Determining the influence of high volumes of bicycle traffic on motorized traffic at signalized intersections in Germany – conceptual approach

S. Hoffmann, H. Twaddle, G. Grigoropoulos (Technische Universität München)
M. Baier, A. Reinartz (BSV GmbH)
M. Junghans, L. Lücken (DLR)
A. Leonhardt (BEUTH Hochschule Berlin)

SUMO User Conference 2017
Berlin
10.05.2017
Content

- Introduction
- Project objectives and tasks
- Working plan
- Conclusion & future prospects
Content

- Introduction
- Project objectives and tasks
- Working plan
- Conclusion & future prospects
Project details

Diesem Bericht liegen Teile der im Auftrag des Bundesministeriums für Verkehr und digitale Infrastruktur, vertreten durch die Bundesanstalt für Straßenwesen unter FE-Nr. 70.0925/2015 durchgeführten Forschungsarbeiten zugrunde. Die Verantwortung für den Inhalt liegt allein beim Autor.

This report is based on parts of the research project carried out at the request of the Federal Ministry of Transport and Digital Infrastructure, represented by the Federal Highway Research Institute, under research project No. 70.0925/2015. The author is solely responsible for the content.

• Project duration: 01 / 2017 – 03 / 2019
• Project partners
 • Technische Universität München
 • BSV GmbH
 • DLR
 • BEUTH Hochschule Berlin
Introduction

Bicycling is becoming more important in urban areas, but this increase may lead to:

- Bicycle congestion at signalized intersections
- Performance problems for motorized traffic
- Inefficient, environmentally unfriendly, unsafe traffic
- Increased aggression, rule breaking behavior, and other psychological effects

Policies regulate bicycle infrastructure design and signalization for safe traffic while maintaining efficient motorized traffic flow. However:

- Not all available bicycle infrastructure designs are considered in Germany
- Existing method is not suitable for a high volumes of bicycle traffic
- Drawbacks must be avoided (see above)
- The limits of current infrastructure design and signalization must be quantified
- A novel evaluation methodology must be identified and defined
- Efficient and safe conditions must be ensured for all traffic participants
Introduction

Examples 1

- no cycling infrastructure
- no queuing area
- shared signalization with motorized traffic
- Bicycles must pass waiting vehicles
Introduction

Examples 2

- Bicycle lane with enlarged upstream queuing area
- Shared signalization with motorized traffic
Introduction

Examples 3

• Bicycle lane with upstream queuing area
• Shared or separated signalization with motorized traffic
• Indirect left turning for bicycles
Introduction

Examples 4

- Cycle path with upstream queuing area
- Shared or separated signalization with motorized traffic
- Indirect left turning for bicycles
Content

• Introduction

• Project objectives and tasks

• Working plan

• Conclusion & future prospects
Project objectives and tasks

- Analysis of established evaluation methodology for capacity and traffic quality at signalized intersections for different bicycle traffic volumes, infrastructure designs and signalization
- Extension of existing methodology for high bicycle traffic volumes on the basis of empirical and simulation based studies
- Development of novel approaches for specific bicycle infrastructure designs and signalizations
- Calibration and validation of the new evaluation methodology for German conditions
- Determination of application limits of different bicycle infrastructure designs and signalization

→ We need empirical data of traffic participants (microscopic and macroscopic)!
→ We need simulation!
Project objectives and tasks
Empirical studies

- Generation of trajectories of all traffic participants
Project objectives and tasks
Empirical studies

- Process chain: object detection → classification → tracking → trajectories

1. Video server provides video data
2. Object detection and classification
3. Trajectory generation due to tracking
4. Computation and assessment of traffic related parameters
5. Storing data and event triggering
Project objectives and tasks
Empirical studies

- Traffic flow related parameter determination:
 - Journey and waiting times
 - Traffic volume (motorized traffic and bicycles)
 - Distances to stop line
 - Time gaps, time loss
 - Acceleration / deceleration
 - Probability density functions (of significant parameters)
 - ...

![Traffic situation](image1.png) ![Optical loops](image2.png)

![Time variation curve for journey time](image3.png)
Project objectives and tasks
Simulation

- SUMO is an open source software for microscopic and mesoscopic road traffic simulation
- Developed by DLR (Institute of Transportation Systems) and countless worldwide contributions
- Ability and flexibility to model and simulate relevant infrastructure designs and signalizations as well as easy configurations of all relevant traffic participants
- Targeted creation and analysis of specific traffic situations by the TraCI interface
- SUMO provides sublane model for realistic driving behavior of bicycles
Project objectives and tasks
Simulation

1) Calibration of driving behavior
 Parameter setting on the basis of microscopic information
 e.g.: acceleration and car-following behavior

2) Validation with regard to parameters
 Check if the parameters are in line with empirical data
 e.g. capacity, occupancy time, maximum waiting time

3) Quality control and plausibility check, particularly for situations and ranges, where no empirical data is present

\[a [m/s^2] \]
\[v [m/s] \]
\[t_{WT} [s] \]
\[q_{Bicycle} [veh / max. waiting time] \]
Project objectives and tasks
Evaluation methodology

- Enhance existing or define a novel evaluation methodology for different bicycle infrastructure designs
 - bicycle paths
 - bicycle lanes
 - mixed urban traffic with or without bicycle lanes
 - partially compatible left turning traffic flows
 - indirect left turning bicycle traffic

→ (international) literature survey
→ knowledge from results of empirical studies and simulations
→ quantify specific adjustment factors of known connections of heavy traffic on bicycle traffic
→ quantify occupancy time given the bicycle traffic volume
Project objectives and tasks

Documentation

- Providing explanation of the proposed evaluation methodology for official policies
- Designing the blank forms of the policy document
- Contributing examples (one for each bicycle infrastructure design)
 - Visualization of the situation (map, signalization, traffic load)
 - Brief task description
 - Sample solution that can be included in the official policy documents
- Verification of these results by relevant test users (engineering offices, local authorities, traffic planners), which give feedback on the basis of questionnaires
Content

• Introduction
• Project objectives and tasks
• Working plan
• Conclusion & future prospects
Working plan

Project plan, milestones, supervisor meetings

<table>
<thead>
<tr>
<th>Activity</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP1 State of the art review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP2 Empirical studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP3 Simulation studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP4 Evaluation methodology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP5 Documentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP6 Project management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supervisor meetings

- First interim report (M1)
- Second interim report (M2)
- Final report (M3)
Content

• Introduction
• Project objectives and tasks
• Working plan
• Conclusion & future prospects
Conclusions & Future prospects

Conclusions

• Multidisciplinary project connecting empirical and simulation studies on the basis of traffic object trajectory data and microscopic traffic simulations with SUMO
• Analysis of 6 intersections with different infrastructure and signalizations in Berlin, Munich and Freiburg
• Empirical findings about how bicyclists behave when using different infrastructure designs and signalizations
• Simulation based findings of the capacity of bicycle infrastructure

Future prospects

• Getting permission for the planned data collection campaigns
• Conducting of these campaigns, data processing and evaluation
• Starting the simulation work package
Thank you for your attention!

Dr.-Ing. Silja Hoffmann
Chair of Traffic Engineering and Control
Prof. Dr.-Ing. Fritz Busch
Technical University of Munich
Arcisstraße 21
80333 München
Phone: +49 89 289 22438
Email: silja.hoffmann@tum.de

Dr.-Ing. Michael Baier
BSV BÜRO FÜR STADT- UND
VERKEHRSPLANUNG DR.-ING.
REINHOLD BAIER GMBH
Hanbrucher Straße 9
52064 Aachen
Phone: +49 241 70550 0
Email: mmb@bsv-planung.de

Dr.-Ing. Marek Junghans
German Aerospace Center (DLR)
Institute of Transportation Systems
Rutherfordstraße 2
12489 Berlin
Phone: +49 30 67055 214
Email: marek.junghans@dlr.de

Prof. Dr.-Ing. Axel Leonhardt
BEUTH Hochschule für Technik Berlin
Luxemburger Str. 10
13353 Berlin
Phone: +49 30 4504 2590
Email: axel.leonhardt@beuth-hochschule.de