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ABSTRACT

This paper describes some laboratory experiments with two-dimensional stratified flow over isolated topography,
in which a novel configuration simulating a radiating upper boundary condition is employed. Several experimental
tests show that the upper boundary is quite effective in absorbing energy. The properties of flow over five different
obstacle shapes were obtained for a range of values of the parameter Nh/U (h is obstacle height, N Brunt-Viisild
frequency and U towing velocity) from 0 to 4 (approximately). The main results of the study are 1) for 0 < Ni/
U < 0.5 (+0.2), the flow is consistent with linear theory and Long’s model; 2) for 0.5 € Na/U < 2.0, upstream
columnar disturbances are found which apparently propagate arbitrarily far upstream in an inviscid system; 3)
overturning and rotors in the lee wave field occur for NA/U 2 1.5; and 4) for Ni/U = 2.0, blocked fluid is
present upstream, and in some cases is also apparent downstream. This upstream blocking is due to the super-
position of the propagating columnar disturbances; it will similarly extend arbitrarily far upstream given sufficient

time,

‘

1. Introduction

The study of two-dimensional stratified flow over
topography has a long history. The problem is best
formulated by posing the question: What is the effect
of introducing topography into flow which is otherwise
known? We recognize two major types of stratified flow:
1) “finite depth,” where the fluid is bounded above by
an upper rigid boundary or an infinitely deep homo-
geneous layer, so that wave energy cannot escape ver-
tically, and 2) “infinite depth,” where internal waves
which propagate upward are not reflected back. This
latter type is probably the more relevant to the atmo-
sphere, and it is the subject of this paper. It may be
modeled by a fluid of finite depth below a region in
which a radiation condition (implying no downward
energy propagation) applies.

In inviscid finite depth situations it is by now firmly
established that the introduction of topography often
results in disturbances which may propagate indefi-
nitely far upstream and permanently alter the flow
which approaches the obstacle (Long 1955, 1970;
Baines 1977, 1979a, b, 1984; Baines and Davies, 1980).
For infinite depth flows, the situation in this respect is
not so clear. Two analytical studies based on pertur-
bation expansions in small obstacle height (McIntyre
1972), and in weak stratification about potential flow
over finite obstacles (Baines and Grimshaw 1979), both
show no permanent effects far upstream (“upstream
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influence”) for obstacles introduced on a level surface.
These solutions contain no singularities at special pa-
rameter values (which is a characteristic of linear so-
lutions for finite-depth flows), and the higher order
terms are similar in character to the first term in the
respective expansions.

These solutions are also consistent with the solutions
of “Long’s model” [steady state solutions obtained
when pU? is constant with height far upstream where
p is fluid density and U velocity, Long (1955)]. Miies
(1968) and Huppert and Miles (1969) have obtained
approximate solutions for flow over a number of dif-
ferent obstacle shapes using Long’s model for infinitely
deep fluids. Plausible flow fields were obtained for val-
ues of Na/U (h is obstacle height and N the Brunt-
Viisdld frequency far upstream) less than a critical
value (Nh/U)., where the flow became statically un-
stable in the lee wave field. This critical value depended
on the obstacle shape but was always of order unity.
This model has been generalized in the simpler case
of hydrostatic flow by Lilly and Klemp (1979), and for
nonhydrostatic flow by Durran and Klemp (1983).

In many reports of numerical studies of stratified
flow over isolated obstacles [Klemp and Lilly (1978),
Clark and Peltier (1977), Peltier and Clark (1979)}, no
upstream influence has been described, values of NA/
U have typically been restricted to NA/U < 1.3 and the
studies have been focused on lee-side effects and
downslope wind storms. All of these studies have rein-
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forced the widespread assumption that disturbances
which propagate upstream in infinitely deep stratified
flows leak upward out of the system, and do not pro-
duce permanent effects far upstream at any level. More
recently, upstream effects with continuous stratification
have been investigated in the numerical studies of
Pierrehumbert (1984) and Pierrehumbert and Wyman
(1985); these models employ a sponge layer near the
upper boundary, and the results suggest that upstream
influence is possible in an infinitely deep domain.

Simple energy considerations (e.g., Sheppard, 1956)
dictate that if Nh/U is sufficiently large, low-level flow
upstream will be blocked and will not pass over the
obstacle. It is also known that horizontally propagating
disturbances are possible in infinitely deep stratified
fluids. The equation for linear disturbances in a strat-
ified flow is

3 A% X
gl;+ Ua (Wyex + wy,) + N*w,, = 0,
where x and z are horizontal and vertical coordinates,
w is the vertical velocity, and the suffices denote deriv-
atives. For disturbances of the form

(1)

w ~ explilkx + nz — wi)}, 2)
the dispersion relation is
N2k
(w — Uk)? = pER R 3

For waves of zero frequency the wavenumber surface
(Lighthill 1967) is shown in Fig. 1, where the arrows

FIG. 1. The wavenumber surface for steady stratified flow of speed
U incident from the left. The source is at the origin. The arrows are
normal to the surface in wavenumber (k, n) space, and denote the
directions of the corresponding group velocity in physical (x, z) space.
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(normal to the surface in wavenumber space k, ») point
in the direction in physical space of the group velocity
of waves with that wavenumber. Hence, waves with
wavenumbers (0, n) where 0 < |n| < N/U may prop-
agate upstream. The question is, how, and under what
eircumstances, does flow over an isolated obstacle gen-
erate them, and how are they related to upstream
blocking?

This paper describes some laboratory experiments
in which a new technique for simulating the upper ra-
diation condition of “infinite depth” is employed.
Other techniques have been tried by others with limited
success and, to our knowledge, none of these attempts
has been reported in the literature. The present tech-
nique is quite successful according to several criteria;
it is described in detail in Section 2. In these experi-
ments, isolated obstacles were towed down a long tank
filled with stationary stratified fluid, starting from rest
near one end. Five different obstacle shapes were used
and a wide range of NA/U values covered for each ob-
stacle. We believe that our experiments establish, un-
equivocally, that permanent upstream effects (upstream
influence) due to horizontally propagating waves may
be produced by isolated obstacles in infinite depth sys-
tems when motion is commenced from a state of rest.
For the obstacles employed here, permanent upstream
motions appeared to be present for Nh/U > 0.5.

The experiments also.indicate that upstream block-
ing (i.e., upstream “stagnant” fluid, stationary relative
to the obstacle) is caused by these waves, and that it is
present for Nh/U = 2.0, although some degree of de-
pendence of this value on obstacle shape was detected.
The details of the observations, including other features
such as wave-induced critical layers, are described in
Section 3. Some comparisons with Long’s model so-
lutions are shown in Section 4 and the results are sum-
marized in Section 5.

A note on terminology. In this paper the principal
dimensionless number is N/ U. There is no commonly
accepted name for this number. Miles (1969) has sug-
gested calling it the Russell number, and it or its re-
ciprocal have been termed a Froude number by some
authors (Baines included). In fact, there is little justi-
fication for the latter, and it seems appropriate {o re-
serve the term “Froude number” for quantities which
may be expressed as (fluid speed/wave speed), which
is an extension of conventional engineering terminol-
ogy. The number U/N# or its reciprocal do not satisfy
this criterion, and we leave them nameless in this paper.

2. Experimental arrangement—The upper boundary
condition

The experiments were performed in a tank 9.17 me-
ters long, 0.38 meters high, and 0.23 meters wide, which
had been used for a number of other topographic stud-
ies (e.g., Baines 1979a, 1979b, 1984). For the present
experiments the tank was modified by inserting a ver-
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tical wall lengthwise along the tank leaving a gap of
8.75 cm from one side wall. This internal wall was 25
cm high and approximately 10 ¢m shorter than the
tank, leaving a gap of 5 cm at each end (Fig. 2a). The
tank was filled to a depth of approximately 34 cm, and
a barrier, angled at 45° to the horizontal and extending
the whole length of the tank, was inserted above the
narrower of the two regions separated by the internal
wall (Fig. 2b). The base of this angled barrier intersected
the side wall at a height equal to that of the internal
wall. Obstacles were towed along the bottom of this
narrower region, and the flow was observed from the
side,

The obstacles used in the experiments were placed
on a tray 72 cm in length, which was towed along the
bottom of the narrow section of the tank. These ob-
stacles were uniform across this section except for a
gap approximately 2 mm at each side. The obstacle
height 4 given below is the total height of the obstacle
above the tank floor (i.e., obstacle plus tray), but this
does not include any allowance for the displacement
thickness of the boundary layer on the obstacle as has
been done for some previous experiments in Baines
(1979b). This is because the obstacles were not long
on the upstream side (with one exception), and also
for consistency. In some cases, for example, an exten-
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FI1G. 2. Schematic diagram of the experimental arrangement.
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sive region of blocked flow developed upstream, which
created problems in defining a suitable consistent
boundary layer thickness.

The tank was filled with stratified fluid with constant
density gradient using the customary two-tank method.
Density variations were less than 4%, so that the Brunt-
Vaisila frequency was effectively constant, and it had
values that were close to unity. Flow visualization was
achieved by using neutrally buoyant polystyrene beads
which had a range of densities covering that of the
stratified fluid. The density profile was checked regu-
larly, as several runs were made with each fill, and the
data recorded photographically, as in previous exper-
iments. Time exposures yielded streak photographs and
hence velocity fields.

The geometrical arrangement described in Fig. 2,
models the upper radiation condition in the following
manner. Motion of the obstacle will generate two-di-
mensional disturbances (no y~-dependence), whose en-
ergy will propagate vertically. The waves will then en-
counter the three-dimensional geometry shown at the
top of Fig. 2b. The equation governing three-dimen-
sional linear internal waves in fluid at rest is,

62
Py (Wex + Wy + W) + N (Wi + ) =0, (4)

for the vertical velocity w, where N is the Brunt-Viisdla
frequency defined by

g
pdz’
where p(z) is mean density. For an upward-propagating
component with frequency » and wavenumber com-
ponent & in the x-direction, w and k will remain con-
stant in the subsequent motion (if we ignore the ends
of the tank). For a component of the form

|

N? = - (5)

w = W(y, z) explilkx — wi)], 6)
we therefore obtain '
By, — I, — k2 = 0, (7

where
c? = W¥/(N? — o).

This is a Klein-Gordon equation, which governs the
across-tank structure of the disturbances. When the
vertically propagating waves reach the upper part of
the two-dimensional channel there will be some degree
of wave energy reflected back into the channel, due to
a mismatch of impedances between the channel and
the region above it. This effect is difficult to calculate,
and the observational evidence indicates that it is in-
significant in these experiments. We therefore assume,
for the present discussion, that virtually all the vertically
propagating wave energy in the channel escapes into
the upper region. Vertically propagating waves in the
x-z plane will be affected by two main factors in the
upper part of the tank—diffraction above the central
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barrier into the wider region of the tank, and reflection
from the upper angled barrier. We now discuss these
phenomena in turn.

Diffraction past a vertical barrier which is aligned
parallel to the direction of wave propagation in the
manner already described has not been described pre-
viously in the literature. A simplified version of the
problem is analyzed here in the Appendix, in order to
describe the character of the wave motion in the upper
portion of the tank. For the main results, we refer to
Fig. 3a. A vertically propagating incident wave com-
ponent will have the form

I=-Cy / Z=Cy
N ~ 1 _inz
N\ e /
AN T / =0
T AN /
o o e-in? .|/ arctan C y
(a)

71-2=<“-Nl<1

45°< ¢ < 90°

Cg

(b)

FIG. 3. (a) Diffraction of vertically propagating internal waves past -

the central barrier: behavior in the y-z plane. (b) Reflection of ver-
tically propagating waves from the angled upper surface: behavior in
the y-z plane.
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A _— —in
w=e "

®

where n > 0 if w > 0, and k may have either sign; for
definiteness we assume w > 0 and k > 0. For z
< — ¢y, the incident wave is largely unaffected by the
barrier. For z > c|y| the wave has half the amplitude
of the incident wave, plus an evanescent term with y-
dependence which decays with height as (1/kz)'/2.
There is no effective penetration of the wave into the
region y > z/c. Inviscid singularities occur on the junc-
tions of these regions z = ¢y, but these have no con-
sequences for our present discussion. A substantial
fraction of the wave energy is therefore “diffracted”
across the barrier, and the wave above the narrow re-
gion of the tank may be reduced by up to 50% in am-
plitude but without significant change in its structure.
Above the narrow region the vertically propagating
wave component (8) will encounter the angled barrier
and be reflected as another plane wave of the form

®

where u is the fluid velocity and ug a constant vector,
satisfying

u = ug expli(kx + Iy + ngz — wi)],

kr-ug =0,
where
kg = (k, Ir, ng). (10)

The boundary condition of zero normal velocity and
the dispersion relation give (for barrier angle 45°),

(w/N)? n

BRI

- 1= 2(«/N) R (1

and the reflected waves are illustrated in Fig. 3b. For
Ig> 0 (0 < w/N < 1/4/2) the reflected wave propagates
over the central barrier into the wider region of the
tank. For /g <0 (1/v2 < w/N < 1) the wave is reflected
back into the narrow operating region. However, we
expect this backward reflection to have a negligible ef-
fect on our observations for the following reasons: 1)
the group velocity of the reflected wave vanishes at
both ends of this range, so that for frequencies near
these values downward propagation will be negligible
and the wave will be dissipated near the reflecting bar-
rier; 2) for the steady-state wave pattern given by equa-
tions (1)~(3) and illustrated in Fig. 1, waves with 1/v2
< Uk/N < 1 are found downstream of the obstacle.
The downward-reflected wave components all have
smaller group velocities (in both x and z directions)
than the incident waves, and hence they will be present
even farther downstream of the wave pattern generated
by an isolated obstacle; 3) any downward-reflected
waves will have a significant y-component, and this
will preclude their forming modes with the upward-
propagating components.

For the waves which pass over the central barrier,
once they enter the broader region of the tank they
will generally have very long travel times (being re-
flected down to the bottom and back again) so that
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FI1G. 4. An example of flow over the periodic saw-tooth topography; NA/U = 0.89.
Note the forward tilt of the phase lines with height.

they are either dissipated there or return long after the
observations in the narrower region have been made.

This simulated radiation condition was tested ex-
perimentally by towing two types of periodic topog-
raphy through the tank and comparing the resultant
wave motion with that expected on theoretical grounds
for a perfectly absorbing upper boundary. The upward-
propagating wave has the same horizontal period as
the topography, and we compare the observed slope of
the phase lines with the theoretical slope tanf = k/n
= k/[(NJU)* — k?}'2. The periodic topographies used
were sinusoidal (6 periods, wavelength 14.8 cm) and
sawtooth (6 periods, wavelength 40.4 cm). An example
with the latter topography is shown in Fig. 4; here, as
in the other cases examined, there is no evidence of
downward reflection or three-dimensional structure,
even though this topography is extensive in the hori-
zontal rather than localized. Results for various differ-
ent towing speeds (frequencies) are shown in Fig. §;
the agreement with theoretical phase angles indicates
that the upper radiation condition is modeled quite
well, although there is a tendency for the observed an-
gles 6 to be larger than the theoretical values for
large 6.

The ~5 cm gap in the central barrier at each end
of the tank had the effect of reducing the reflection of
the low-frequency upstream motions apparently to
zero. Several tests were made for reflected motions but
none could be detected. The upstream waves propa-
gated “around the corner” into the broader region, so
that the tank acted as a race track type for these mo-
tions. This effect was not, however, relied upon heavily
in these experiments, as most observations were com-
pleted before the obstacle came within 2.5 m of the

upstream end of the tank, but it certainly prolonged
the effective development time for the flow, relative to
a “rigid-ended” tank.

3. Observations with a single obstacle

Approximately 130 observational runs were made
with five different obstacle shapes, covering Nh/U val-
ues ranging from approximately 0 to 4. Details of the
obstacles are given in Table 1. Most of these runs were
photographed using both the stationary and moving
still cameras, and were also recorded on video tape
with a stationary camera. This substantial body of re-
corded data has been stored at Aspendale; it is described
here in summary form.

We first describe the motion observed upstream of
the obstacles. An overall view is shown in Fig. 6. For
Nh/U < 0.5 (£0.2), no upstream motion was observed,
other than very close to the obstacle where displace-
ments were forced by continuity. For Ni/U > 0.5
(£0.2), however, columnar wave motions with con-
spicuous horizontal but very small vertical velocity
were observed propagating upstream. These had similar
character to those described in Baines (1977, 1979a)
for the same flow situations but in finite-depth fluids,
except that in the present experiments no vertical
modes were discernible in the flow. Instead the spec-
trum of horizontal motion in the vertical was broad-
band and continuous. This was quite apparent in the
evolution of the upstream velocity profile. At a fixed
distance upstream of the obstacle, the disturbances first
arrived with extremely large vertical wavelength
(somewhat greater than the actual depth of the fluid);
as time increased, progressively smaller-scale waves ar-
rived, and the velocity profile became more oscillatory
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FIG. 5. Observed vs theoretical phase angles for periodic topography.
The arrow (top right) indicates the expected phase for a rigid reflecting
upper boundary.

with the “oscillations” moving downward. The time
evolution of this velocity profile was continuous, and
no sudden variations in its rate of change, suggesting
the presence of discrete (or even leaky) modes, could
be detected. The large error bars at Na/U = 0.5 reflect
the difficulty in separating the propagating columnar
disturbance from the evanescent upstream part of the
linear solution, which has very similar vertical struc-
ture, in these towing experiments with their limited
operating time.

Most of the runs were commenced with a sudden
start to the motion of the obstacle. To test for the pos-
sible effect of this on the generation of transients, some
runs were made in which the obstacle commenced
motion slowly, reaching constant speed after a distance
of approximately 1.5 m. When observations were made
farther upstream, no differences in the upstream de-
velopment or in the final profile were evident. The de-
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crease in the approach velocity (relative to the obstacle)
at lowest levels, for example, was always monotonic.
This suggests that upstream transient features (which
were evident in finite-depth situations) propagate up-
ward out of the system, whereas the (ultimately) steady
columnar motions do not. Velocity profiles measured
at a point immediately upstream of the obstacle are
shown in Fig. 7, for four obstacles (1 to 4 in Table 1)
for a range of Nh/U values. These profiles were mea-
sured after the obstacle had covered a distance of 4 m
or more. In each case a number of pictures were taken,
and the profiles shown are each the mean. of three or
four realizations, with the error bars indicating the
mean magnitude of the scatter. For small Ni/U the
scatter was smaller than the error bars, but it increased
as Nh/U increased; it was larger than the error bars for
the largest Na/U values shown. Inspection of the pho-
tographs indicated that at this location the flow had
reached an approximately steady state (although this
was not the case for points farther upstream at the same
time). The absence of any discernible trend with time
in the measured profiles supported this view, but the
fact that the velocity observations were more scattered
for Nh/U > 2 makes the attainment of steady state less
certain in this range. However, a consistent picture
emerges from these averaged profiles showing, as N/
U increases, velocity profiles with decreasing wave-
length and descending fluctuations. The development
of the blocked region, together with the jet above the
level & and its decreasing scale with increasing Nh/U,
can be clearly seen. Little variation with obstacle shape
was apparent for Nh/U < 2. [Note the difference in
scale between a and b (h ~ 3 cm) and ¢ and d (h
~ 6.5 cm).]

The maximum velocity in the steady state profiles
measured immediately upstream of the semielliptical
obstacle is shown in Fig. 8 as a function of Na/U. This
quantity has been chosen as a measure of the magni-
tude of the upstream disturbances. For this purpose,
it is superior to the velocity minimum near the ground
in these experiments, because measurement of the latter
is complicated by technical factors—a paucity of beads,
and the viscous effects of the towing cable and the lower
boundary. These results suggest that the onset of the
upstream motion as Nha/U increases above 0.3 occurs

TABLE 1.
Height h* a
Obstacle Number (cm) Shape (cm) Comments
Semicircle 1 33 A1 — (x¥a*)? 3.0
Semi-ellipse 2 2.9 Al - (x¥a®))'? 8.3
Witch of Agnesi 3 6.5 A1 + (x¥a®)] 4.0
W of A/Ramp 4 6.8 1 + (x¥a?)] 4.0 Lefi-hand side
Near-plane ramp, Right-hand side
slope 0.12
Obstacle 4
Ramp/W of A 5 6.8 reversed

* Note that /4 here denotes the total height, including the supporting tray.
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FIG. 6. Criteria for the presence of columnar upstream motion
and upstream blocking in terms of NA/U for the given obstacle shapes
used, and denoted above each line. The hatched regions denote error
bars.

continuously from zero, within the limits of observa-
tional error.

As Nh/U increased beyond 0.5, the magnitude of
the upstream disturbances at the lowest levels increased
until the fluid became blocked; i.e., it was stationary
relative to the obstacle. The value of Nh/U at which
this occurred is shown in Fig. 6; it varied somewhat
with obstacle shape, but was typically about two. Mea-
surement of the depth of the blocked region was some-
what inaccurate due to the technique used (observing

streak photographs), but when blocking first appears -

(i.e., Nh/U ~ 2) the depth is approximately 1/2 h. This
depth increased slightly as NA/U increased further. On
the basis of these observations, therefore, the onset of
blocking occurs when a slowly moving layer of finite
thickness is brought to rest, rather than by first forming
a blocked layer of near zero thickness, which then grows
upward. This process is consistent with the wave prop-
agation mechanism, when the upper limit to the con-
tributing vertical wavenumbers is N/U. These blocked
regions may be seen clearly in Fig. 9, particularly for
the taller obstacles in ¢, d, and e.

Figure 9 displays the nature of the flow over each of
the five obstacles for a range of values of Nh/U. Lee
waves of fairly large-scale are evident for Na/U < 1.5.
For Nh/U = 1.5, a region of very small velocity—a
“stagnant patch” or “rotor”’-—is evident, embedded in
the lee wave field immediately downstream of the ob-
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stacle. This critical value for Nh/U for overturning
(~1.5) is not precise, but it does not seem to be very
sensitive to obstacle shape. For obstacles 1-4 (Table 1)
the height H; of the stagnant region when it first forms
is

H; ~ 3h ~ (NR/U)N2 ~ 3)/4, (12)
where A = 27 U/N. This is approximately the height of
overturning as given by linear theory (e.g., Peltier and
Clark, 1979), although the observed flow is now sig-
nificantly nonlinear. Peltier and Clark also obtained
the same height for overturning in their nonlinear
computations, although their value of Nh/U was
slightly smaller (1.3). For the fifth obstacle the initial
overturning region is somewhat lower (<2k). As Nh/
U increases, this stagnant region tends to spread hor-
izontally above the lee side of the obstacle. This con-
stitutes the “wave-induced critical region” found in
the numerical computations by Peltier and Clark. As
is evident from Fig. 9, as Nh/U increases further the
critical region generally becomes slightly lower; the lee
wave amplitude above this level becomes quite small,
but it is still substantial below the critical level (or re-
gion). These low-level lee waves are sited on a region
of velocity maximum or “jet,” which comes from just
above the blocked (or nearly blocked) region upstream.
Since the blocked flow region has weak density gra-
dients, this low-level jet region must have an enhanced
density gradient which supports these waves. :

Another property evident from Fig. 9 is that blocked
flow upstream is generally accompanied by blocked
flow downstream; the downstream blocked layer has
comparable but generally smaller thickness, and both
layers are surmounted by the low-level jet. We did not
concentrate on downstream flow features in this study,
but one very striking phenomenon observed several
times is shown in Fig. 10. In this example, for the W
of A shaped obstacle with Ni#/U = 0.79, two or more
humps filled with stagnant fluid (in the frame of the
obstacle) were present downstream, with a very pro-
nounced and thin (but stable) shear layer at their upper
surface. The same phenomenon was observed for Ni/
U=0.9and 1.1.

In some cases significant lee-side separation was ob-
served, e.g., in Fig. 9c. No obvious correlation between
such separation and upstream disturbances was ap-
parent in these experiments.

4. Comparison with Long’s model solution

Differences between the observed flows and the so-
lutions obtained from Long’s model are apparent from
Section 3. To illustrate this further, we here present
two comparisons of flow fields for semicircular (Fig.
11a) and semi-elliptical obstacles with minor/major
axis = 0.3 (Fig. 11b), for values of Na/U for which the
Long’s model streamlines become vertical somewhere
(approximately). The Long’s model solutions are taken
from Miles (1968) and Huppert and Miles (1969), re-
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spectively, and are approximations based on two terms
in an infinite series of lee wave functions. These two
terms give an adequate representation of the series for
the total wave drag and the wave scattering cross sec-
tion, so that the approximation to the detailed wave
field is probably adequate.

Note that the nonuniform upstream velocity profiles
are evident in the observations, but absent from the
theory. However, the most obvious difference between
these two sets of pictures is that the observed lee-wave
amplitude is substantially smaller than that given by
Long’s model. Vertical streamlines do not appear in
the experiments until N4/ U is somewhat larger (~1.5)
than the values shown here.
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5. Discussion and conclusions

We have described some laboratory experiments that
simulate the flow of stratified fluid over isolated obsta-
cles, with a radiating upper boundary condition. On
the basis of theoretical considerations and a number
of experimental tests, we believe this simulation to be
quite successful; no evidence of downward reflection
of energy could be detected.

Five different obstacle shapes were towed through
initially stationary stratified fluid, starting from rest.
The resulting observed flow properties may be con-
veniently described in terms of ranges of values of the
parameter Na/U.

Nh

— =2.69
U
Ellipse

FIG. 9. (Continued)
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1) 0 < Nh/U < 0.5 (£0.2). In this range, the observed
“steady state” flow consists of lee waves downstream
with wavenumbers of order N/U, and no significant
disturbances upstream. The flow appears to be quite
consistent with linearized flow solutions and Long’s
model solutions, except that separation may occur if
the lee side of the topography is sufficiently steep.
Within the limits of its determination, the upper limit
of this range (Nh/U = 0.5) was not sensitive to obstacle
shape. :

2) 0.5 (x0.2) < Nh/U < 2.0. In this range, horizon-
tally propagating long wave (“columnar”) disturbances
are observed propagating ahead of the obstacle. The
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observed upstream propagation speed is consistent with
the expression ’

C=Nmn—-U, k=0, (13)
(positive in the upstream direction) for the speed rel-
ative to the obstacle, so that upstream propagation is
possible for wavenumbers n < N/U. The largest-scale
waves travel fastest and C — 0 as n — N/U. At a fixed
point upstream of the obstacle, therefore, one observes
a continuous change in the horizontal velocity profile
as progressively smaller-scale waves arrive. Each part
of this continuous spectrum reduces the horizontal ve-

W of A

FIG. 9. (Continued)
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locity of the approaching fluid near the ground, and
increases it in a jet above the blocked region. We infer
from the observations that, if dissipative effects are ex-
cluded, these upstream disturbances would propagate
arbitrarily far upstream and establish a steady velocity
profile there, although it may take a very long time for
the components with n ~ N/U to arrive. As Nh/U
increases from 0.5 to 2, the approach velocity near the
ground decreases from U to near zero. Over the obstacle
the lee waves progressively steepen as Nh/U increases
and overturning commences at N2/U ~ 1.5, and this
value is relatively insensitiveé to obstacle shape. This
results in semistagnant regions (“rotors”) embedded in
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the lee wave field where the fluid separates and passes
both above and below, as described in Baines (1977)
for finite depth flow. As Nh/U increases further, the
lowest (and most significant) stagnant region tends to
spread horizontally above the lee-side of the obstacle.
This effectively creates a wave-induced critical layer at
this level z. (which is typically at height 3/). Above the
level z. the wave amplitude is now significantly smaller
than it is for smaller Na/U, whereas for z < z, the wave
amplitude may still be large in the jet region.

3) Nh/U = 2.0. In this range, some low-level fluid
on the upstream side is blocked (i.e., stagnant), and
the value at which this occurs may vary slightly with

N
U =2.84

W of A / Ramp
FiG. 9. (Continued)
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obstacle shape. As time increases, the region of blocked
fluid extends farther upstream and tends to a constant
" depth (which depends on obstacle shape and Nh/U).
This upstream blocking is produced by the superpo-
sition of the upstream columnar disturbance modes.
We suggest that this mechanism can explain and de-
scribe such blocking in all stratified systems where vis-
~ cosity is a minor factor. The critical layer observed
when Nh/U < 2 at z ~ z_ persists; lee-wave amplitudes
may be large for z < z., but are very small for z > z,.
Downstream, at low levels, blocking (i.e., fluid moving
with the obstacle) is also evident. In some cases this
has a wavy structure and consists of a sequence of
“bulges’ separated from the upper fluid by a thin shear
layer.
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These experiments were restricted to Na/U < 4, but
at the upper end of this range the flow had some prop-
erties which approximated those expected at the limit
Nh/U — oo, namely, blocked flow upstream and
downstream for z < h, and a viscous shear layer at
z = h, and relatively quiescent flow above. This suggests
that the parameter range of these experiments covers
most of the interesting phenomena in the transition
from Nh/U small to Nh/U large. i ,

The foregoing results for blocking may be compared
with those described for finite depth cases in Baines
1979b for a Witch of Agnesi-shaped obstacle. The cri-
terion for blocking obtained was also Ni/U = 2.0, and
this value showed little sensitivity to the value of the
total depth D provided =U/ND < 0.5. When upstream

U

Nh _»5 42

Ramp/W of A
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Shear layer

FIG. 10. Diagram showing the stationary humps observed in the lee of the Witch of Agnesi.

blocking first occurred, the depth of the blocked layer
was comparable with //2; this is also found in the pres-
ent experiments, as is evident in the pictures of Fig. 9
where Nh/U ~ 2. With regard to upstream blocking,
therefore, the results for finite depth (with a discrete
vertical wave spectrum) have much in common with
those for infinite depth (with a continuous spectrum).
This suggests that when # U/ND is small, we may expect
finite depth systems to behave similarly to infinite depth
ones, with regard to these phenomena. It follows that
we may expect the results of Baines (1979b) for flow
past three-dimensional barriers to be applicable in the
infinite-depth case also. In particular, for a two-di-
mensional mountain barrier with narrow gaps, if Nh/
U = 2 the low-level nearly blocked fluid flows hon-
zontally through the gaps and has a depth [z ~ A(1
— 2U/Nh)] which depends on NA/U; at the upper
boundary of this region, there is an abrupt change
(manifested as a shear layer) to a flow region in which
the fluid flows over the topography in an approximately
two-dimensional fashion.

It was remarked in Section 1 that earlier numerical
studies have not reported upstream effects of the kind
described here. However, an inspection of Figs. 6 and
7 of Peltier and Clark (1979), where Nh/U = 1.3, clearly
shows phenomena of this type propagating upstream.
We, therefore, believe that these effects are, in fact,
present in the numerical models, but have gone un-
noticed partly because they have not been expected.
They are most readily seen in the horizontal velocity
profiles, whereas numerical model outputs have tended
to concentrate on streamlines and vertical velocities.
The recent computations by Pierrehumbert (1984) and
Pierrehumbert and Wyman (1985) do describe the up-
stream disturbances, and with nonrotating hydrostatic
flow with two-dimensional topography, totally blocked
flow is found upstream for Na/U > 2.0 (£0.5).

A dimensionless parameter which has not been var-
ied systematically in the present experiments is the ratio
h/L, where L is a measure of the obstacle length, al-
though some variation is implicit in the different ob-
stacle shapes used. The ratio may be combined with
Nh/U to give NL/U; for each obstacle shape, the value
of this parameter will govern lee-side separation and
the degree of hydrostaticity of the flow. For example,
for Nh/U < 1 these experiments are all nonhydrostatic,

but they become progressively more hydrostatic as N/
U increases. The hydrostatic results of Pierrechumbert
and Wyman (1985) show differences from the present
ones when Na/U < 1 (most notably, the point of onset
of upstream disturbances), but they are, substantially,
in agreement for Na/U = 2.

If we wish to relate the results of the present exper-
iments to atmospheric situations, for example, flow
over the European Alps, we must consider the effects
of the two major approximations; namely 1) two-di-
mensional topography and 2) nonrotating flow. Firstly,
the results of Baines (1979b) discussed above imply
that low-level fluid which is blocked in the two-di-
mensional situation will flow horizontally around an
extensive three-dimensional barrier, whereas fluid
above this blocked region will flow over the barrier.
We believe that this same phenomenon is observed in
the Alpex data (e.g., Pierrehumbert 1984, Fig. 1), in
the form of the shear layers upstream at heights close
to 3 km. Secondly, scale analysis dictates that the effects
of rotation locally on the flow will be small if the mean
time taken for a fluid particle to pass across the topog-
raphy is much less than an inertial period, i.e., Ry = U/
fL > 1, where L is the characteristic width of the
mountain range and f the Coriolis frequency. This
condition is satisfied in many atmospheric situations.
In all cases, however, rotation will affect the upstream
propagation distance of the upstream disturbances. The
effects of rotation are discussed in some detail by
Pierrehumbert and Wyman (1985).

At present no theoretical model which can explain
and describe the mechanism of the generation of these
upstream motions exists for infinite depth systems. The
studies of Mclntyre (1972) and Baines and Grimshaw
(1979) show that this generation process must be non-
linear. Also, the similarity between the finite and in-
finite depth observations described above indicates that
this generation process is probably also similar in these
two situations. For hydrostatic flow in the finite depth
case, conditions over the obstacle are governed by a
“critical flow” condition (Baines 1984 and recent un-
published work) which controls the amplitude of the
upstream disturbances. It, therefore, appears plausible
that the vertically periodic flow (Lilly and Klemp, 1979)
which is set up by the disturbances produced when
Nh/U is small in the infinite-depth case, establishes an
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FIG. 11. Comparison between the observed flows (late in run, and therefore near
steady state) and Long’s model solution for the Na/U value at which the latter is
marginally statically unstable. (a) Semicircle, (b) Semi-ellipse with A/a = 0.3.

“effective” critical flow condition, at least for hydro-
static flow. )

APPENDIX

Diffraction of an Internal Wave Past a Horizontal
Knife-Edge Aligned Parallel to the Incident Wave

We address this problem by solving instead a simpler
" version that specifies the boundary conditions on the
plane surface z = 0. The main objective is to describe
the general character of the wave motion in the region
z > 0. This model problem is

Wy, — €W, — k*w = 0, (A

with
exp(—inz +e), —0o<y<0, z=0
5o { p( €)) y L (A2)
0, y>0, z=0

and a radiation condition at large z; ¢ is introduced for
mathematical convenience, is small and positive, and
will be reduced to zero subsequently.

Introducing .
w(l, z) = f e Mdy, (A3)
we obtain .
N ’
W, + (,'2 ! w=0 (A4)
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FIG. 11. (Continued)

so that
w = A exp[—i(k? + [%)'2z/c]
+ Bexpli(k® + %'2z/c]. (AS5)
The radiation condition of no incoming internal wave
energy requires that
B =0,
and the conditions at z = 0 then imply

1
A=—-. (A7)
e— il
Inverting the Fourier transform then gives
. 1 0 ily
W(x,Z)—_z; —oof—il

(A6)

exp[—i(k? + 1%)'?z/cldl.

(A8)

This integral may be evaluated using standard tech-
niques to give

N B
W= — f - -sinh(s? — 1)"?kz/c- ds,
1

y > z/c,
™

. i © e—kys .
=g — } sinh(s2 — 1)"2kz/c- ds,
T J1 A)
y < —z/c,

(A9)

; 1
_1 eminr — L f sinhkys - exp[—i(1 — s2)"?kz/c] ds
2 7 Jo s

™

1~ . d.
+ —f sinhkys - exp[—(s? — 1)'?kz/c] ?s ,
1
Iyl < z/e,
e“i"z + 11 + Iz.

N —



1630

For |y| > z/c the integrals contain no phase propagation
terms, and hence represent no energy propagation in
the y—z plane. They have singularities of the form 1/
|y + z/c| respectively.

For [y| < z/c the second integral I, is of the same
type. The first integral /; may be approximated when
lkyl < 1 by

k
I =— Ey (J,(kz/c) ~ Y,(kz/c)

+ % f sinhs exp(—kz/c sinhs)ds) + O(ky)®, (A10)
0 .

giving an upward propagating wave which decays with
height due to lateral spreading.
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