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Abstract In this chapter the impact of realistic communication channels and un-
certain location information on formation control of multi-agent systems aiming to
achieve a common task is highlighted. First, the work is motivated by elucidating
the need to incorporate realistic communication models as well as the need to model
the agents location uncertainty. Second, it is discussed how control can be utilised to
reduce the agents positioning error in cooperative systemsto achieve a higher level
goal, such as steering a group of agents towards a destination. Third, the impact of
location uncertainty on channel gain prediction is addressed for formation control.
Finally, conclusions and an outlook on future directions for controlled multi-agent
systems is provided.
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Chalmers University of Technology, Gothenburg, Sweden, e-mail: frohle@chalmers.se

Themistoklis Charalambous
Chalmers University of Technology, Gothenburg, Sweden, e-mail: thecha@chalmers.se

Henk Wymeersch
Chalmers University of Technology, Gothenburg, Sweden, e-mail: henkw@chalmers.se

Siwei Zhang
German Aerospace Center (DLR), Wessling, Germany, e-mail:siwei.zhang@dlr.de

Armin Dammann
German Aerospace Center (DLR), Wessling, Germany, e-mail:Armin.Dammann@dlr.de

1



2 Authors Suppressed Due to Excessive Length

1 Introduction

Increasingly sophisticated algorithms implemented on autonomous agents/robots
with massive computational capabilities have enabled solving complex tasks in un-
certain environments, such as mapping of disasters and search-and-rescue opera-
tions. For agents to explore and interact with the environment, it is important that
they have a coherent view of this environment and their positions within it (see,
for example, [1, 2] and references therein). Such situational awareness is typically
achieved through simultaneous localisation and mapping (SLAM) [3] and locali-
sation using heterogeneous sensor fusion [4]. While research on situational aware-
ness has traditionally focused on improving the localisation accuracy, the focus has
now shifted to localisation methods that have knowledge of computational complex-
ity limitations of the agents, energy and communication constraints as well as the
agent’s higher-level task [5, 6]; for instance, a higher-level task may be the naviga-
tion of the robot in the environment from its current position to its final position. This
chapter considers the problem of how position uncertainty in multi-agent systems
affects control and communication, and how positioning canbe improved taking
into account the underlying limitations of such systems.

To support positioning, a robot is typically equipped with aplurality of sensors
providing position information. Since the usage of these sensors consumes energy,
selection of which sensor(s) to use when is important. Thissensor selectionprob-
lem refers to the agent choosing a subset out of all availablesensors, in order to
optimise an objective (e.g., trace or determinant of the state estimation error co-
variance [7, 8], an expected utility defined by Bayes risk [9], or a measure of in-
formation such as conditional entropy [10]). The objectivecan be optimized (i)
over a single time-step [7–9, 11] or (ii) over a prediction window [10, 12–14]. In
the first class of approaches, the problems made temporally separable, leading to
efficient solutions [7–9, 11]. In the more general second class of approaches, the
problems are temporally inherently inseparable, leading to exponential complex-
ity in the prediction horizon. This complexity is reduced through appropriate tech-
niques [10, 12–14]. These techniques generally focus on minimising a function of
the state error covariance, which is not always relevant forbattery-constrained de-
vices. For such devices, minimising energy consumption is more meaningful, while
ensuring a certain positioning quality.

While sensor selection can be performed on a per-agent basis, agents can also
cooperateto solve tasks by combining agents with heterogeneous sensors, such as
formation control [15]. Accomplishing such tasks relies onaccurate and fresh loca-
tion information. Existing approaches [16–20] assume perfect position information,
which may not be available in reality. The limited range of the anchor signals can
be countered by cooperation among agents, in order to determine the position of all
agents. Cooperative positioning based on belief propagation and message passing
algorithms was presented in [21]. This was extended by [22],accounting for the
overhead and cost related to accessing the radio channel by atime-division multi-
ple access protocol using an orthogonal-frequency division multiplexing (OFDM)
signal. The Cramér-Rao bound (CRB) for cooperative positioning accuracy intro-
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duced in [23] provides the fundamental limit of this approach. Therefore, formation
control should account for localization errors [24], whichcan be improved through
active information seeking [25,26].

Finally, when performing a task, agents need to know their own absolute loca-
tion, both for control and to maintain connectivity with each other over the wireless
channel. Connectivity can be improved throughprediction of channel gains[27].
The channel comprises three components: deterministic path-loss, shadowing, and
small-scale fading [28]. The latter two components are generally modeled as ran-
dom variables. For typical wave-lengths, small-scale fading decorrelates over a few
centimetres, whereas shadowing decorrelates over 50–100 moutdoors [28] and 1–5
m indoors [29, 30], based on standard shadowing correlationmodels [31, 32]. For a
multi-agent system, [33] modeled shadowing through a spatial loss field. Channel
prediction was studied in [5], which proposed a Gaussian Process (GP) framework,
and [34], which considered the impact of the channel parameters on the prediction
variance. An assumption in [5, 33, 34] was the availability of perfect location in-
formation. This was partially addressed in [35], which extended [34] to determine
the impact of localisation errors on channel prediction. Location uncertainty at the
receiver but not the transmitter side was explicitly accounted for in [36].

This chapter covers recent progress in the above-mentionedareas: sensor selec-
tion, cooperation, and channel prediction. In particular,the rest of the chapter is
organised as follows. We first describe several fundamentalconcepts in the areas
on communication, control, and localisation in Section 2. We then consider the in-
teraction between control and localisation in Section 3. Inparticular, Section 3.1
considers the sensor selection problem, where the aim is to find a path to a goal with
minimum sensing cost, while maintaining a certain localisation quality. Section 3.2
focuses on a cooperative scenario, where again a goal must beachieved, but agents
cooperate to maintain a certain localisation quality, rather than relying on a variety
of sensors. In Section 4, the problem of channel prediction under location uncer-
tainty will be tackled. These problems highlight the need tomaintain good position
quality in Multi-Agent Systems (MAS).

Link to MULTI-POS

The work described in this chapter was carried out during 2013–2015 in the context
of the FP7 project MULTI-POS, a Marie Curie International Training Network on
multi-technology positioning. In particular, the work dealt with so-called cognitive
methods for positioning and communication, where cognition refers to the property
of the positioning and communication sub-systems to not be considered as separate,
but rather as closely interacting entities. Part of this work was performed in collab-
oration with the German Aerospace Center, and is based on thepublished research
papers [37–39].
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2 Localisation for Communication and Control

This section briefly highlights the use of localisation for communication and con-
trol of MAS. We first describe a standard communication modelin Section 2.1,
followed by a generic optimal control problem in Section 2.2, and a metric to assess
localisation algorithms in Section 2.3.

2.1 Inter-agent Communication

In MAS, the communication between agents occurs over the wireless medium. The
channel power between a transmitter (TX) and a receiver (RX), with locationspTX ∈
R

D andpRX ∈ R
D, respectively, whereD is the dimensionality of the space, can

be modelled as a spatially correlated random process. Assuming communication
averages out small-scale fading, either in time (over a timewindow) or frequency
(average power over a large frequency band), the received signal power in dBm can
be expressed as [28]

PRX(pTX ,pRX) = PTX +L0−10η log10
‖pTX −pRX‖

d0
+Ψ(pTX ,pRX), (1)

where the transmitted power isPTX, L0 comprises antenna and propagation gains,
d0 is a reference distance (here 1 m),η is the path-loss exponent. Shadowing (in
the dB domain) is modelled as a zero-mean Gaussian random process with a given
spatial correlation [31, 40] and exhibiting channel reciprocity (i.e.,Ψ(pTX ,pRX)
=Ψ(pRX,pTX)). Provided there are no significant changes in the environment, the
received power is thus largely predictable and dependent onthe absolute positions
of the TX and RX. Hence, in order to predict the power, the locations of the TX and
RX should be known.

2.2 Multi-agent Control

Control of MAS usually involves the design of optimal control strategies that should
be distributed, relying on local information only. These optimal control strategies
emerge from having the interconnected agents to optimise anobjective function
f : X ×U 7→ R, i.e.,

minimize
u∈U

f (x,u)

subject toẋ = h(x0,u, t),
(2)

wherex ∈ X comprises the state of the agents (e.g., position and velocity of multi-
ple agents over a certain time window),x0 represents the initial state,u denotes the
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control input (e.g., an acceleration), belonging to some fixed setU , andh(·) repre-
sents the dynamics. From the above formulation, it is clear that solving the problem
in a decentralised fashion, where agents find the optimal solution without a cen-
tral coordinator, information exchange between the interconnected agents regarding
their state (including the position) is necessary.

2.3 Bounding Uncertainty of Estimators: The Craḿer-Rao Bound

The Cramér-Rao Bound (CRB) is a lower bound on the estimation error variance
of any unbiased estimator [23]. Due to its computational simplicity, the CRB is an
attractive tool for system verification [22] and adaptive algorithm design [41]. The
CRB is expressed as

E
[

‖x̂(k)− x(k)‖2]≥ CRB[x(k)] = tr
(

(F(k)
x )−1), (3)

wherex̂(k) is the estimate ofx(k) andF(k)
x is the so-called Fisher information matrix

(FIM) with respect tox at time-stepk. The FIM is defined as

F(k)
x =−Ey(k)|x(k)

[

∇T
x ∇x logp(y(k)|x(k))

]

, (4)

wherey(k) is the measurement associated with statex(k).

3 Impact of Location Uncertainty on Mission Goals

In this section, we will focus on the connection between localisation and control
of agents towards a goal. Two different problems will be discussed: the first one
deals with selecting paths that minimize a long-term cost, while the second one
deals with progressively moving towards a goal, while also optimizing positioning
quality. Both of these problems will rely on the concepts previously introduced:
optimization for the control actions, and FIM for the positioning quality.

3.1 Limiting Location Uncertainty

3.1.1 Problem Formulation

Exemplified in Fig. 1, a mobile agent with an estimated start position p0 aims to
reach a goal positionpgoal∈ R

2 in discrete time steps. The agent is equipped with
M sensors providing location information, with the use of sensor m having a cost
(e.g., power consumption)cm ≥ 0. The agent can useJ ≥ 1 different paths towards
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Fig. 1 A scenario with two paths A and B from a start positionp0 = [7,6]T to a goal position
pgoal = [43,45]T. The objective of the agent is to determine which path has thelowest cost, while
ensuring a certain positioning quality.

the goal position, two of which are shown in Fig. 1. At each time and along each
possible path, the agent can use at most one sensor. Each pathhas a certain inherent
cost associated with its length (agent movement cost). The goal of the agent is to
find the least expensive path to the goal, while providing a certain quality of position
information.

We will consider the agent’s position as its state, with the initial statex(0) mod-
eled as a Gaussian random variablex(0) ∼ N (µµµ(0),P(0)). The goal positionpgoal is
known exactly, as is the floor plan of the environment and the quality of each sen-
sor within the environment. We will focus on one of theJ paths, which comprises

Nj +1 positions,p(0)
j ,p(1)

j , . . . ,p
(Nj )
j , wherep(0)

j = µµµ (0) andp
(Nj )
j = pgoal. When the

agent moves along the path, its state statistics can be modeled with a process model

x(k) = A(k−1)x(k−1)+B(k−1)u(k−1)+n(k−1), (5)

whereu(k) is the control signal at timek, A(k−1) andB(k−1) are known matrices, and

n(k−1) i.i.d.
∼ N (0,Q) is Gaussian process noise with error covariance matrixQ; and

a measurement model of sensorm:

y(k)m = H(k)
m x(k)+ v(k)m , (6)
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whereH(k)
m is a known matrix andv(k)m

i.i.d.
∼ N (0,R(k)

m ) is the measurement noise1

associated with sensormwhen used in locationx(k). This linear measurement model
can be motivated from a loose coupling view, where the measurement corresponds
to a position estimate, as opposed to range estimates. The linear process and mea-
surement models enable us to use the Kalman filter [43].

The agent now performs the following two steps, before proceeding to the goal.

1. For each path, the agent predicts a required control sequenceu(0:N−1), based on
p(k);

2. For a given path and a given sequence of selected sensing systems, the agent can
compute (i) the expected accuracy of its predicted positionusing a Kalman filter
and (ii) the associated cost.

The expected accuracy is determined by the FIM, introduced in Section 2.3. In par-
ticular, when the agent had a FIMFFF(k−1) at timek−1 and activates sensorm, the
FIM at timek will be

F(k) = H(k)
m

T(

R(k)
m

)−1
H(k)

m + Q−1− Q−1A(k−1) (7)

×

(

F(k−1)+
(

A(k−1)
)T

Q−1A(k−1)
)−1

(

A(k−1)
)T

Q−1 ,

Based on this information, the agent can determine the expected cost of any of the
J paths, and then select the least expensive path.

3.1.2 Optimisation Formulation

We can now cast the sensor selection problem in a standard form.

minimize
D

cTD1 (8a)

subject to DT1= 1 (8b)

D ∈ {0,1}M×N (8c)

tr

(

(

F(k)
)−1

)

≤ ∆2, k∈ {1,2, . . . ,N}, (8d)

wherec= [c1,c2, . . . ,cM]T, 1 is a column vector containing all ones,F(k) is the FIM
from Section 2.3 andD denotes the optimisation variable:

D =









d(1)
1 . . . d(N)

1
...

. . .
...

d(1)
M . . . d(N)

M









, (9)

1 Note that not using any sensor can be modeled by having a virtual sensor with very large covari-
ance.
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whered(k)
m = 1 means that them-th sensor system is used in thek-th time step; (8b)

ensures that only one out ofM measurement systems is used at any time; (8d) en-
sures the trace of the inverse of the posterior FIM to stay below a specific threshold
(∆2, in m2). This makes sure that that the expected2 root mean square position error
(RMSE) does not exceed∆ . From (7), it is readily verified thatF(k) in (8d) can be
expressed as a linear function ofD.

The problem (8) is combinatorial in nature, rendering its solution intractable as
the time horizonN increases. Rather than solving (8) directly, lower and upper
bounds on the cost per path can be obtained through semi-definite programming
(SDP), which involves relaxing the integer constraint onD and dynamic program-
ming (DP), respectively. In the DP approach, we discretize the positioning quality
and build up a hidden Markov model with the selected measurement systems as in-
put. This allows us to run the Viterbi algorithm and efficiently compute the cost of
any combination of measurement system selections. Additional details can be found
in [38].

3.1.3 Performance Evaluation

We consider a scenario, detailed in [38]. In brief, the scenario is in the environment
of Fig. 1, and uses a geometric path planner to generate 196 paths. We considered

M = 4 sensor: Sensor 1 corresponds to no sensing, withR(k)
1 = 106

I; Sensor 2
corresponds to a GPS-like sensor which is better near the windows, but poor inside
the environment; Sensor 3 is an RFID-like sensor with tags placed near the corners.
Sensor 4 is an ultra-wideband-like (UWB) sensor with four reference nodes in the
corners. Such a system would exhibit high sensor measurement quality in the middle
of the environment, but not near the corners. We assign costsas follows:c1 = 1
comprising the cost of movement,c2 = 3, c4 = 2, c4 = 4. The DP implementation
had 10 states, while the SDP implementation used the software package CVX [44].
As benchmarks, we have also implemented a greedy approach, selecting at each
time step the cheapest sensor that can ensure (8d) is satisfied.

The path cost with the three different methods is evaluated for different pro-
cess noise levelsσ2

Q ∈ {0.01,0.1,0.2}, shown in Fig. 2, whereQ = σ2
Q I. Paths are

sorted by length. We note that whenσ2
Q is low (top and middle plot of Fig. 2), there

is a large gap between the solution using the greedy method compared to using the
DP method. Hence, for lowσ2

Q there is a clear benefit in using DP considering a
long horizon. For large values ofσ2

Q, the sensors must be used more frequently to
maintain acceptable positioning quality. Hence, the greedy and DP method exhibit
similar performance. Furthermore, the SDP method leads to costs close to the triv-
ial lower bound (where the cheapest sensor is used all the time). This is because
the SDP method can allow for fractional sensor usage, alwaysexactly meeting the
RMSE constraint.

2 Note that we only determine a path with lowestexpectedcost, under the assumption that the
agent measures in the positionspk.
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Fig. 2 Path costs for the different paths sorted by path length. Topto bottom plot correspond to
different values of the process noise varianceσ 2

Q ∈ {0.01,0.1,0.2}. The minimum and the max-
imum path costs are obtained by using the sensor with lowest and highest cost along the whole
path. The lower bound (SDP) and upper bound (DP) are comparedto the greedy solution.

3.2 Location-Aware Formation Control

The ideas from the previous section were mainly limited by the high complexity.
Here, we will not consider control over a time horizon, but rather a greedy frame-
work. This allows us to address a richer set of problems. As before, we will have a
goal, but now consider multiple cooperating agents that help each other in localising
as they move to the goal .
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3.2.1 Problem Formulation

We consider a swarm ofM agents that want to move towards a goal with location
q ∈ R

2, supported by anchors / base stations. We thus aim to find (global) control
actionsu(k) at timek moving the agents according to

p(k) = p(k−1)+u(k)+ ε(k), (10)

whereε (k) ∼N (0,Q) is the global transition noise with diagonal covariance matrix
Q. Under perfect location information this can be done by solving the optimization
problem

ProblemPα : minimize
u(k)α

‖p(k)−1M×1⊗q‖ (11)

subject tou(k)
α ∈ Uα .

whereUα is a set representing all valid control signals. We will considerUα = {u∈
R

2M| ‖u‖ = µα}. A goal approaching command can thus be by moving along the
gradient of the objective:

u(k)
α =−µα

p(k−1)−1M×1⊗q
‖p(k−1)−1M×1⊗q‖

. (12)

In case the position is not known, we can replacep(k−1) by an estimatêp(k−1).
The problem with the above approach is that in generalp̂(k) will deviate more

and more fromp(k) as timek progresses. To ensure that all agents stay localised, we
solve the following problem

ProblemPβ : minimize
u(k)β

E

[

‖p̂(k)−p(k)‖
]

(13)

subject tou(k)
β ∈ Uβ ,

whereUβ = {u ∈ R
2M| ‖u‖ = µβ} and the expectation should be interpreted as

being overp̂(k).
Our goal is thus to design a swarm formation controller for joint goal-approaching

and location information seeking. An example of the described swarm system is il-
lustrated in Fig. 3, where a swarm of three agents moves from regionA to region
B. Three base stations are located at each region. The white solid lines in the figure
illustrate the radio connections between nodes for communications and ranging.
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A

B

Fig. 3 A swarm navigation system on Mars (not in real scale): three agents move from regionA to
regionB. Three base stations are located at each region. The white solid lines illustrate the radio
connections between nodes for communications and ranging.

3.2.2 Optimisation Formulation

We will consider an alternating optimisation approach, where the swarm alternately
solves the problemsPα andPβ . Since we already provided an expression to solve
Pα , we will focus onPβ and drop the time index. The problem can be expressed
in terms of the Fisher Information Matrix (FIM):

minimize
uβ∈Uβ

tr
(

F−1
p
)

. (14)

The specific form of the FIM depends on the scenario at hand, the type of measure-
ments, whether a priori information is available, etc. Considering a non-Bayesian
setting,Fp depends on the unknown valuep, which should be interpreted as the po-
sition after implementing the control (i.e.,p(k) in (10)). The gradientc∈R

2M of the
objective function is

c=
[

cT
1 , . . . ,c

T
u , . . . ,c

T
M

]T
= ∇ptr

(

F−1
p
)

, (15)

wherecu ∈R
2 is the gradient component of AGu [39]. The steepest descent gradient

controller solvingPβ with a step sizeµβ can be expressed as

uβ =−µβ
c
‖c‖

. (16)

Since the true positions of the agents are unknown, the gradientc is evaluated in the
position estimateŝp and then utilised to generate the control commanduβ .
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As a specific instance of this problem, and to exemplify the potential for closed-
form expressions, we will consider a common measurement model, as defined in
Section 2.3. We let the measurements correspond to distanceestimates with neigh-
boring agents and anchors. The statistical model for the distance estimation error
between nodesu andv with positionspu andpu is a zero-mean Gaussian random
variable with varianceσ2

u,v. The ranging varianceσ2
u,v is, in general, distance depen-

dent by the radio propagation model [22]. In this work, the analytical ranging vari-
ance model proposed in [45] is applied to capture the main features of radio-based
ranging. For short distances, the ranging variance is quadratically proportional to
the distance. After a certain distance, the ranging variance rapidly increases to the
maximum ranging variance due to the low signal-to-noise ratio (SNR).

3.2.3 Performance Evaluation

Simulations are conduced to illustrate the performance of the considered forma-
tion control algorithm. As initialisation, 25 agents are uniformly deployed in an
area of 10 m× 10 m at regionA. Agents need to move to regionB 600 meters
away, based on their position estimates. In each region three base stations are de-
ployed. Each node is equipped with a radio transceiver with coverage range of 90
meters. There is a blind region of over 400 meters along the path where none of the
base stations can be directly connected due to low SNR. The step sizes are set to
µα = 0.15 m andµβ = 0.1 m. Agents’ transition noise variance at each dimension
is set to 0.01 m2. Two snapshots at time step 30,000 and 31,200 are shown in Fig. 4.
Agents are shown as red dots and base stations as red triangles. Two magenta curves
show the radio coverage border of base stations. The grey shaded background is

the averaged swarm localisation CRB, i.e.
√

tr(F−1
p )/M, when the agent of interest

(marked with a green circle) moves to that position. The agent of interest can move
inside the connected dark area without jeopardising the global position accuracy.
The two snapshots demonstrate a procedure of establishing avirtual bridge in order
to propagate high localisation accuracy into the blind region. The swarm automati-
cally stretches to a double-row formation alongx dimension to extend the locatable
area. At step 30,000 the agents in the middle, e.g. the one marked with green, can
only move within a limited area since they are crucial vertices to maintain rigidity
of the whole network. Whereas the agents clustered in front of the swarm are more
flexible to move due to the redundant links. As a consequence,the crucial agents in
the middle mainly perform location information seeking andthe ones in front are
dominantly controlled with goal-approaching. At step 31,200, the front agents have
already moved inside the coverage of the base stations at region B and can prop-
agate precise position information acquired from base stations as well. Therefore,
the agents behind are released from their role of crucial vertices and can apply goal-
approaching again. From the figure it can be seen that the connected dark area in
which the agent of interest can move is significantly increased. With this numerical
result, it can be concluded that the swarm location information seeking and goal
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Fig. 4 Formation at time steps 30,000 (upper) and 31,200 (lower): agents are shown as red dots
and base stations as red triangles. Two magenta curves show the radio coverage borders of base
stations. The grey shaded background is the averaged swarm localisation CRB when the agent of
interest (marked with a green circle) moves to that position.

approaching can be achieved with the considered formation control algorithm. The
location information seeking framework can be adapted to different applications,
e.g. swarm return-to-base application, where both swarm and base positions are to
be estimated [47].
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4 Impact of Location Uncertainty on Channel Gain Prediction

In this section, we step away from the control aspect and rather deal with channel
modelling and prediction in the presence of location uncertainty. We will again rely
on ideas introduced in Section 2.

4.1 Problem Formulation

A database ofN power measurements is available between different TX and RX
locations. Each measurement is of the formy=PRX(x)+n, wheren ∼ Nn(0,σ2

n )
and the total set of measurements is denotedy = [y1,y2, . . . ,yN]

T. The locations
of both TX and RX are known statistically, through the probability density func-
tions (pdfs)p(pTX) and p(pRX), which are assumed to be described by a finite
number of parameterss (e.g., means and covariances of both agents’ locations).
Hence, the distributions associated with theN measurements can be denoted by
S= [sT

1 ,s
T
2 , . . . ,s

T
N]

T. For notational convenience, the positions of a TX–RX pair
will be denoted byx = [pT

TX ,p
T
RX]

T ∈R
2D, allowing expressions such asPRX(x) and

PRX(s) =
∫

PRX(x)p(x)dx .

The problems considered in this section are (i) learning of channel parameters;
(ii) prediction of the channel at an unvisited location.

4.2 Channel Prediction

The Gaussian process (GP) framework of [36], called uncertain GP (uGP), is here
adapted for learning and prediction of the wireless channelconsidering TX and
RX location uncertainty. This uGP framework is contrasted to classical GP (cGP),
wherein location uncertainty is ignored. The simplify the exposition, we will ignore
the deterministic path loss, and consider only shadowing. The received power at
uncertain location pairx (described by its distribution parameterss) is modelled as
a GP, denoted by

PRX(s)∼ G P
(

0,k(s,s′)
)

, (17)

where a suitable choice for the covariance function is

k(s,s′) =
∫∫

c(x,x′)p(x)p(x′)dxdx′, (18)

in which c(x,x′) is a covariance function under precise location information. Note
that (18) reverts back to a classical GP (cGP) approach, withclassical covariance
functions [5], when there is no location uncertainty. In order to obtain a closed-form
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expression for (18),c(x,x′) should be limited to certain specific families, e.g., a
squared exponential. In that case, withp= 2, one can write

c(x,x′) = σ2
Ψ exp

(

−
‖pTX −p′

TX‖
p

dp
c

−
‖pRX −p′

RX‖
p

dp
c

)

, (19)

whenx 6= x′ andc(x,x) = σ2
Ψ +σ2

proc. The problem of learning now involves de-
termining the parametersθ = [dc,σΨ ,σproc] from the database. Onceθ has been
determined, the prediction problem can then be solved, by virtue of using a GP
framework.

x

y

pi,TX

p j ,TX

dTX

pi,RX

p j ,RX

dRX

Fig. 5 Example of two linksi and j in R
2. The transmitter displacement is given bydTX = ‖pi,TX −

p j ,TX‖ and the receiver displacement isdRX = ‖pi,RX −p j ,RX‖.
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Fig. 6 Estimated hyper parameters for cGP and uGP for different levels of location uncertainty
of the training samples parametrized by the average location error standard deviationλ in meters.
Left: decorrelation distancedc, middle: shadow standard deviationσΨ , right: process standard
deviationσproc.
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Fig. 7 Left: expected received powerPRX,avg for one realisation of the spatially correlated shadow-
ing field for different expected positionsz∗,TX, andz∗,RX respectively. The channel is symmetric
reciprocal along the diagonal (z∗,TX = z∗,RX), i.e., the field is symmetric. Middle: prediction of
PRX,avg using cGP. Right: prediction ofPRX,avg using uGP. Note, cGP and uGP maintain channel
reciprocity in their prediction.

4.3 Performance Evaluation

We consider a one-dimensional zero-mean field of 15 m length:PRX(x) : [0,15]×
[0,15] → R. The true field is obtained from a 2-dimensional GP with (19),with
parametersp= 1, dc = 3, σn = 0.01, andσΨ = 10. To ensure reciprocity the field
is only generated forpTX ≥ pRX and then copying the values forpTX < pRX. The
resolution of the field is 25 cm, corresponding to possible 40TX and RX locations,
which in total corresponds to 1600 samples. For the trainingsetN= 250 samples are
randomly selected out of these 1600 samples. This includes their reciprocal coun-
terpart. They are then perturbed by location uncertainty. In accordance with [36],
heterogeneous location errors have been considered with error varianceσi . The er-
ror variance follows an exponential distribution parametrized by the average loca-
tion error standard deviationλ . Assuming the agents knowσn, the hyper-parameter
vector is then given byθ = [dc,σΨ ,σproc]

T. The covariance function of cGP cor-
responds to the Gudmundson model [31]. For parameter learning, a Monte Carlo
simulation is performed over 30 realisations of the shadowing field.

Learning

The influence of location uncertainty of the training samples (parametrised byλ ) in
the database on the estimation ofθ for cGP (with p= 1) and uGP (withp= 2) is
demonstrated in Fig. 6. For cGP, it can be observed that an increase ofλ leads to
an increase ofdc. Furthermore, the parameter responsible for capturing input uncer-
tainty σproc also increases. To maintain the total signal variance the parameterσΨ
needs to decrease. In contrast to this, uGP is able to properly incorporate different
levels of location uncertainty with the effect that the estimateddc remains almost
constant independent of the location uncertainty of the training samples. The pa-
rameterσproc captures the mismatch between the covariance functions of the true
field (wherep = 1 in (19)) and uGP (wherep = 2 in (19)). This mismatch is in-
dependent of the location uncertainty of the training samplesλ . In the right plot of
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Fig. 6, this can be observed by the estimated values ofσproc. This means, sinceσproc

is constant overλ so has to beσΨ in order to maintain the total variance (see middle
panel of Fig. 6).

Prediction

The prediction performance is shown in Fig. 7, assuming the database had no loca-
tion uncertainty (i.e.,λ = 0), but the received power should be predicted at a loca-
tion where a location uncertainty with standard deviation 2meters is present. The
expected received power is expressed byPRX,avg(s∗) =

∫

PRX(x∗)p(x∗)dx∗. Here,
p(x∗) = Nx∗(z∗,4I). The mean value of the random locationx∗ is composed of the
TX and RX mean location byz∗ = [z∗,TX ,z∗,RX]

T. The panels of Fig. 7 contain from
left to right:PRX,avg plot for different mean transmitter and receiver locations(z∗,TX

andz∗,TX), predicted expected received power with cGP, and with uGP.Observe that
with both methods, cGP and uGP, channel reciprocity is maintained. Furthermore,
the prediction of the true expected field with uGP is much better than with cGP.

5 Conclusion

The foreseeable emerging applications suggest that MAS arelikely to become more
prevalent in the coming years. Specific instances include intelligent transportation
systems, networks of unmanned aerial vehicles (e.g., drones), networks of wheel-
driven robots, or even a network comprised of heterogeneousagents. All these sys-
tems rely heavily on precise location information. This chapter treated how loca-
tion information can be obtained, maintained, and disseminated over a network of
agents. It also revealed a close connection between communication and localisation,
and described a channel prediction strategy in the presenceof location uncertainty.
Furthermore, the coupling between communication and control and their dependen-
cies on localisation have been demonstrated. Significant challenges remain, both to
provide accurate location information, and to operate MAS under limited, noisy or
no information about the location of the agents.
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