)

and the total set of measurements is dengted [y1,y,...,yn]". The locations

of both TX and RX are known statistically, through the probgbdensity func-
tions (pdfs)p(ptx) and p(prx), which are assumed to be described by a finite
number of parameters (e.g., means and covariances of both agents’ locations).
Hence, the distributions associated with themeasurements can be denoted by
S=[sl,s,...,s4]". For notational convenience, the positions of a TX-RX pair
will be denoted by = [ply,pLy]T € R?P, allowing expressions such Bsx (x) and
Pry(S) = J Prx(X)P(X)0X .

The problems considered in this section are (i) learninghainoiel parameters;
(ii) prediction of the channel at an unvisited location.

4.2 Channel Prediction

The Gaussian process (GP) framework of [36], called unice@® (UGP), is here
adapted for learning and prediction of the wireless chawnabidering TX and

RX location uncertainty. This uGP framework is contrastedlassical GP (cGP),
wherein location uncertainty is ignored. The simplify tixpasition, we will ignore

the deterministic path loss, and consider only shadowiing fBceived power at
uncertain location paix (described by its distribution parametsjss modelled as
a GP, denoted by

Prx(8) ~ 42 (0.K(s,€)). (17)

where a suitable choice for the covariance function is
s:8) = [[ etxx)pop(x)axax. (18)
in which c(x,x’) is a covariance function under precise location infornmatidote

that (18) reverts back to a classical GP (cGP) approach,slaisical covariance
functions [5], when there is no location uncertainty. Inertb obtain a closed-form
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expression for (18)¢(x,x’) should be limited to certain specific families, e.g., a
squared exponential. In that case, with- 2, one can write

_pl P _phollP
c(x,X) = 0§ exp(— lPrx dngXH _ llpex dngX” ) ; (19)

whenx # x" andc(x,x) = 02 + a&roc. The problem of learning now involves de-
termining the paramete® = [d., 0y, Oprod from the database. Onde has been
determined, the prediction problem can then be solved, hiyesiof using a GP

framework.
Pi,Tx Pi rRx
drx

T o) G

ox e k4 /

__________ Pj,Rx
v T
y Pj.Tx
X

Fig. 5 Example of two links andj in R2. The transmitter displacement is givendiy = ||pi.tx —
p;j.7x|| and the receiver displacementigx = ||pi rx — Pj,rx|-
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Fig. 6 Estimated hyper parameters for cGP and uGP for differemdenf location uncertainty
of the training samples parametrized by the average latatior standard deviatioh in meters.
Left: decorrelation distancd;, middle: shadow standard deviatian, right: process standard
deviationdproc.
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Fig. 7 Left: expected received powBkx avg for one realisation of the spatially correlated shadow-
ing field for different expected positiors tx, andz, rx respectively. The channel is symmetric
reciprocal along the diagonat.(tx = z, rx), i.e., the field is symmetric. Middle: prediction of
Prx,avg Using cGP. Right: prediction d#x avg Using UGP. Note, cGP and uGP maintain channel
reciprocity in their prediction.

4.3 Performance Evaluation

We consider a one-dimensional zero-mean field of 15 m ler@th(x) : [0,15] x
[0,15] — R. The true field is obtained from a 2-dimensional GP with (18}h
parameterp = 1, d; = 3, g, = 0.01, andoy = 10. To ensure reciprocity the field
is only generated foprx > prx and then copying the values fpix < prx. The
resolution of the field is 25 cm, corresponding to possibl@AGnd RX locations,
which in total corresponds to 1600 samples. For the traiséty = 250 samples are
randomly selected out of these 1600 samples. This includssreciprocal coun-
terpart. They are then perturbed by location uncertaimyadcordance with [36],
heterogeneous location errors have been considered withvarriances;. The er-
ror variance follows an exponential distribution paranzet by the average loca-
tion error standard deviatioh. Assuming the agents knowy, the hyper-parameter
vector is then given by = [dc,aw,apmc]T. The covariance function of cGP cor-
responds to the Gudmundson model [31]. For parameter tegrai Monte Carlo
simulation is performed over 30 realisations of the shadguield.

Learning

The influence of location uncertainty of the training sarsffgarametrised b¥) in
the database on the estimation@for cGP (withp = 1) and uGP (withp = 2) is
demonstrated in Fig. 6. For cGP, it can be observed that aradre ofA leads to
an increase af;. Furthermore, the parameter responsible for capturingtinpcer-
tainty gproc also increases. To maintain the total signal variance thanpeteroy
needs to decrease. In contrast to this, uGP is able to pyopedrporate different
levels of location uncertainty with the effect that the mstiedd. remains almost
constant independent of the location uncertainty of thimitrg samples. The pa-
rameteroproc captures the mismatch between the covariance functioriseofrie
field (wherep = 1 in (19)) and uGP (wherp = 2 in (19)). This mismatch is in-
dependent of the location uncertainty of the training sas\pl In the right plot of



Formation Control of Multi-agent Systems with Location @rtainty 17

Fig. 6, this can be observed by the estimated valueggé. This means, Sinceproc
is constant ovek so has to bery in order to maintain the total variance (see middle
panel of Fig. 6).

Prediction

The prediction performance is shown in Fig. 7, assuming #ialthse had no loca-
tion uncertainty (i.e.A = 0), but the received power should be predicted at a loca-
tion where a location uncertainty with standard deviatianéers is present. The
expected received power is expressedPy avg(S:) = [ Prx(X«)p(Xs)dx,. Here,
p(Xs) = A, (z«,4l). The mean value of the random locationis composed of the
TX and RX mean location by, = [Z*,TX,Z*,RX]T. The panels of Fig. 7 contain from
left to right: Prx avg plot for different mean transmitter and receiver locati@nsrx
andz, tx), predicted expected received power with cGP, and with @BBerve that
with both methods, cGP and uGP, channel reciprocity is raaiatl. Furthermore,
the prediction of the true expected field with uGP is muchdvéttan with cGP.

5 Conclusion

The foreseeable emerging applications suggest that MAlkahgto become more
prevalent in the coming years. Specific instances inclutidligent transportation
systems, networks of unmanned aerial vehicles (e.g., djpnetworks of wheel-
driven robots, or even a network comprised of heterogenagests. All these sys-
tems rely heavily on precise location information. This mtea treated how loca-
tion information can be obtained, maintained, and dissataethover a network of
agents. It also revealed a close connection between corgation and localisation,
and described a channel prediction strategy in the presgfioeation uncertainty.

Furthermore, the coupling between communication and obatd their dependen-
cies on localisation have been demonstrated. Significallertyes remain, both to
provide accurate location information, and to operate MA8ar limited, noisy or

no information about the location of the agents.
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