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Abstract—Motivated by the increasing interest in powerful
short channel codes for low-latency ultra-reliable communica-
tions, we analyze the performance of tail-biting convolutional
codes with different memories, block lengths and code rates
over the additive white Gaussian noise channel. The analysis
is carried out both through Monte Carlo simulations and by
upper bounding the error probability via Poltyrev’s tangential
sphere bound at very low error rates. For the simulations,
the near maximum likelihood wrap-around Viterbi algorithm
is considered. We then compare the performance of tail-biting
convolutional codes both with finite-length performance bounds
and with that of other channel codes that have been recently
considered for ultra-reliable satellite telecommand links. For the
shortest block lengths, tail-biting convolutional codes outperform
significantly state-of-the-art iterative coding schemes, while as
expected their performance degrades visibly with increasing
block lengths.

Keywords—Convolutional codes, tail-biting, ultra-reliable com-
munications, finite-length bounds

I. INTRODUCTION

Ultra-reliable low-latency communications [1]-[3] are one
of the underlying motivations for the rising interest in the
design of efficient short and moderate-length channel codes.
In fact, for long packet transmissions powerful (turbo-like)
error correcting codes can be designed with near Shannon limit
performance under iterative decoding [4]-[6]. Instead, in the
moderate block length regime (i.e., the one of interest for ultra-
reliable low-latency communications) a sizable loss (e.g. 1 dB
or more) with respect to finite-length performance bounds has
to be accounted for when binary turbo and low-density parity-
check (LDPC) codes are used [7]. The loss can be largely
reduced by opting for turbo and LDPC codes constructed over
large-order finite fields [8]-[13], though at the cost of a non-
negligible increase of decoding complexity.

It is well established that convolutional codes provide an
excellent latency vs. performance trade-off (see e.g. [14]-
[16]), especially when the bit error rate (BER) is used as
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a performance metric, thanks to windowed Viterbi decoding
[17]. When short packets have to be transmitted, hence, ter-
minated convolutional codes represent a promising candidate
solution. Nevertheless, the rate loss that a zero tail termination
introduces at short block lengths may be unacceptable. A tail-
biting approach [18] would eliminate the rate loss and hence it
deserve particular attention when comparing channel codes for
short packets. For these reasons, tail-biting convolutional codes
(TBCCs) are currently considered within the 5G standardiza-
tion for ultra-reliable low-latency communications [19]-[21].

In this paper, we analyze the performance of short
TBCCs over the binary input additive white Gaussian noise
(bi-AWGN) channel and we compare it with theoretical bench-
marks on the block error probability in the finite-length regime
[22]-[24]. The analysis is carried out both via Monte Carlo
simulations with the wrap-around Viterbi algorithm (WAVA)
[25] and by upper bounding the block error probability under
maximum-likelihood (ML) decoding via Poltyrev’s tangential
sphere bound (TSB) [26], [27]. Tail-biting encoders with
different memories are considered from literature [28], [29],
and the trade-offs between decoding complexity and the
achievable performance is discussed. For each set of generator
polynomials, the performance is evaluated with various packet
lengths identifying the block length regimes for which the
analyzed codes approach the theoretical limits.

The rest of the paper is organized as follows. Section II
introduces preliminary definitions. In Section III the set of
generator polynomials used in the comparisons is provided
and the weight distribution of the analyzed codes is derived.
Section IV provides an overview of the decoding algorithm
used in the simulation setup. In Section V, the performance is
analyzed in terms of codeword error rate (CER) vs. the channel
signal-to-noise ratio (SNR). Conclusions follow in Section VI.

II. PRELIMINARIES

We denote by (n, k) the parameters of the code, with n
being the block length and k the code dimension (in bits). At
each clock, the encoder gets at its input &, bits and produces
at the output ny, bits. The encoder memory is denoted by m
and it is expressed in bit kp-tuples. Following the notation of



TABLE I
SUMMARY OF THE CODES SELECTED FOR THE ANALYSIS.

np ke Generators m (n, k) A(X)
[515,677] 8 1+576X12 + 1152X 13 4+ 1856 X 14 + 4800X 15 + ...
[5537, 6131] 11 (128,64) 14 64X +960X15 +1356X10 +2304X17 4 ...
(75063, 56711] 14 1+8X16 +1856X '8 +19392X20 + 342272X22 + ...
2 1
[515, 677] 8 1+ 1152X12 + 2304X 13 + 3712X 14 + 9600X 15 + ..,
[5537, 6131] 11 (256,128) 1+128X' 4 1920X1° + 268816 + 4608 X 17 + ...
[75063, 56711] 14 1+ 3328X18 4+ 21120X20 4 108160X22 + 620032X24 + ...
(435,526, 717] 8 14 64X17 4+ 128X 18 4 384X 19 + 448X 20 + . .
[4653, 5435, 6257) 11 (192,64) 14 192X22 4+ 576X 24 + 2048X26 4 4480X28 + ...
[47671,55245,63217] 14 1+ 384X27 + 256X 28 4 384X 29 4 1344X30 .
3 1
435,526, 717] 8 1+128X17 + 256X 18 4+ 768X 19 + 896X20 + . ..
[4653, 5435, 6257] 11 (384,128) 1+ 384X22 +1152X24 +4096.X26 4 896028 + ...

[47671,55245,63217] 14

1+ 768X27 4+ 512X28 4+ 768X29 4 2688X30 + ...

[29, Sec. 2.6] we denote by v < ki, - m the overall constraint
length, with v = m for ky, = 1. The code rate is given by R =
k/n = ky/np. The connections between the shift-registers,
inputs and outputs are described with the aid of the generator
polynomials of the code, which are provided in their octal
notation. A TBCC can be represented by a tail-biting trellis
with ¢ = k/ky, sections and

S=2"

states per section. The codewords correspond to all paths
for which the initial and final states coincide. The distance
spectrum of a TBCC is denoted by A;, with A; being
the multiplicity of codewords with Hamming weight i, with
1 = 0,...,n. In the remainder of the paper, the distribution
of the weights is given in terms of the weight enumerator
function (WEF)

AX) =) AX"

We consider the transmission over a bi-AWGN with a non-
systematic TBCC. We denote the information message as u =
(ug, . ..,ur—1) and the TBCC word as ¢ = (cg,...,Cn_1).
The codeword c is then binary phase shift keying (BPSK)-
modulated. The modulated vector x is transmitted over an ad-
ditive white Gaussian noise (AWGN) channel. At the receiver
side, the vector y given by the observations (yo, ..., Yn—1) iS
input to the channel decoder, which outputs a decision G on the
transmitted message. Throughout the paper, we will analyze
the performance of various convolutional codes in terms of
their block error probability Pg = Pr {1 # u} as a function
of the ratio E}/Np, being Ej the energy per information bit
and N the single-sided noise power spectral density. When
Monte Carlo simulations are used, the estimated block error
probability is denoted as CER.

III. TAIL-BITING CONVOLUTIONAL CODES: SELECTION

The TBCCs analyzed in the following sections have been
selected from lists of generator polynomials leading to large
minimum distance codes [28]-[30]. Due to the specific block
lengths considered in this paper, for each generator polynomial
set and block length pair we derived the distance spectrum of

the resulting TBCC. The codes selected for the analysis are
summarized in Table I. To derive the WEF of the codes, we
took advantage of their trellis representation [31]. The trellis
branches can be labeled with monomials in the form X<, with
the exponent d corresponding to the encoder output Hamming
weight. Consider the S x S transition matrix T'(X), where the
entry t; ; corresponds to the label (i.e., monomial in X) of the
trellis branch going from state ¢ to state j. Since the TBCC
words are associated to paths for which the first and last state
coincide, we have that

AX) = tr {TZ(X)} .

The selected codes have code rates 1/3 and 1/2 and infor-
mation lengths of 64 and 128 bits. For both rate-1/3 and
rate-1/2 codes, k;, is equal to 1 and memories 8, 11 and 14
are considered. The memory-8 codes targets a low-complexity
profile. The memory-11 codes, while still practical, may not
allow high-speed decoding. Codes with memory-14 encoders
have been provided for completeness, i.e., to explore the
achievable performance gains in the short block length regime
with large memory codes. Their decoding with Viterbi-like
algorithms (see Sec. IV) may be considered impractical in
current mobile wireless communication devices.

IV. WRAP-AROUND VITERBI ALGORTIHM

ML decoding over a tail-biting trellis can be performed by
starting .S Viterbi decoders in parallel, each operating a sub-
trellis with equal initial/final state, for all the possible states.
Each Viterbi decoder outputs the most likely codewords for the
given initial (final) state. Among the S so-obtained codewords,
a further ML search is performed, providing the final decision.
It is easy to check that the complexity of this algorithm is
proportional to S2, thus decoding becomes quickly impractical
for increasing memory sizes. In this paper, we adopt the sub-
optimal WAVA introduced in [25]. The complexity of the
WAVA is only proportional to the number of states S.

The WAVA is a circular decoding algorithm used to process
tail-biting trellises iteratively. It runs the Viterbi algorithm
successively for more iterations, improving the reliability of
the decision at each iteration. The algorithm reaches near-to-
optimal performance [25], i.e. the loss with respect to ML
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Fig. 1. Codeword error rate vs Ej,/Ng for (192,64) TBCCs. The markers
denote simulation results, whereas the dashed lines provide the corresponding
codes TSBs on the ML block error probability.

decoding is negligible, given that a large enough number of
iterations is performed. The algorithm relies on the notion
of tail-biting paths, i.e. paths whose initial and final state
coincide.

The algorithm is very similar to the Viterbi algorithm with
equally probable initial states. In its log domain implemen-
tation, at the beginning of the decoding process all initial
state metrics are set to zero. A first iteration of the Viterbi
algorithm is performed over the code trellis, producing for
each of the S final states one path survivor. We assume next
that the path metric is given by the squared Euclidean distance
between the (modulated) branch labels and the corresponding
channel observations. Among the survivors, the most likely
one (i.e., the one at minimum Euclidean distance from the
received vector) is selected. If this most likely path is also
a tail-biting one, then decoding process stops and the most
likely tail-biting path is output. If the most likely path is
not tail-biting, then the initial state metrics of the trellis are
updated with the metrics computed at the corresponding final
states of the previous iteration. A new iteration of the Viterbi
algorithm is performed. The process continues until either the
termination condition is satisfied, i.e. the path with minimum
final state metric is a tail-biting one, or a maximum number
of iterations is reached.! In the former case, the algorithm
outputs the path with minimum final state metric. In the latter
case, the decoder outputs again the path corresponding to the
path with minimum final state metric even if the path does not
satisfy the tail-biting constraint.”

Tt was shown in [25] that four iterations are typically sufficient to obtain
near-ML performance.

2This choice may help in reducing the number of bit errors, while leading
anyhow by default to a block error.
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Fig. 2. Codeword error rate vs Ej,/Ng for (128,64) TBCCs. The markers
denote simulation results, whereas the dashed lines provide the corresponding
codes TSBs on the ML block error probability.

V. PERFORMANCE OVER THE AWGN CHANNEL

In this section, Monte Carlo simulation results on the
CER for the codes introduced in Section III are provided
and compared with theoretical benchmarks. In particular, the
results are compared with

i. Shannon’s 1959 sphere packing bound (SPB) [22], pro-
viding a lower bound on the block error probability
achievable by any code with block length n and 2*
codewords. The bound applies to the unconstrained input
AWGN channel.

ii. Gallager’s random coding bound (RCB) [23], which gives
an upper bound to the average error probability of (n, k)
random codes. The bound has been computed for the
bi-AWGN channel.

iii. A tighter RCB, obtained by applying Poltyrev’s TSB [26],
[27] to the average weight enumerator of the (n,m =
n — k, 2) binary parity-check ensemble [32], given by

1 1=0
Ai={ {-on

1> 0,2 <n.
We refer to this bound as the tangential sphere bound for
random codes (TSB-RC).
iv. The normal approximation [24]
bi-AWGN channel.

The block error probability provided by ii. and iii. is achiev-
able. Though, in the following, we shall see that turbo and
LDPC codes manage only to approach the looser of the two
random coding bounds, i.e., Gallager’s RCB.

The numerical results are complemented by the evaluation
of the TSB for the simulated codes, allowing an estimation
on the block error probability at low Py values. For each
simulation point 100 block errors have been collected. The
WAVA with a maximum of four iterations has been used,

computed for the
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Fig. 3. Codeword error rate vs Ej,/Ng for (128,64) TBCCs. The markers
denote simulation results, whereas the dashed lines provide the corresponding
codes TSBs on the ML block error probability.

sufficient to obtain performance close to ML decoding [25].
In Figures 1 to 5, the sphere packing bound (——), the
normal approximation (- - -), the tangential sphere bound for
random codes (-'-'-) and Gallager’s RCB (- ) are provided
as reference.

Results for the information length £ = 64 bits and rates
R =1/3 and R = 1/2 are depicted in Figures 1 and 2. The
rate 1/3 case (Figure 1) shows how down to moderate-low
error rates (i.e. CER~ 10~%) both memory-11 and memory-14
codes allow performing close to the TSB-RC, which for these
code parameters nearly matches the normal approximation.
The memory-8 code performs relatively close to Gallager’s
RCB down to a CER~ 1073, Only the memory-14 code at-
tains a performance close to the bounds down to low error rates
(CER~ 10~7), whereas the memory-8 code loses almost 2
dB. The memory-11 TBCC provides a reasonable complexity-
performance trade-off, attaining CER~ 10~7 within 1 dB from
the normal approximation. The differences are less pronounced
for the rate 1/2 case (Figure 2). Here, both the memory-11
and the memory-14 attain a CER lower than that predicted by
Gallager’s RCB, down to CER~ 10~ 7, performing remarkably
close to both the normal approximation and the TSB-RC.

In Figure 3, the performance of the rate-1/2 codes is
compared with some binary and non-binary turbo and LDPC
code designs. More specifically, the codes included in the
comparison are

« a binary turbo code with 16-states tail biting component
codes from [33];

« a non-binary turbo code constructed over a finite field of
order 256 from [11];

¢ a protograph-based non-binary LDPC code constructed
over a finite field of order 256 from [11], [13] and
proposed for the recent upgrade of the Consultative
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Fig. 4. Codeword error rate vs Ej,/Ng for (384,128) TBCCs. The markers
denote simulation results, whereas the dashed lines provide the corresponding
codes TSBs on the ML block error probability.

Committee for Space Data Systems (CCSDS) satellite
telecommand recommendation [34].

Despite its low decoding complexity, the memory-8 TBCC
outperforms the 16-state turbo code down to CER~ 1075,
and tightly matches its performance down to CER~ 10~7.
The memory-11 TBCC outperforms down to low error rate
both the non-binary turbo and LDPC codes, with a comparable
decoding complexity.

Figures 4 and 5 replicate the analysis of the k = 64 bits
case for codes of dimension £ = 128 bits. As expected, the
limited changes in the distance spectrum with respect to the
shorter block length counterpart (resulting in some case in
larger multiplicities of low-weight codewords) observable in
Table I lead to a visible loss with respect to the theoretical
benchmarks. In particular, for the rate-1/3 case, a judiciously-
designed binary turbo code with 16-states tail biting compo-
nent codes provides nearly the same performance of the (much
more complex) memory-14 TBCC.

To further emphasize the block length regime in which
TBCCs provide a competitive solution, we then derived the
Ey/Ny required to achieve a CER of 107* and 107 as a
function of the block length n. The results are depicted in
Figures 6 and 7, and are shown for the rate 1/2 case. When
a moderate error rate (i.e., CER~ 10™%) is targeted, block
lengths up to n = 192 bits can be considered for memory-11
and memory-14 codes, which perform within 1 dB from the
SPB. When lower error rates are required (i.e., CER~ 1079),
then the applicability of TBCCs shall be limited to shorter
blocks.

A final remark deals with the application of the TSB to
estimate the performance of TBCCs under WAVA decoding.
In fact, given the distance spectrum of a code, the TSB
provides a tight upper bound on the block error probability
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Fig. 6. Ej/Np required to achieve a CER of 104, Various rate-1/2 TBCCs
compared with the SPB ( ).

under ML decoding. The WAVA is a sub-optimum decoding
algorithm for which the TSB does not represent an actual
upper bound on the decoding error probability. Anyhow, for
all the simulated codes, the CER under WAVA has been
consistently below the TSB at high error rates, and tightly
close to it at low error rates, providing an empirical evidence of
the near-ML performance of the decoding algorithm. At lower
error rates (where simulation results are not available, i.e.,
below CER= 10~7) and for other TBCCs, the performance
predicted by the TSB shall be taken cum grano salis, unless
the near-ML performance of the WAVA is proved in a strong
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Fig. 7. Ey/Np required to achieve a CER of 1076, Various rate-1/2 TBCCs
compared with the SPB ( ).

sense.

VI. CONCLUSIONS

We analyzed the performance of TBCCs with different
memories, block lengths and code rates over the AWGN. For
the short block lengths, TBCCs outperform significantly both
binary and non-binary iterative coding schemes, achieving
block error rates that are remarkably close to theoretical
benchmarks down to moderate and low block error rates. As
expected their performance degrades visibly with increasing
block lengths, limiting their appeal to blocks of roughly 200
bits or less. The use of robust decoding algorithms (as e.g.
[35]) enabling error detection may represent a further direction
to explore for the application of TBCCs to ultra-reliable
communication links.
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